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Abstract

The distribution of parasites in hosts is typically aggregated: a few hosts harbour many par-
asites, while the remainder of hosts are virtually parasite free. The origin of this almost uni-
versal pattern is central to our understanding of host-parasite interactions; it affects many
facets of their ecology and evolution. Despite this, the standard statistical framework used
to characterize parasite aggregation does not describe the processes generating such a
pattern. In this work, we have developed a mathematical framework for the distribution of
parasites in hosts, starting from a simple statistical description in terms of two fundamental
processes: the exposure of hosts to parasites and the infection success of parasites. This
description allows the level of aggregation of parasites in hosts to be related to the random
variation in these two processes and to true host heterogeneity. We show that random vari-
ation can generate an aggregated distribution and that the common view, that encounters
and success are two equivalent filters, applies to the average parasite burden under neutral
assumptions but it does not apply to the variance of the parasite burden, and it is not true
when heterogeneity between hosts is incorporated in the model. We find that aggregation
decreases linearly with the number of encounters, but it depends non-linearly on parasite
success. We also find additional terms in the variance of the parasite burden which contrib-
ute to the actual level of aggregation in specific biological systems. We have derived the for-
mal expressions of these contributions, and these provide new opportunities to analyse
empirical data and tackle the complexity of the origin of aggregation in various host-
parasite associations.

Introduction

A fundamental aspect of the relationship between parasites and hosts is contained in the distri-
bution of parasites amongst hosts. This distribution has repeatedly been shown to be clustered
or aggregated (see [1-3] for reviews) in the sense that typically, a few hosts harbour many
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parasites, while the remainder of the hosts are virtually parasite free. Exceptions to this pattern
are so rare that aggregation is considered a fundamental aspect of the definition of parasitism
[4] or has been described as the ‘First Law of Parasitism’ [5].

Aggregation has very significant implications for both hosts and parasites, since it affects
their genetics and evolution, and has been recognised to have many consequences for public
health and livestock management. Aggregation has been shown to affect parasite ecology by
stabilizing host-parasite population dynamics [6, 7] and facilitating interspecific co-infection
as a result of increased host susceptibility [8]. Aggregation also influences parasite evolution
by, e.g., increasing the level of intra-specific competitive interaction and the rate of within-host
adaptive parasite diversification [9]. Accordingly, aggregation of parasites amongst hosts af-
fects the transmission of infectious human diseases [10]. Risk heterogeneity typically leads to
an increase in RO of vector-borne diseases by a factor of 2 — 4, and has even larger impact on
the transmission of sexually-transmitted diseases, which implies that the proportion of the
population that must be protected for elimination via untargeted control program is usually
much higher than expected [11]. A quantitative understanding of the mechanisms which lead
to the observed levels of aggregation is thus essential for our knowledge of parasite ecology and
evolution. One of the most fundamental issues in the field is to what extent differences in para-
site loads reflect differences in the exposure of hosts to the infective stages of a parasite, or dif-
ferences in the success of a parasite in infecting its hosts (see [12], p198).

The distribution of individual parasites amongst hosts is commonly described by a negative
binomial distribution since this distribution is a flexible discrete distribution with two parame-
ters [13] whose form naturally accommodates aggregation. However, the negative binomial
distribution only provides a phenomenological description of aggregation. In particular, its pa-
rameters are not explicitly linked to any representation of the processes underlying exposure of
hosts to parasites and the success of the parasites in infecting the hosts. In the present work we
introduce a framework, with mechanistic underpinnings, that allows a formal link between the
pattern of parasites aggregation amongst hosts, and the processes that lead to this feature.

We proceed by classifying the various processes that are potentially involved in producing
the distribution of parasites amongst hosts into two types: (i) the number of encounters be-
tween a host and a parasite or a source of parasites, and (ii) the number of parasites that are ul-
timately carried by a host, which result from a single encounter with a parasite or a source of
parasites. These two processes, henceforth referred to as ‘encounters’ and ‘success’ according to
Combes conceptual framework (see [12], p. 199), are described by two distributions which
combine to produce the overall distribution of the number of parasites in hosts. Because this
framework is established with no assumption about the overall distribution of the number of
parasites amongst hosts, it gives the ability to test and explore, in a highly flexible way, the rela-
tive importance of encounters and success in generating the parasite distribution.

