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Abstract: The influence of radiative heat transfer in a CO2 pipe flow is numerically investigated at different pressures.
Coupled heat and mass transfer, including radiation transport, are modeled. The physical models and the high temperature
and high pressure radiative properties method of computation are presented. Simulations are conducted for pure CO2

flows in a high temperature pipe at 1100 K (with radius 2 cm) with a fixed velocity (1 m.s−1) and for different operating
pressures, 0.1, 1, 5 and 20 MPa (supercritical CO2). The coupling between the temperature and velocity fields is discussed
and it is found that the influence of radiation absorption is important at low pressure and as the operating pressure increases
above 5 MPa the influence of radiation becomes weaker due to an increase of CO2 optical thickness.

Keywords: Radiation transport, CO2 radiative properties, high pressure carbondioxide spectra, computational
fluid dynamics, supercritical carbon dioxide flow, radiation andflow coupling

1. Introduction

Current heat transfer fluids (HTF) for solar concentrating systems are: synthetic oil, steam, molten salt and

air. At temperature higher than 565 ◦C air is the only available HTF, but the poor heat transfer properties of

air are well known. Consequently, researches on alternative HTF for the conversion of concentrated solar energy

at high temperature (high Carnot efficiency) is an important R&D topic for improving actual technologies. A

review of thermodynamic cycles and working fluid has been published in [1] but for low-grade heat. Carbon

dioxide appears to be a good candidate because it is non-flammable and non-toxic fluid. The CO2 supercritical

state (s-CO2) is observed at 73.8 b and 304.5 K consequently favorable heat transfer and viscous supercritical

properties may be built on designing innovative conversion systems. Some works have been done in the field

of low and medium temperature solar heat conversion. For example, solar-driven carbon dioxide transcritical

power system using evacuated tube type solar collectors was studied in [2] whereas supercritical Rankine cycle

was examined in [3] and demonstrated in [4]. In this latter paper evacuated CO2-based solar collectors showed

65-70% solar heat collection efficiency and the measured power conversion efficiency was in the range 8.78-9.45%.

At high temperature, it was pointed out in [5] that s-CO2 recompression Brayton cycle can be as efficient as

helium Brayton cycle with lower inlet turbine temperature (550 ◦C for s-CO2 vs. 850 ◦C for He) but higher inlet

pressure (20 MPa for s-CO2 vs 8 MPa for He). In addition, its high working pressure makes the installation more

compact and reduces the investment cost. Due to the relatively low inlet turbine temperature, this cycle was

mainly studied for power generation in nuclear power plants [5, 6, 7]. However, high temperature s-CO2 cycles

may be used to produce power from concentrated solar energy systems. A molten salt solar tower using s-CO2

Brayton cycle to produce electricity was described in [8] and the integration of heat storage to a supercritical
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CO2 cycle was presented in [9]. The great potential of advanced s-CO2 power cycles for concentrated solar

energy conversion was demonstrated in [10]. It is shown that cycle configurations such as recompression cycles

combined with intercooling and/or turbine reheat are able to achieve efficiency higher than 50% for turbine inlet

temperature larger than 700 ◦C. Concerning heat transfer characteristics, experimental investigation of heat

transfer in tubes have been carried out by [11] and [12] using 18.4 mm and 4.4 mm i.d. tubes respectively with

s-CO2 at pressures slightly higher than the supercritical one. Fully developed turbulent flow was studied in [12].

This overview of published works indicates the great potential of s-CO2 for the conversion of concentrated solar

energy but that radiation effect on heat exchange performances have been neglected although carbon dioxide

is a well known absorbing gas in the IR region. Consequently, the objective of the present article is to show

the influence of radiation in a pure CO2 turbulent pipe flow as a function of pressure. A numerical approach

is used to simulate the flow and heat transfer accounting for radiation transport since the pipe wall is at high

temperature and CO2 participates in radiation. First, the model is presented, then the simulation is described

and, finally, the results are discussed in the last section.

2. Mathematical models

2.1. Mass transfer model

The mass balance equation and the momentum balance equation for the turbulent flow are solved. The

turbulent flow is modeled with a steady Reynolds-averaged Navier-Stokes model which is the standard k-epsilon

model. Therefore, the flow dynamics is modelled using the following steady state balance equations for mass

(Eq. 1) and momentum (Eq. 2):

∂

∂xi
(ρui) = 0 (1)

∂

∂xj
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∂xi
+

∂

∂xj
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− 2

3
δij
∂ul
∂xl

)]
+

∂

∂xj

[
(µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
ρk + µt

∂uk
∂xk

)
δij

]
(2)

where velocity ui and pressure p are Favre’s mean variables (mass-averaged values) and where the Boussinesq

approach is used to model the Reynolds stresses. The turbulent viscosity µt is modeled by a k − ε approach,

therefore it depends on the turbulent kinetic energy k and its dissipation rate ε following the relationship µt =

ρCµ
k2

ε . Thus, two additional equations for k and ε are solved:
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where the following constants are used: C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 ; and Sij represents

the mean rate-of-strain tensor.

