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AC susceptibility of an assembly of nanomagnets: combined effects of surface
anisotropy and dipolar interactions

F. Vernayﬂ and Z. Sabsabi, and H. Kachkachﬂ
Laboratoire PROMES-CNRS (UPR-8521) & Université de Perpignan Via Domitia,
Rambla de la thermodynamique, Tecnosud, 66100 Perpignan, FRANCE.
(Dated: September 17, 2014)

We compute the AC susceptibility of a weakly dipolar-interacting monodisperse assembly of mag-
netic nanoclusters with oriented anisotropy. For this purpose we first compute the relaxation rate
in a longitudinal magnetic field of a single nanomagnet taking account of both dipolar interactions
in the case of dilute assemblies and surface anisotropy. We then study the behavior of the real
and imaginary components of the AC susceptibility as functions of temperature, frequency, surface
anisotropy and inter-particle interactions. We find that the surface anisotropy induces an upward
shift of the temperature at the maximum of the AC susceptibility components and that its effects
may be tuned so as to screen out the effects of interactions. The phenomenological Vogel-Fulcher
law for the effect of dipolar interaction on the relaxation rate is revisited within our formalism and
a semi-analytical expression is given for the effective temperature is given in terms of inter alia the
applied field, surface anisotropy and dipolar interaction.

I. INTRODUCTION

The dynamics of magnetic systems in the form of nan-
oclusters (nanoparticles or nanomagnets) assemblies is a
rather challenging issue from the standpoint of funda-
mental physics as it requires a simultaneous investiga-
tion of both long-range inter-cluster interactions and the
intricacies of inhomogeneous magnetism taking place in-
side the clusters. Even for the equilibrium properties,
the problem is of a tremendous difficulty especially if
one tries to take account of the internal structure of the
cluster by regarding it as a many spin system. In fact,
only advanced numerical approaches may offer a way out,
though with a limited success inasmuch as one consid-
ers the effect of surface anisotropy and its interplay with
the inter-cluster dipolar interactions. Recently, this is-
sue has been tackled!2 to some extent by representing
each nanocluster by an effective macroscopic model2
with an energy potential whose coefficients are functions
of the cluster’s characteristics (size, shape, lattice crys-
tal, spin-spin interactions). It was shown that the mag-
netic properties of an assembly may be improved by a
tailored variation of the assembly parameters, such as
its concentration and geometry, and the clusters intrinsic
characteristics such as the size and shape. In this work,
we investigate the joint effect of inter-cluster interactions
and surface anisotropy on the dynamic behavior of the
assembly, in the case of low concentration and not too
strong surface effects. For this we study the AC suscep-
tibility with a variable measuring frequency.

AC susceptibility of an assembly of magnetic nanoclus-
ters has been studied by many authors during the last
decades, experimentalists and theorists, by varying the
applied magnetic field, temperature and frequency.” 22
These studies have greatly contributed to improve our
understanding of the superparamagnetic behavior of such
systems and to provide estimates of their physical pa-
rameters. In particular, the size study2? of AC suscepti-
bility, together with Mossbauer spectroscopy, of diluted

and concentrated assemblies of maghemite nanoclusters
dispersed in polymer, has revealed the important role of
surface effects. On the theoretical side, it is the first time
that the joint effects of inter-cluster interactions and sur-
face anisotropy on the AC susceptibility are considered
in a single study.

According to Debye’s model applied to assemblies of
magnetic nanoclusters,” the AC susceptibility is given by
X (W) = Xeq/ (1 4 iwl' 1), where Xoq is the static or equi-
librium susceptibility, w the frequency and I" the clusters
relaxation rate (inverse of relaxation time). This model
describes the absorption by a single mode of the elec-
tromagnetic energy provided by the applied field. The
dynamics of this mode is rather slow and characterized
by the longitudinal relaxation time 7 = I' ! correspond-
ing to the population inversion from the blocked state
to the superparamagnetic state. This transition corre-
sponds on average to the crossing by each cluster’s mag-
netic moment of its energy barrier. Therefore, in order
to compute the AC susceptibility, one has to compute
the longitudinal relaxation rate of a nanocluster in the
assembly (described by an effective model) in a magnetic
field.

The paper is organized as follows: Section II is devoted
to the presentation of the model and the statement of the
problem. This Section closes with a brief summary of the
results for the equilibrium susceptibility obtained in Ref.