A common assumption in the field is that heterogeneity in hosts generates an aggregated
distribution of parasites amongst hosts. Such heterogeneity can be induced by different social
or sexual host behaviours that modulate the rate of encounters between susceptible and in-
fected hosts/vectors, or that alter parasite success of infection because of, e.g., allo-grooming
(see [14] and [15] for reviews). Variation in physiological status, such as variation in host con-
dition due to nutritional stress, can lead to variations in infections [16, 17]. Finally, habitat dif-
ference can generate different risk of contact with the parasite. Typically, inhabitants leaving in
the outer part of villages can be more exposed to zoonoses that are transmitted by vectors dis-
persing from sylvatic areas [18-20]. Thus, without denying the existence of processes that gen-
erate heterogeneity in encounters and success, we first question the need for these implicit
assumptions and ask: can an aggregated parasite distribution arise without any intrinsic hetero-
geneity, and simply follow from random variation associated with encounters and success?
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Given this question we can go further and ask: does randomness in encounters have the same
consequences for the parasite distribution as randomness in success? We shall begin the analy-
sis under the very simple assumptions that all hosts are equivalent, and that all parasites are
equivalent. This constitutes a neutral model [21] where the parasite distribution in hosts results
from random variation in both encounters and success. We then go a step further, and intro-
duce intrinsic differences between hosts, to work out the implications of actual host heteroge-
neity, which then combines with random variation in encounters and success.

Results
Modelling of the parasite distribution

Neutral model

The key quantity in this problem is the number of parasites in (or associated with) a host,
which we denote by N. Since the number of parasites varies from host to host, N is a random
variable and our model describes the statistics of N. Assuming there is no vertical transmission
of parasites, the essence of the model is that a host is born parasite free and then has a random
number of encounters with a parasite/source of parasites. An encounter is characterised by its
success, as measured by the number of parasites that are ultimately carried by the host, due to
the encounter.

We denote the number of encounters of a host with a parasite/source of parasites by &, and
the success of the j’th encounter by S; wherej=1,2, ..., & The number of parasites in a host, N,
is then given by a sum of successes of the different encounters of the host with a parasite/source
of parasites:

N = isj. (1)

We take the S;and £ to be independent random variables whose possible values are 0, 1, 2, ...
and the value of the sum is taken to zero if £ equals zero. The S; are all taken to have the same
probability distribution, and hence have identical expected values and identical variances,
which we write as E[S] and Var(S), respectively.

Equation (1) constitutes a fairly general viewpoint for the infection of hosts by a single para-
site species. While Eq. (1) looks simple, this appearance is deceptive; N is a quantity which is
composed of a random number (&) of random variables (the S;) and hence constitutes a com-
pound random variable [22], which requires two probability distributions to characterise it. A
number of different biological scenarios may be considered for Eq. (1). The variable, &, can rep-
resent the number of independent encounters of a given host with individual parasites. Alter-
natively, £ can represent the number of encounters of a host with sources of parasites such as:
infected sites (for air, soil or water-borne diseases), infected vectors (for vector-borne diseases)
or infected hosts for directly transmitted parasites. Similarly, the variable S; could represent the
viability of a single parasite, and hence would only take two values, namely 0 or 1, correspond-
ing to death or survival of the parasite. However, the variable S; could also account for multiple
infections/contacts and/or within host parasite viability and reproduction, in which case S; is
capable of taking values larger than 1, and the discrete distribution it follows would reflect
this feature.

It is worth mentioning that the causes of the random variability in success can be associated
with the parasite or with the host. Such variability can be due to a finite random sampling of
parasite diversity in each host, just as it can reflect random variability in host resistance or con-
dition. But, whatever the definition of £ and S; and their causes, the key assumption of this
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neutral model is that the levels of random variability in encounters and success are the same
for all hosts. In other words, encounters and success are realizations of random variables whose
distribution is common to all individuals, and hosts are thus ‘statistically equivalent’. Accord-
ingly, there is no intrinsic difference between hosts and these variations can be seen as a form
of demographic stochasticity, whose effects on parasite distribution can be evaluated from the
neutral model.

Heterogeneous model

The above model can now be expanded to incorporate host heterogeneity, by allowing different
types of hosts, labelled t = 1, 2 ... h. Consider a randomly captured host of type ¢. The number
of parasites in the host is then related to the following: (i) the number of encounters, specific to
a host of type ¢, that the host has with a parasite/source of parasites, and which we write as &,
and (ii) the success that is associated with each encounter of a host of type t, which we write as

Sj(t). The number of parasites in a randomly captured host can be written as

h &
N=> H> s (2)
=1 j=1

In this equation the H, indicate the type of host captured. Only one of the H,’s takes the value
of unity, while the remainder are zero, and the probability with which H, =1 is p,. Thus
explicitly, (Hy, Ha, ..., Hp,) constitutes a multinomial random variable with parameters 1 and
(P1> P2 o> Pi)-

As in the neutral model, there are various alternative biological scenarios that can lead to
heterogeneity in the rate at which different hosts encounter parasites. The rate of encounters
can vary with the level of host foraging activities [23, 24], the characteristics of the host habitat
[25-27], the spatial and temporal co-distributions of hosts and vectors [28-31]. Similarly, the
rate of parasite success in the host can depend on the individual level of immunity [32-34] or
physiological status [35-38].