The density, specific heat capacity, thermal conductivity and viscosity of CO2 were extracted from the work

of [13].
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2.2. Heat transfer model

Turbulent heat transport is modeled using the concept of Reynolds’ analogy to turbulent momentum transfer.

The energy balance equation is thus given by:

∂

∂t
(ρE) +

∂

∂xi
[ui(ρE + p)] =

∂

∂xj

(
λeff

∂T

∂xj
+ uiµt

(
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+
∂ui
∂xj

)
− ui

2

3
µt
∂uk
∂xk

δij

)
+ Srad (5)

where E is the total energy and λeff is the effective thermal conductivity, λeff = λ +
cpµt

Prt
(with λ the thermal

conductivity and Prt = 0.85).

The energy balance equation includes a radiative source term, Srad, to account for CO2 participation in

radiation transport inside the pipe. Indeed, carbon dioxide is a participating medium that strongly absorbs

infrared radiation mainly in the 2.7 µm bands, 4.3 µm bands and 15 µm bands. Carbone dioxide is a semi-

transparent gas that emits radiation and mainly absorbs radiation emitted from the high temperature pipe wall.

Thus, radiation absorption can play a significant role in heat transfer balance.

2.3. Radiative transfer model

Radiation transport is considered in an emitting, absorbing, non-scattering and non-gray medium surrounded

by gray walls. The monochromatic RTE (Radiative Transfer Equation) for an absorbing and emitting medium,

at position ~r and in the direction ~s, can be written as:

dIν
ds

= κν(Ibν − Iν) (6)

with the associated boundary condition for a gray surface that emits and reflects diffusely:

Iwν(~s) = εwIbν +
1− εw
π

∫
~n·~s′<0

|~n · ~s′|Iν(~s′)dΩ′ (7)

The radiative property model chosen in this study is a multi-gray approach and the RTE for the jth gray

component is expressed as [14]:
dIj
ds

= κj(aj
σT 4

π
− Ij) (8)

where aj and κj are, respectively, the emission weighting factor and absorption coefficient for the jth gray

component. The quantities aj and κj are temperature dependent. The boundary conditions for gray walls thus

become:

Iw(~s) = εwaj
σT 4

π
+

1− εw
π

∫
~n·~s′<0

|~n · ~s′|Ij(~s′)dΩ′ (9)

The radiative source term (in Eq. 5) is computed with a finite volume model for spatial and directional

integrations. The radiative transfer equation (Eq. 8) is solved using the Discrete Ordinates (DO) radiation

model (as it is called in the ANSYS Fluent commercial software) for a finite number of discrete angles. This

DO model corresponds to the finite-volume method developed by Chui and Raithby [15] which is different but

presents many similarities with the classical discrete ordinate method. In two-dimensional simulations, only four

octants are solved due to symmetry. In the presented two-dimensional simulations, 16 directions are adopted

for the angular discretization of each octant. For spectral integration the global spectral ADF (Absorption

Distribution Function) model [16] is chosen for the description of global radiative properties of CO2 at high

temperature (ADF-CO2). These two models (DO and ADF) are approximate models but they are suitable for

coupled CFD simulations and do not involve huge computer time.
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2.4. Radiative properties of carbon dioxide

The participating medium is pure carbon dioxide at high temperature (up to 1100 K) and from low (0.1

MPa) to high pressure (20 MPa). Therefore, the radiative properties of CO2 should be computed over a large

temperature and pressure ranges. At high temperature, the radiative properties of CO2 can be computed based

on high temperature spectroscopic databases such as HITEMP-2010 [17] or CDSD-4000 [18]. The spectroscopic

database selected is HITEMP-2010 because CO2 temperature does not reach 4000K in the present calculation so

we do not need to involve transitions occuring around 4000 K. For low pressure, CO2 spectra can be computed

within the limits of the impact approximation based on the isolated line concept. The line shape is considered

Lorentzian and accordingly to the isolated line concept, each line shape is not modified by other transitions.