[2 as a function of the applied field, temperature, surface

anisotropy and including the contribution of long-range
dipolar interaction. The formulas for the AC susceptibil-
ity are then derived in Section III: we first describe in de-
tails the evaluation of single nanocluster’s relaxation rate
I" with both a uniaxial and a cubic anisotropy represent-
ing the surface effects; by using Debye’s model the semi-
analytical form of the AC susceptibility is then given at
the end of the Section. In Section IV we deal with the
main focus of the present work, namely the study of the
effect of surface anisotropy on the AC susceptibility and
its competition with dipolar inter-particle interactions.
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The paper ends with a discussion of the Vogel-Fulcher
law and concluding remarks.

II. ENERGY AND EQUILIBRIUM
SUSCEPTIBILITY

A. Nanoparticle assembly

We consider a monodisperse and textured assembly of
N ferromagnetic nanoclusters each carrying a magnetic
moment m; = m;s;, i = 1,--- , N of magnitude m and
direction s;, with |s;] = 1. Each magnetic moment has
a uniaxial easy axis e aligned along the z direction. The
energy of a magnetic moment m,; interacting with all
the other magnetic moments within the assembly, in a
magnetic field H = Hey, reads (after multiplying by
—B=-1/kgT)

£ =€+, (1)

where the first contribution Ei(o) = wz;s; - ep, + A(s;) is
the energy of the free nanocluster at site i, comprising
the Zeeman energy and the anisotropy contributions from
the core and surface. A (s;) is a function that depends
on the anisotropy model and is given by
ag; (Si ~e1-)2, OSP,
A(Sl) =

o; [(sl ~ei)2 — % (5?,5; + siy + 52{9} , EOPS.
(2)
OSP and EOSP stand respectively for One-spin prob-
lem and Effective One-spin problem which are macro-
scopic models used for representing the magnetic state
of the nanocluster.? In the present case, we restrict our-
selves to the situation where the uniaxial anisotropy axis
is aligned along the z direction, i.e. with a common axis
with the cubic anisotropy. This assumption makes the
analytical calculations somewhat simpler and the phys-
ical interpretation more transparent, but it does not
represent a significant discrepancy with regard to the
real situation. Indeed, the uniaxial anisotropy consid-
ered in Eq. (@) is in fact an effective anisotropy that
takes account of both the magneto-crystalline and shape
anisotropy. In typical nanoparticle assemblies this ef-
fective anisotropy is rather strong, especially for elon-
gated nanoparticles. As such a small tilting of the cu-
bic anisotropy with respect to the axis of the effective
uniaxial anisotropy should not change the results in a
significant way. For a more general situation with an
arbitrary orientation of the cubic anisotropy axes with
respect to the uniaxial anisotropy axis, one can write the
cubic contribution in a different reference frame (2, y', )
and then introduce in Eq. (2] a rotation matrix such that
Sia! = D gy, R*Ps, 5 , as was done in a different con-

text in Ref. @ﬂ
The second term in Eq. (D)) is the dipole-dipole inter-
action (DDI) between nanoclusters which can be writ-

ten as EPPL = EZjQSi - Djj - s5, where Dy; is the DDI
tensor D;; = T% (3e;5€;5 — 1), with r;; = r; — r; and
ij
e;; = r;j/rj is the unit vector along the i—j bond.
For convenience, we have introduced the following di-
mensionless parameters

H KoV K 2/a?
mzm—,azi,gz—zl,gz(@) m’/a
kgT kT K, 47 kT

together with the DDI coefficient £ = £€(0:0). ¢(0.0) —
—4m (DZ — %) and D, is the demagnetizing factor along
the z axis. K5, K4 are the constants of the uniaxial and
cubic anisotropy, respectively. a is the “super-lattice”
parameter or the inter-particle distance in the assem-
bly whose particles are supposed to occupy a simple cu-
bic (SC) lattice. Yet, we stress that a generalization to
other super-lattices (FCC, BCC, ...) is rather straight-
forward. One should simply re-evaluate the lattice sums
€09 for the given super-lattice. Similarly, one could eas-
ily mimic a disordered spatial arrangement by an evalu-
ation of C(%9) in the case of a randomly depleted lattice.
However, for the sake of clarity and to keep our discus-
sion simple we will consider the SC case in the rest of
this paper.