Results for the specific models

We shall establish general results for some summary statistics of the distribution of parasites in
hosts, that emerges from the neutral and heterogeneous models introduced above.

Neutral model
All results given below, for the neutral model, are established in Methods A

We begin with Eq. (1), which relates the number of parasites of an individual host, N, to the
number of encounters that they have with a parasite/source of parasites, &, and the ultimate
success of these parasites on different encounters, i.e., the S;. A direct consequence of Eq. (1)
combined with the assumptions made above is that the expected value of the number of para-
sites of a host, E[N], is related to the expected number of encounters, E[£], and the expected
level of success, E[S], as

E[N] = E[€]E[S]. (3)

Additionally, the relationship between the variance of N and the various statistics of £ and S;
can be shown to be

Var(N) = Var(€)(E[S])’ + Var(S)E[£]. (4)
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Equations (3) and (4) are standard results for compound random variables (see e.g., [22]), and
can be found in Methods A, as part of the analysis.

It is important to point out that Egs. (3) and (4) apply for any distributions of £ and S;, and
hence for any distribution of N that results from Eq. (1). In particular, Eqs. (3) and (4) apply
whether or not N has a negative binomial distribution. This is important since, using our
framework, it can be shown that conditions need to be satisfied, by the distributions of encoun-
ters and success, in order to obtain a negative binomial distribution (see Methods A). These
conditions appear to be rather specific for the distribution of successes, as we show in the sec-
ond example in Methods A.

As expected, the mean number of contacts and successes combine in a symmetric way to
produce the mean number of parasites in a host [12]. However, the asymmetric way that the
summary statistics of encounters and success enter the result for the variance in the number of
parasites in a host, Eq. (4), means that these two processes cannot be regarded as having equiv-
alent effects on the variance.

We note that the variance of N depends on the variance of the number of contacts and the
variance of success, however, these variances are weighted differently in Eq. (4), namely by the
squared mean of success and the mean of contact, respectively. Such an asymmetry of the
weightings allows the distribution of parasites in hosts to take a variety of forms. We thus used
a measure of aggregation that is applicable to a general distribution, namely the variance-
to-mean-ratio of the number of parasites in hosts. Values of the variance-to-mean-ratio that
are greater than 1 are associated with aggregation [39]. Using Egs. (3) and (4) this ratio can be
expressed as the sum of two terms, involving the variance-to-mean-ratio in encounters and
success:

Var(N) Var(€)
EIN] — E[¢]

Var(S)
E[S]

E[S] + (5)

The two contributions in this equation, of the variance-to-mean-ratios of encounters and suc-
cess, are weighted differently; the average success multiplies the contribution of the variance-
to-mean-ratio in encounters. The simplicity of this quantitative outcome of our neutral model
leads to two general insights into the emergence of aggregation from random variation associ-
ated with encounters and success. First, aggregation decreases with the mean number of con-
tacts, E[£], until the level of aggregation reaches an asymptotic level of Var(S)/E[S], and only
reflects randomness in success (Fig. 1A). Second, the mean level of success, E[S], can have a
more complex effect on aggregation than the mean number of contacts because of its presence
in two places in Eq. (5) (Fig. 1B).

Any increase in E[S] (at a fixed value of Var(S)) decreases the variance-to-mean-ratio of suc-
cess, and thus lowers the level of aggregation. However, increasing E[S] simultaneously increases
the contribution of randomness in encounters by magnifying the differences between hosts that
had low and high levels of contacts with parasites. The balance between these two antagonistic

effects leads to an intermediate level of average success of E[S] = +/Var(S)E[]/Var(€) that
corresponds to a lowest level of aggregation of 2/ Var(S)Var(£)/E[€], while at larger E[S] the

level of aggregation asymptotically changes as E[S]Var(€)/E[£].
Although we aim at providing a mechanistic alternative to the negative binomial distribu-