However, as pressure increases the gas density increases and the collision-induced transfers of population become

important [19]. Spectral transitions can overlap significantly with each other and the isolated line assumption

breaks down. Thus, the spectral shape should be modeled with the line mixing process. A line-by-line model

[20] was used to obtain synthetic spectra of pure CO2 assuming a Lorentz line profile corrected by a χ factor [21]

that accounts for line mixing effects and results in a transfer of population from line wings to line core. Carbon

dioxide spectra were computed for different pressures and temperatures. To ensure short computation time

while keeping a sufficient accuracy on the radiative source term computation, the high resolution CO2 radiative

properties should be approximated by a global spectral model requiring only a few number of parameters. Indeed,

high resolution spectra requires to discretize absorption coefficient spectra with tens of millions of points whereas

a global spectral model requires only few tens of points. High resolution spectra are also necessary to compute

the parameters of approximate global spectral models. In this study, spectra were used to create a set of radiative

properties based on the Absorption Distribution Function (ADF) global spectral model. The parameters of the

ADF-CO2 model are the gray gases absorption coefficients kj(T ) and its correponding wheights aj(T ). It is

assumed that radiation transport in the simulated CO2 pipe flow is well described using nine grey gases. These

parameters were computed after rearranging the global high resolution spectra into k-distributions [16]. The

ADF spectral radiative properties of CO2 were computed based on the high temperature spectroscopic data of

HIPTEMP-2010 for CO2 in the spectral range between 330 and 10000 cm−1 (1-30µm). Four sets of ADF-CO2

parametres were computed for different working pressures (0.1 MPa, 1 MPa, 5 MPa and 20 MPa) and each set

of ADF-CO2 parameters is valid for the temperature range 300− 1500K.

As an illustration of carbon dioxide radiative properties, Figure 1 presents an example of its pressure and

temperature dependencies. Figure 1(a) shows the evolution of narrow band absorption coefficent spectra for

different CO2 pressures at a temperature of 600 K and Figure 1(b) shows high resolution spectra of CO2 absorption

coefficients (at 0.1 MPa) for two temperatures. At high pressure the absorption coefficient reaches high values

and becomes opaque in the band center (Fig. 1)(a). At a pressure of 0.1 MPa the average absorption coefficient

is almost superimposed on the x-axis. The temperature dependence of the CO2 spectra is shown in Fig. 1(b).

The absorption coefficient of cold lines decreases when the temperature increases. In addition, towards high

wavelength (not shown in Fig. 1(b)), hot lines appear when the temperature increases resulting in a slight

increase of the absorption coefficient.

3. Computational implementation of the model

3.1. Numerical methods

The ANSYS Fluent commercial finite volume fluid dynamics solver is used to solve the transport Eqs. (1)-(5)

and (8). In particular, the pressure based solver is used, employing the SIMPLE pressure velocity coupling

method [22]. Gradients are computed using the least squares cell based method, and the standard pressure
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Figure 1. Dependence of gaseous CO2 absorption coefficient with (a) pressure and (b) tempera-
ture
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interpolation scheme is used. The QUICK [23] scheme is used for the spatial discretization of the flow and

energy transport equations. The near-wall modeling method selected for the wall-bounded turbulent flow is the

enhanced-wall-treatment that can be used with fine and coarse meshes [24]. The finite volume method is also

employed for the computation of radiation transport using a 4×4 discretization of the zenith and azimuth angles

in each octant. The temperature and composition dependent thermo-physical properties of CO2 are computed for

each cell using Fluent’s User-Defined-Functions (UDFs). The radiation absorption coefficient is also computed

by an UDF. The solution time is several hours (about 10 hours) on a modern PC workstation (parallel Fluent

on a Quad Core processor at 2.93 GHz).

4. Results and discussion

4.1. Computational domain

The pipe is circular in cross section and is modelled using a structured two-dimensional axisymmetric grid.

The grid is oriented such that the x-direction lies along the length of the reactor and the y-direction lies along

the radius of the reactor. The radius and length of the reactor are, respectively, 2 cm and 2 m, leading to an

aspect ratio L/R = 100.

In the y direction, a refined grid (boundary layer) is used close to the wall, starting with ∆y = 10−5 m and

increasing with a growth factor of 1.05 over the first 50 cells. A constant grid spacing of ∆y = 2 × 10−4 m is

used thereafter up to the axis of symmetry. In the x-direction, a grid spacing ∆x = 0.5 mm is used in the refined

boundary layer and another grid spacing ∆x = 1 mm is used for the remaining mesh. The total number of cells

in the domain is 3.5 × 105. Although not discussed in detail, a grid sensitivity study was performed prior to

selecting the present discretization.

4.2. Boundary conditions

The inlet boundary condition is an inlet velocity for pure CO2 at 400 K and different simulations are conducted

with different inlet pressures. The selected pressures cover the range from 0.1 MPa to 20 MPa with intermediate

values of 1 MPa and 5 MPa. Similar inlet velocities were chosen for the different flow simulations having different

static pressures. The inlet velocity is specified parabolic with a mean value of 1 m/s that leads to 0.0017 kg/s

at 0.1 MPa, 0.0169 kg/s at 1 MPa, 0.0915 kg/s at 5 MPa and 0.4782 kg/s at 20 MPa. The flow is heated by

the hot pipe wall at a constant temperature of 1100 K considered as a blackbody (εw = 1).