The (dimensionless) DDI field E; acting on the mag-
netic moment m; reads

Eizgzpi]"sj- (3)
J

Later we make use of the spin average <E?H> , where
/0

Ei,| = Ei - €; is the longitudinal component of &;, which

is defined by

1 (0
=2 = I I | =2 5
<_"L,|| >0 = 4ﬂ_ / : dSJ _"L,” e . (4)

The average (), is defined with respect to the Gibbs prob-
ability distribution containing only the energy contribu-
tions pertaining to a free cluster. Finally, the spin aver-
age of the transverse component of E; can be obtained

: : =2 _ /=2 /=2
from the identity <Hi7L>O = (=5 >0 <Hi7H>O.

B. Statement of the problem

In the present work we shall be concerned with the
study of the combined effects of surface anisotropy and
dipolar interactions on the dynamic susceptibility of an
assembly of monodisperse nanoclusters with oriented uni-
axial anisotropy. The cubic anisotropy which stems from
spin non-collinearities on the cluster’s surface is assumed
to have its axes parallel to the crystal axes. We then
derive analytical formulas in several cases of low field
(x <« 1), high-energy barrier (o > 1), small surface
anisotropy (|¢] < 1) and weak DDI (§ < 1). In par-
ticular, for the calculation of the spin averages () and



kindred ones we will drop all terms of orders higher than
2. For this reason, it turns out that the calculation of
such averages can be done with good approximation with
only the uniaxial anisotropy contribution in the Gibbs
probability distribution.?2 The final results are expressed
in the end in terms of the following well known averages
(obtained in the absence of a magnetic field) (s"), = 0,
and

1
<so‘s’£>0 = [3(1 — Sj5)6°" + Sjaef e 0k (D)

withi2:22

- /oy
((21+1))u(7)l/2 oo, 0 KL

Si(o;) ~ (6)
1_%—’_5 0'1'>>1.

C. Equilibrium susceptibility

For a weakly interacting assembly of nanoclusters de-
scribed with the help of the EOSP model, the equilibrium
susceptibility reads (to first order in &)

¥ (0,6, €) = Xito + i (7)

where .t is the equilibrium (linear) susceptibility of the
non-interacting assembly in the limit of high anisotropy
energy barrier?22

o[t n@a?,  ®

X?gee (‘T’ U? C)

1 2
= (1——)+£(—1+—),
ag ag g
3 1 2 ¢ 5
W=l e0))

Here xp is the transverse equilibrium susceptibility per
spin at zero temperature in the absence of a bias field

1 promn?
Xo =2k, )
This can be obtained from Eq. (3.86) of Ref. 26 upon
setting the field to zero.

The contribution of DDI to the equilibrium suscepti-
bility is given by?

Xint (2,0,¢) = 2xg0 [xfm) + 3X i } (9)
2 3
@28y
g g g

@ _ A _3)_3
we=l0-3)-7)

In the sequel, all susceptibilities will be measured in units
of X7

III. AC SUSCEPTIBILITY

The dynamic response of the EOSP assembly can be
studied with the help of the AC susceptibility. For an ar-
bitrary angle ¢ between the (common) easy axis and the
field direction, the effective susceptibility may be written
as X = x|| cosQ¢+xJ_sin21/)

Shliomis and StepanovZ? proposed a simple Debye form
for x(w) which can be generalized to describe the effect
of a longitudinal bias field by writing

_xy(T, H)
1+inH

x.(T, H)

.2
10
1+ wr sin” 1), ( )

s% 1 +
where 7 and 7, are appropriate longitudinal (inter-well)
and transverse (intra-well) relaxation times; x (T, H)
and x| (T, H) are respectively the longitudinal and trans-
verse components of the equilibrium susceptibility.

For an assembly with oriented anisotropy in a longitu-
dinal field (¢ = 0), we may assume that the transverse
response is instantaneous, i.e. 7, = 0. In this case the
AC susceptibility is given by Eq. ({I0) or using 7 = r-!
and x| = x°? defined in Eq. (@),

($UC§77) #:}1 (11)

Next, we introduce the reduced frequency
n (SC, g, gagv >\) =WwT| = (WTD) (TDF)_l ) (12)

I (2,0,¢.62)
is the relaxation rate of an EOSP nanocluster weakly
interacting within the assembly; 7p = (Aygyr. H K)fl is
the free diffusion time, Hx = 2K,V/M the (uniaxial)
anisotropy field, and gy, =~ 1.76 x 101 (T.s)~! the gy-
romagnetic ratio. For example, for cobalt particles the
anisotropy field is Hx ~ 0.3 T, and for A = 0.1 — 10,
T ~2x10710 -2 x 10712

At this point, the only missing ingredient to evalu-
ate the susceptibility in Eq. () is the relaxation rate.
Therefore, the next Section is devoted to the calculation

of the relaxation rate I’ (x, o, (, f, )\).

with A being the damping parameter.