tion to describe parasite distributions, it is worth mentioning that the standard measure of ag-
gregation, the parameter k of the negative binomial distribution distribution, can be expressed
in terms of the summary statistics of £ and S; (see Methods A). This could be used when the
specific conditions for the distribution to be a negative binomial distribution are fulfilled (see
Methods A).
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Figure 1. This figure illustrates how aggregation varies with either host-parasite encounters or parasite success (in infecting hosts). In Panel A we
have adopted the values Var(S)/E[S] = 1 and Var(£)E[S] = 1. We show how parasite aggregation varies with the mean number of encounters. The level of
aggregation decreases with the number of encounters, and asymptotically approaches a value that depends only on the variance-to-mean ratio of parasite
success, i.e., Var(S)/E[S]. In Panel B we have adopted the values Var(£)/E[£] = 1 and Var(S) = 0.5. We show how parasite aggregation varies with the mean
parasite success in infecting hosts. The level of aggregation initially decreases with the average success of parasites in infecting their hosts until a minimum
is reached at a value of E[S] of M = /Var(S)E[€]/Var(€), as indicated on the abscissa. The level of aggregation then starts to increase, with an
asymptotically achieved slope that is directly proportional to the variance-to-mean-ratio of encounters, i.e., Var(&)/E[£].

doi:10.1371/journal.pone.0116893.9001

Heterogeneous model
All results given below, for the heterogeneous model, are established in Methods B.

The above results can be expanded to multiple types of hosts by using Eq. (2) that relates the
number of parasites of an individual host, N, to random variables associated with encounters
and success, for different host types. The mean and variance of the number of encounters are
then conditional on the host type, and we write these as E[£|t] and Var(&]t), respectively. Simi-
larly, we denote the mean and variance of the success of a parasite to infect hosts of type t by
E[S]|t] and Var(S]t), respectively. We find that the expected number of parasites in a host is a
weighted average over contributions from different possible host types:

E[N] = ZPtE[glt]E[Slt] (6)

(see Methods B for details) where p; denotes the frequency of host type t. Thus, the mean num-
ber of parasites in a host depends on the mean number of encounters and success in each host
type and on the way these are correlated across host types. Intuitively, we expect the total num-
ber of parasites to be larger when the hosts with the highest rate of encounters with parasites
are the more susceptible ones. This appears more obviously in an alternative expression for
E[N] that is completely equivalent to Eq. (6), namely

E[N] = um + Cov(&, S). (7)

Here u = S" p,E[€|t] and m = 5" | p,E[S|t] represent the means of encounters and
successes, across different host types, while Cov(E, S) = 32" p,(E[€]t] — ) (E[S|t] — m)
measures how encounter and success are correlated with each other across different host types.
Equation (7) clearly shows that the mean number of parasites is linearly related to the covari-
ance between encounters and success.
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A negative correlation between encounters and infection success can emerge as a result of
processes related to host group size. The rate of encounter with directly transmitted parasites is
positively correlated with the size of the group in many host species [40]. But at the same time,
infection success of ectoparasites may decrease with the number of individuals through en-
hanced allo-grooming behaviour [31, 41]. Alternatively, a positive correlation can result from
variation associated with home range. A small home range size in mammals is usually associat-
ed with increased host densities that favours parasite encounters and simultaneously affects
host condition, which has a positive effect on infection success [16].

The variance of the distribution of parasites in hosts, Var(N), that incorporates random in-
dividual variation and actual heterogeneity in contacts and success can also be derived (see
Methods B) and is given by

Var(N) = Z P {Var(5|t)(E[S|t])2 + E[€|t]Var(S|t)]

) o | EENESI] > pEENELSl] | - ®)

This result indicates that there are contributions to Var(N) from individual variation that is with-
in host types (first sum), and also from effects of heterogeneity between host types (second sum).

The expression in Eq. (8) can be approximated, to provide a more explicit relationship be-
tween the variance in parasite numbers in hosts and various correlations involving encounters
and success. We achieve this by determining the leading corrections to the results of the homo-
geneous model (see Methods B for details). This leads to an equation for the variance in the
number of parasites in a host of the form

Var(N) ~ ¢°m* + uv’ + quadratic correlation terms (9)

where 6> = 31 p, Var (€t) and v? = 3| p,Var (S|t) stand for means, across all host types,
of the variances of encounter and success. The leading two terms in Eq. (9) are equivalent to
the terms in the homogeneous model, Eq. (4), so that conclusions on the asymmetric contribu-
tions of the levels of contact and success remain, although they now apply to averages across
host types. Obviously, the quadratic correlation terms can potentially make the whole expres-
sion of Eq. (9) substantially more complicated, as one should expect from the level of complexi-
ty incorporated into the heterogeneous model. However, these additional terms can be fully
identified from Egs. (B3) and (B9) of Methods B, and they are related to the variances and co-
variances of the basic summary statistics (mean and variance) describing the distribution of en-
counters and success conditional on host types (see Eq. (B10) in Methods B).