2.pdf

Figure 2. Sketch of the pipe: axisymmetric temperature field in the simulated CO2 pipe flow
with a real length to radius ratio (T ranging from 300 K, blue, to 1100 K, red).

5. Results and Discussion

A sketch of the reactor is depicted in Figure 2 with a real length to radius ratio. The reactor size does not

allow one to clearly represent fields inside the pipe while keeping the real length to radius ratio. This is the

reason why the simulated fields inside the reactor will be represented in figures where the radius scale (y axis) is

enlarged. The simulation results are presented below in Figures 3 and 4, and the effects of radiation transport
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in the pipe are discussed. The fields are depicted using isocontour plots of approximately unit aspect ratio;

however, the aspect ratio of the reactor (length to radius ratio) is 100, and, therefore, to correctly interpret the

geometry of the intercontour regions it is necessary to consider that the axial distance between contours is 100

times greater than depicted, while gradients with even a small apparent radial component are essentially radial.

Concerning the calculated results, the flow and energy conservation were checked numerically between the inlet

and the outlet and this step is not shown here.
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(d) P = 20 MPa

Figure 3. Isocontours of temperature in the pipe for simulations with different operating pressures
and having all a CO2 inlet velocity of 1 m/s: the thin solid lines represent fields computed
neglecting radiation whereas thick solid line are for fields obtained with the radiation model

The influence of radiation transport on temperature and velocity fields is studied for CO2 pipe flow at four

different pressures. The effect of radiation is highlighted when comparing two simulation results obtained with

and without the radiative heat transfer model. Figures 3(a)-3(d) present isocontours of temperature in the

axisymmetric geometry of the pipe and Figures 4(a)-4(d) present isocontours of velocity. Because the pipe wall
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Figure 4. Isocontours of velocity in the pipe for simulations with different operating pressures and
having all a CO2 inlet velocity of 1 m/s: the thin solid lines represent fields computed neglecting
radiation whereas thick solid line are for fields obtained with the radiation model
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is at high temperature, one can expect that radiation absorption by the CO2 flow leads to a fluid temperature

increase. This phenomena occurs clearly for flows with 0.1 and 1 MPa (Figs 3(a)-3)(b) but tends to diminish

for higher pressures (Figs 3(c)-3(d)). Indeed, when comparing the temperature profiles obtained for different

pressures and neglecting or not the radiation transport, the results show a decrease of the influence of radiation

with respect to a pressure increase. The cross comparison of velocity and temperature fields (Figs 3-4) show also

the effect of heat and flow coupling which leads to an acceleration of the flow as the temperature increases (for

the same fixed pressure). Consequently, the lower velocity is find for the cases where the influence of radiation

absorption is weaker, i.e. at high pressures.

As the pressure increases, while keeping the same inlet velocities, the simulated results show a decrease of

heat transfer from the hot wall to the tube center due to radiation transport. This effect is due to an increase of

the CO2 optical thickness which contributes to stop the radiation transport from the hot wall to the colder fluid

at the pipe center. Thus, as the pressure increases one can consider that radiative exchanges between CO2 and

the wall occur more gradually, the radiation from the wall heats only the fluid in its own vicinity as does CO2

which exchanges by radiation only with its close neighborhood. As the pressure increases (e.g. above 5 Mpa),

the pure CO2 media become optically thick and one can model the radiation transport by a diffusion process

and use simple radiative models such as the diffusion approximation (P1 model) or the Rosseland approximation

[14]. Moreover, the presented results clearly show the radiative transfer can be neglected in pure CO2 above

20 MPa. It is worth noting that these results do not stand for an accurate determination of pressure intervals

where a given model can be used, but they show the trend associated to the influence of pressure on radiation

transport in a high temperature pipe.

6. Conclusion

A two-dimensional axisymmetric model to solve the turbulent flow and the heat transfer inside a hot pipe

is described. The pipe temperature is assumed constant at 1100 K and CO2 inlet temperature is 400 K. The

influence of radiation on the flow temperature and velocity distribution is discussed. It is shown that the influence

of radiation is important at low pressure (less than 5 MPa) but becomes negligible at pressure larger than 5 MPa.

In the pressure range 0.1-5 MPa radiation results in CO2 flow temperature and velocity increases. The influence

of radiation on both temperature and velocity decreases with an increase of the working pressure and becomes non

significant at about 20 MPa. This means that the influence of radiation absorption is rather weak at high pressure

for the optical thickness involved in this study. At high pressure CO2 becomes optically thick and radiation is

absorbed in the very thin layer near the hot wall. Consequently, this shadowing effect limits drastically radiation

propagation through the pipe.
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