A. Relaxation rate

Here we derive an expression for the relaxation rate of
a weakly interacting EOSP nanocluster.

In Ref. 11 Jonsson and Garcia-Palacios derived the fol-
lowing approximate expression for I"

I ~T, {1 n % <Hﬁ>0 n %F(a) =), 1)

This takes account of the various approximations
stated earlier inasmuch as the general spin averages (...)



are replaced by their analogs (...), defined in Eq. @). Iy
is the relaxation rate in the absence of DDI. The function
F(a) is given by2®

F(a) =1+2(20%)V (14 o o). (14)

with y(a, z) = [; dtt*~'e~" the incomplete gamma func-
tion, and where @ = A\\/o. In Ref. [11 the free-particle
relaxation rate I'g was given in the absence of the ap-
plied magnetic field, i.e. 7ply = %01/26_‘7. A more
general expression for the free-particle relaxation rate in
a longitudinal magnetic field is the Néel-Brown formula2?

o1/2 (1 _ h2)
LS
X [(1 +h)emo(Hm* 4 (1 —p) e‘”(l_h)ﬂ
(15)
with h = 2/20. Setting h = 0 recovers the previous
expression.

The relaxation rate (3] has to be generalized for the
present purposes in order to take into account surface
anisotropy, in addition to the magnetic field as well as
the core anisotropy.

For intermediate-to-high damping Langer’s approach
allows us to compute the relaxation rate I' of a system
with many degrees of freedom related with its transition
from a metastable state through a saddle point3033

7pI'ng =

o |’i| 25

r="
27 Z

(16)

where Z,, and Z, are respectively the partition functions
in the vicinity of the energy metastable minimum and
the saddle point. The two partition functions are com-
puted using a quadratic expansion of the energy at the
corresponding stationary states. The attempt frequency
K is computed upon linearizing the dynamical equation
around the saddle point, diagonalizing the resulting ma-
trix and selecting its negative eigenvalue.2%:3!

The dynamics of a single magnetic moment is gov-
erned by the (damped) Landau-Lifshitz equation and
Langer’s (or Néel-Brown) expression renders the relax-
ation rate for its escape from the minimum (8™, (™))
through the saddle point (8¢),(®)), in the limit of
intermediate-to-high damping. Owing to the approxima-
tions adopted in this work, especially the smallness of the
surface anisotropy with respect to the uniaxial anisotropy
(I¢| < 1), the energy potential of the non-interacting clus-
ter presents two global minima that are mainly defined
by the uniaxial anisotropy, as is shown in Fig. [ (in zero
field), while the surface anisotropy induces saddle points
at the equator. In the present case, changing the sign of
¢ does not affect the loci of the minima but those of the
saddle points are rotated by 7/4 around the z axis. The
overall shape of the energy landscape remains, though,

Figure 1: Energy landscape at zero field in the limit of a large
uniaxial anisotropy, for ¢ > 0 (left), and ¢ < 0 (right).

quite similar. The global minima are (™) = 0,7 with
uniaxial symmetry around the z axis. Then, we have

2 £
i 17
where £ = 20 x 1(2—(—4h) is the energy at the
metastable minimum (") = 7.

There are four equivalent escape routes (saddle points)
related to each other by a rotational symmetry with re-
spect to the azimuthal angle ¢ and their loci depend
on the sign of ¢. Indeed, for ¢ > 0 we have (¥ =

2 2
cos ) = 6 sin AN R cos ¢ (18)
3¢ 3 9¢ 3
. 1/2
with cos¢ = (ﬁéﬁ'

For ¢ < 0 the saddle points are given by (*) =

0,3,m, 37“ and

W [h \/_1/3 A \/_1/3
cos ') = EJF A + " A (19)

2 3
with A = (%) — (%) .