The variance-to-mean-ratio of the number of parasites amongst hosts can, using Eqs. (7)
and (9), be approximated as

Var(N)  o*m’ + w’
EIN] um

+ quadratic correlation terms (10)

where, as above, the quadratic correlation terms take into account leading effects of between-
type correlations. Thus again, the leading terms in Eq. (10) on the right hand side are equiva-
lent to the results of the homogeneous model (Eq. (5)), although they now apply to means
across host types. Accordingly, the highest levels of aggregation are expected when strong levels
of random individual variation in encounters (¢°) are associated with high average rates of
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success (m) as the latter magnifies the former. Similarly, aggregation increases when there is
large random individual variation in success (v*) are associated with high average rates of en-
counters (u). It is not obvious how to identify host-parasite systems that could serve as exam-
ples of such co-variations since random individual variation in encounters and success are
typically not measured in the field. However, there are a few published experimental results
that suggest that rodents exposed to water-borne, air-borne or even soil-transmitted parasites
could be good candidates for measurement of the level of such demographic stochasticity (see
discussion). As expected, parasites will also be strongly aggregated when hosts with a high aver-
age rate of encounters are those on which parasites are successful, since this would lead to high
mean parasite load and a lower variance to the mean ratio.

As explained above, such a positive correlation could be associated with a small host home
range, while a negative correlation is expected in host groups of large size.

The quadratic correlation terms of Eq. (10) are directly related to those appearing in
Eq. (B12) of Methods B, and thus also correspond to variances and covariances of basic sum-
mary statistics of the distributions of encounters and success. These expressions make up an
explicit link between the patterns of aggregation and basic statistics on the level of host random
individual variation and actual heterogeneity in the processes of encounters and success. Al-
though no general results can be derived from these quadratic correlations because of their re-
maining complexity, Eq. (9) and (10) provide the theoretical background necessary to gain a
better knowledge of the parasite distribution, if combined with a good empirical knowledge of
the undoubtedly system-specific correlations between encounters and success.

Discussion

Aggregation of parasites amongst hosts is one of the rare phenomena in biology that has been
described as a law’ [1, 5]. The negative binomial distribution has been of central importance to
establish evidence for aggregation in data [5, 42], as well as to provide theoretical predictions
on ecological and evolutionary consequences of parasite distributions among hosts [6, 9, 43].
However, a good fit to a negative binomial distribution does not provide any information
about the causes of aggregation since a number of different biological phenomena have been
proposed to generate this flexible distribution [44], as well as different combinations of statisti-
cal laws [13]. A good fit cannot then be interpreted as support of a unique hypothesis about
any underlying mechanisms. In the present work, we have introduced and developed simple
mechanistic models of parasite aggregation, which are taken to originate from distributions
corresponding to the two main types of factors thought to generate aggregation: (i) the encoun-
ters between host and parasites, and (ii) the success of parasites once in contact with the host
[12]. This provides a biologically intuitive mathematical framework to quantitatively investi-
gate the importance of random individual variation and actual heterogeneities in encounters
and success on parasite aggregation. Here we discuss the main outcomes of the model and the
way they could be tested empirically.

