Lower bounds on the state complexity of population protocols - Université de Bordeaux
Article Dans Une Revue Distributed Computing Année : 2023

Lower bounds on the state complexity of population protocols

Résumé

Abstract Population protocols are a model of computation in which an arbitrary number of indistinguishable finite-state agents interact in pairs. The goal of the agents is to decide by stable consensus whether their initial global configuration satisfies a given property, specified as a predicate on the set of configurations. The state complexity of a predicate is the number of states of a smallest protocol that computes it. Previous work by Blondin et al. has shown that the counting predicates $$x \ge \eta $$ x ≥ η have state complexity $$\mathcal {O}(\log \eta )$$ O ( log η ) for leaderless protocols and $$\mathcal {O}(\log \log \eta )$$ O ( log log η ) for protocols with leaders. We obtain the first non-trivial lower bounds: the state complexity of $$x \ge \eta $$ x ≥ η is $$\Omega (\log \log \eta )$$ Ω ( log log η ) for leaderless protocols, and the inverse of a non-elementary function for protocols with leaders.
Fichier principal
Vignette du fichier
s00446-023-00450-4.pdf (347.98 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04286895 , version 1 (14-11-2024)

Licence

Identifiants

Citer

Philipp Czerner, Javier Esparza, Jérôme Leroux. Lower bounds on the state complexity of population protocols. Distributed Computing, 2023, 36 (3), pp.209-218. ⟨10.1007/s00446-023-00450-4⟩. ⟨hal-04286895⟩
8 Consultations
0 Téléchargements

Altmetric

Partager

More