A first outcome of the present work is that random individual variation can potentially pro-
duce an aggregated distribution of parasites amongst hosts. Such prediction is consistent with
previous empirical and theoretical finding, where causes other than intrinsic heterogeneity
amongst hosts generate aggregated distributions of parasites. The rate of mice infection by
blacklegged ticks depends substantially on ‘bad luck’, i.e. inhabiting a home range with high
vector density [28]. Aggregated distributions have also been shown to emerge when parasites
are homogeneously distributed in the environment, provided that the probability of infection
is related to the distance between the host and the source of parasites [45]. Additionally,
clumped infections, i.e. infections of several larvae at the same time, have a strong impact on
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the level of aggregation [46]. We finally note that similar aggregated distributions of parasites
[47] and parasitoids [48] have been generated using compound distributions representing
other more specific demographic processes. One cannot thus a priori rule out the null hypothe-
sis that random variation is partly responsible for the observed levels of aggregation (see [1-3]
for reviews), and the causal relationships between sources of true heterogeneity amongst hosts
and the observed distribution of parasites should thus be better quantified by taken into ac-
count random individual variation in encounters and success. An obvious need is to evaluate
the level of ‘neutral aggregation’ that can be explained in absence of actual host heterogeneity.
Our neutral model allows for such evaluation provided that it can be parameterized from inde-
pendent experimental assessments of the levels of random individual variation in encounters
and success. Dose-infectivity curves derived from artificial infection experiments could allow
the measurement of variability in infection success in the same way as they have been used to
assess the distribution of host susceptibility [49-51]. Some of these authors [51] then used a
modelling framework that assumed a constant number of encounters with parasites, and a flex-
ible statistical distribution to describe host variation in the rate of parasite acquisition. Fitting
this relationship to dose-infectivity profile they obtained the maximum likelihood estimates of
the parameters of the host susceptibility distribution. Setting up similar experiments with all
host individuals originating from a single type, e.g. isogenic mice, the outcome would provide a
distribution that gives a measure of random individual variation in parasite success. To esti-
mate random individual variation in encounters may be more challenging, but could be investi-
gated whenever hosts can be kept in parasite free environments and the rate of exposure
controlled experimentally. For instance, individually marked rainbow trout were introduced at
regular time intervals into cages so that the rate of exposure to trematode parasites, under natu-
ral conditions, could be controlled [52]. Similar experimental designs are conceivable for ro-
dents that can be breed and exposed at controlled rate to water-borne (such as the fluke
Schistosoma mansoni, [53]), to food borne (such as the acanthocephalan Moniliformis monoli-
formis through the consumption of infected prey, [54]) or even soil-transmitted parasites
(such as Nippostrongylus brasiliensis, [55]). Interestingly, our results also suggest that to assess
individual variation in one of these two components (encounter or success), the experimental
design should be set up with a high average level of the other component. We note that when
the average number of encounters is large, the level of parasite aggregation converges toward
the level of random variation in success (Var(N)/E[N] ~ Var(S)/E[S]). Similarly, when the
level of parasite success is large, the level of parasite aggregation is linearly related to the level
of random variation in contacts (Var(N)/E[N] ~ Var(€)E[S]/E[£]). Under these conditions,
the desired quantities could thus be more easily assessed.

A second significant outcome of our model is in providing simple predictions in the relative
effect of randomness in encounters and success on the parasite distribution. Although the mean
values of encounter and success combine multiplicatively to give the mean number of parasites
in hosts, as expected when we take the view that the ‘filter’ of encounter and the ‘filter’ of com-
patibility are equivalent ‘apertures’ that limit the acquisition of parasites by hosts [12], the latter
representation is misleading when trying to understand the variability of infection and thus ag-
gregation. As a consequence of the natural sequential order in which encounter and success con-
tribute to determine the parasite load of a host, the two ‘filters’ are not equivalent in their effects
on the variance-to-mean-ratio in the number of parasites in hosts. While aggregation decreases
with the average number of host-parasite encounters and converges towards Var(S)/E[S], it var-
ies in a non-linear way with the average parasite success in hosts. This results in an intermediate

level of success, equal to \/E[£]Var(S)/Var(€), leading to the lowest level of aggregation. Such
a prediction could be tested in the above experimental settings by controlling the level of average
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success in hosts through the use of various strains of parasites [56], manipulation of the physio-
logical status of the host [57] or change in its level of immunity [58].

Importantly, the asymmetry between the effect of encounters and success is also apparent in
the contributions of actual host heterogeneity. Although some general insights can be drawn
from our results, effects are then more complex and hard to anticipate without a specific system
at hand. Investigation of those effects should be started on very simple systems with a known
(and simple) source of heterogeneity, like resistant, sensitive or even tolerant host genotypes
[59]. In such context, and in an experimental set up similar to those discussed above, one
would be able to measure the host type specific average rates of contact and success as well as
the level of random variation in success and contact for each type. This could provide estimates
of terms appearing in Eqgs. (9) and (10) would give the opportunity to handle standard sensitiv-
ity or elasticity analysis to clarify the contributions of random individual variation and actual
differences between hosts in generating aggregation in specific systems.

To conclude, the mechanistic framework that we have developed in this paper formally
links the pattern of parasite aggregation to random variation and heterogeneities in the pro-
cesses of host-parasite encounters and the success of infection. This simple but flexible frame-
work should improve our ability to gain a better understanding of the origins and implications
of aggregation in parasite ecology, evolution and the control of infectious diseases.

Methods
A. Derivation of results for the neutral model

In this subsection we give a derivation of results for the neutral model. We first determine gen-
eral results (Egs. (3) and (4) of the main text) before showing particular results related to the
use of the negative binomial distribution. We note that there may sometimes need to be con-
straints on the distributions of £and .

General results
We begin with a discrete random variable N, which takes the values 0, 1, 2, .... The probability
generating function for N is defined by G (1) = E[2"] = >_°° Prob(N = n)." where E[...]
denotes an expected (or average value) and A is a real variable. All information about the distri-
bution of N is contained in Gn(A4) [22]. Henceforth we shall refer to probability generating
functions simply as generating functions.

We take N to represent the number of parasites in a randomly picked host, as given by
Eq. (1) of the main text, namely N = Zf: , S; where Eis the number of exposures of a host to a
parasite/source of parasites and S; is the ultimate success of a parasite on the j’th exposure. The
value of N is taken to be 0 if £ = 0. We assume £ and the §; are all independent random variables
that can take the values 0, 1, 2, ... We take all S; to have identical distributions, with expected
value E[S] and variance Var(S). The generating function of N, that follows from Eq. (1), is [22]

Gy(4) = G¢(Gy(4))- (A1)
Differentiating Eq. (A1) once or twice with respect to A and then setting A = 1 leads to results for

E[N] and E[N(N - 1)] that correspond to the following relations between the means and vari-
ances of N, £and S:

) (A2)
Var(N) = E[E]Var(S) + Var(E)(E[S])".
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Particular results on the negative binomial distribution

To establish some particular but informative results, we take N to have a negative binomial dis-
tribution. The form of this distribution that we use follows Anderson and May [6]. It has pa-
rameters m and k and is defined by

Prob(N = n) = B(n; m, k)

- <kfm)kr(£)(1]i(+ni)1) <kjrnm) n=0,1,2,.. (43)

where I'(x) denotes Euler’s Gamma function. This distribution has a mean of E[N] = m and a
variance of Var(N) = m*/k + m. The parameter k is often used as a measure of aggregation of
the distribution and it can be approximated as

E 2
k= __(EN)” . (A4)
Var(N) — E[N]
Constraints on the distribution of £ and S that lead to a negative binomial
distribution
It is convenient to express the generating function of N in terms of the parameter
r=m/k (A5)
and then find that
Gy(A) =EN =1 +r—ir)" (A6)

When N has the distribution of Eq. (A3), the equation of the generating function, Eq. (A1),
imposes a relationship between the generating functions G¢(1) and Gg(1), namely

(147 —ir) " = G.(G4(2)). (A7)

Equivalently, this equation expresses a relationship between the probability distributions of £
and ;. We note that if we specify either G¢(4) or Gs(4), we can exploit Eq. (A7) to determine
the other generating function. This generating function can then be used to determine the cor-
responding probability distribution. Note however, that this procedure does not always work:
it sometimes gives rise to an invalid probability distribution, because some of the ‘probabilities’
obtained are negative. We give two illustrative examples of this usage of Eq. (A7). In the first
example we determine the distribution of &, after assuming the distribution of S. In the second
example, the distribution of S is determined after assuming the distribution of £. In this case
we find that a probability distribution for S follows only for restricted values of some of

the parameters.

Example 1

If S can only take the values 0 and 1, and these occur with probabilities 1 — o and a respec-
tively, then Gg(1) = 1 — a + aA. It follows from Eq. (A7) that (1 + r — AN F =Gl - a+an).
Solving this equation for G¢(4) yields G¢(A) = (1 + r/a — Ar/a) ™ which, on comparison with
Eq. (A6), corresponds to £ having a negative binomial distribution with parameters m/c and k:

Prob(€ = ¢) = B(eg;m/a, k), e=0,1,2, .. (A8)

This example leads to E[£] = m/a, E[S] = a, Var(&) = m/a + m?/(a? k) and Var(S) = a(1 - @).

PLOS ONE | DOI:10.1371/journal.pone.0116893 February 17,2015 11/17



el e
@ : PLOS | ONE Fundamental Factors Determining Parasite Aggregation in Hosts

Example 2

If £ has a Poisson distribution, with Prob(€=n) = " ¢ ?/n! for n =0, 1, 2, ... then G¢(1) =
exp(BA — f). Using this result in Eq. (A7) yields (1 + 1 — Ak = exp(SGs(4) — B), and this can
be directly solved for G5(A) with the result G5(A) = 1 — (k/f) In (1 + r — Ar). Expanding Gg(4) in
powers of A leads to

1—%ln(1+m/k)7 s=0
Prob(S =s) = (A9)

K/ m \'1 193
flmit) o s=1,2,3,..

This distribution can be viewed as a mixture of two distributions: a unit probability mass locat-
ed at s = 0 with weight 1 — (k/f) In (1 + m/k), and a logarithmic distribution with overall weight
(k/B) In (1 + m/k). The values of the parameters m, k and ff cannot take any values, but must be
chosen so the probabilities of different values of S (in particular S = 0) are all non-negative. For
example, at fixed values of k and m, the parameter S must have some restrictions placed upon
it; in this case we can only consider values of § which yield 1 — (k/8) In (1 + m/k) > 0 so that
Prob(S = 0) > 0. Defining

B =kln(1+ m/k) (A10)

we thus require § > B, for the probabilities of all values of S to be non-negative.
This example leads to E[£] = B, E[S] = m/f, Var(€) = fand Var(S) = (m/B)(1 + m/k — m/p).

B. Derivation of results for the heterogeneous model

In this subsection we present a derivation of results for the heterogeneous model that was in-
troduced in this work.

In the heterogeneous model, there are h different types of hosts. In general, each host type
has a different distribution of encounters with a parasite/source of parasites, and the parasite
has a different distribution of success on each host type. The number of parasites, N, in a ran-
domly picked host is taken to be

h &
N = ZHt;S,(f). (B1)

t=1

In this equation HZ (H,, H,, ..., H,) constitutes a multinomial random variable with parame-
ters 1 and (py, pa, ..., pn)- Each H; can only take the values 0 and 1, and in a realisation

of H only one of the H,’s equals 1 (corresponding to the particular host type obtained) while
the rest are 0. The probability with which H; = 1 is p,.

To indicate that expected values (and other statistics) are conditional on host type, we shall
use notation where E[£]|t] and Var(€|f) denote the mean and variance of the number of en-
counters, when conditional on the host type ¢.

Proceeding, we note that with N given by Eq. (B1), and ay, a5, ..., a, a set of non random num-

h
bers, we can determine the generating function of N, using the result E [,{Zm H‘“‘} = Zf:] pA".

This leads to

N & (1) h & (1) h
Gy(4) =E |:/LZIl B S ] = ZptE |:;»Zklsk :| = ZP:G&(GS“) (). (B2)
t=1 t=1
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We shall determine the mean and variance of N from this expression, and it is helpful to establish
some notation that we shall use. We define

n=y pEEl]
m = _pElS|t]
o? = Zp[Var(5|t) (B3)

h
v = ZptVar(S\t)
—1

h

Cuvea = ) _PEIEN] — w)* (Var(€]r) — ¢*)" (E[S|t] — m) (Var(S[t) — v*)°

t=1

Mean of N
We determine the mean of N by differentiating Gy(4) once with respect to A and then setting
A = 1. This yields

N] = pE[EIAE[S]E). (B4)

Equation (B4) can be rewritten in the alternative form

E[N} = um + C1,0,1.0 (BS)

where C, ;. 4 is defined in Eq. (B3) and explicitly, C; o1 is the covariance

Zpt (E[ElF) — ) (ISl — m) (86)

Variance of N
We first determine the expected value E[N(N — 1)] by differentiating Gn(4) (Eq. (B2)) twice
with respect to 4 and then setting A = 1. This yields

Zpt (€ — VIA(ELS|A) —i—Zpt E[ElESS - Dl (87)

From this result and Eq. (B4) we obtain

Var(N) = Z p, Var(&|t)(E[S|t])* + Z p.E[E|t]Var(S|t)
) on (E[eww[sm > p,-Ew]E[sv]) |

(B8)
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Hence having multiple types leads to an extra level of averaging (as indicated by the sums in
Eq. (B8)) plus an additional positive term in the variance reflecting an aspect of variation be-
tween different host types (the final sum in Eq. (B8).

The expression in Eq. (B8) is somewhat complicated, but we can approximate it, under the
assumption that deviations between different host types that are higher than quadratic order
can be neglected. Using the delta technique (see e.g., [60]), we obtain the expression

Var(N) ~ a’m® + v’ + (6° + 1*)C 00 + M Cy00
(B9)
+ 2/1mc1.0,1,o + 2mco,m,o + Cl,o.o,l
which contains a leading term that is derived from average over all types, and various quadratic
correlation terms that arise from between type variation.
We can write the C, , . s that appear in Eq. (B9) in a more suggestive form, using T to denote
a random variable whose value corresponds to the type of host captured. We then have

Co.oAz,o = Var(E[S|T])

Cop00 = Var(E[£|T])

C 910 = Cov E[E|T], E[S|T]) (B10)
C

(
01,10 — Cov (Var(&|T), E[S|T])
C1.0Ao,1 = Cov (E[S|T], Var(E[S|T])).

Using the above forms for the C,, . s we can write Egs. (B5) and (B9) as
E[N] = um + Cov (E[E|T], E[S|T]) (B11)

Var(N) ~ ¢’m’ + v’ + (6 + p*)Var(E[S|T]) + m*Var(E[€|T])
+ 2umCov(E[E|T], E[S|T]) + 2mCov (Var (€T), E[S|T]) (B12)
+ Cov (E[S|T], Var(E[S|T])).
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