For a small magnetic field h, the azimuthal angle at
the saddle point remains close to the equator while an
expansion of Eq. (I8) yields 00s) ~ 3+ % It is worth
mentioning that the symmetry breaking of the continu-
ous rotation around ¢, induced by the introduction of
a cubic anisotropy, appears as soon as ¢ assumes a fi-
nite value. However, for very small values of { the en-
ergy surface around the saddle points remains flat render-
ing the quadratic expansion of the energy at the saddle
point questionable [see Fig. 2 below]. As a consequence
Langer’s approach does not apply in such situations, as
was emphasized earlier.26:37

Next, expanding the energy at the saddle points for ¢ >
0 and ¢ < 0 (with not too small |¢|) we obtain the follow-
ing generic expression for the relaxation rate (upon mul-



tiplying by the symmetry factor 4) Ty = L 0)= (06),0(*)

ol = 4 x |2—’:T| sin 00

)20‘ (1 — C — h)eAg(O)'
O

(20)

o

The attempt frequency k, as a function of the damping
parameter A\, is given by the general expression

o= 3 (8 4 )

s s 2 s s (21)
\/(u§)+u§)) 4(1+%)u§)u§)]

where ,ugs),i = 1,2 are the eigenvalues of the energy

quadratic form near the saddle point, with respect to
the variables 6, p, respectively. These, together with the
energy at the saddle point, are given by

1x :LO_4 T

8x10°[ §

Energy barrier dift

6x10"

TDF

4x10”

2x10°

Figure 2: Relaxation rate as a function of the (negative and
positive) parameter ¢, for three values of the (reduced) ap-

55(0) — 9% [h cos0) 4+ Leog2g(s) € (sin4 0(5) 4 9 cogt 9(5))}p1ied field h: Full lines correspond to the relaxation rate de-
2 8

fined in Eq. (2Z), while the dashed lines are plots of the
¢—independent Néel-Brown relaxation rate (3] for different

lugs) =20 X %1 [4h cos ) 4 (4 — ¢) cos 20(5) — 3¢ cos 49(5)} values of the magnetic field. Insets: Ratio of the two prefac-

ués) =20 [fg sin’ 9(5)] .

for ¢ > 0.

As the energy landscape remains globally the same by
changing ¢ — —(, only the energy at the saddle points
and the eigenvalues change, yet the overall form of the
relaxation rate is still given by Eqs. (20) and @I) with
the following substitutions

ES(O) =20 [h cos ) + %COSQ 00s) — % (cos4 0(s) + sin* 9(8))} ,

,ugs) =20 [—h cos 0®) — cos (29(8)) + ( cos (49(5))} ,

ués) =20 [C sin? 9(5)} .

for ¢ < 0.

Finally, the energy barrier AE(©®) in Eq. (20) is defined
as AE® = gl0 _ gl

In the limit of zero field (h = 0) and for ¢ > 0, for
instance, u{* /20 — (¢ +2) /2, u$ /20 — ¢, &7 /20 —
—(/8 so that the relaxation rate in (20) reduces to the
result obtained in Ref. @, normalized with respect to
the Néel’s free-diffusion relaxation timeX? my =
oTD.

Two remarks are in order:

m —
2vksT ~—

— There are two limits to the range of ¢ (> 0). First,
¢ must not exceed some value that marks the limit
of validity of the EOSP model. From numerical
calculations,®¢ this has been evaluated to ~ 0.25
for an SC lattice and ~ 0.35 for an FCC lattice.
The second limit stems from the fact that the an-
alytical expressions obtained above for I' within
Langer’s approach cannot be continued to ( = 0

tors I (h,0,¢, A) /Ty (h,0,(,A), as defined in Eq. @22)), and
energy barrier difference against h, for 0 = 15 and ¢ = 0.2.

because the saddle points created by the cubic con-
tribution to the anisotropy disappear at the uniax-
ial anisotropy limit. The lower limit on { can be
obtained by setting to zero the first derivative of I'
with respect to ¢ and numerically solving the ensu-
ing equation. Doing so, we find that for o = 15...25,
for instance, (.t is of the order of 0.1.

— Because of the non-axial symmetry (owing to the
presence of surface cubic anisotropy) considered
here, the relaxation rate depends in a non trivial
way on the damping parameter. Consequently, the
longitudinal response (in-phase and out-of-phase)
are damping-dependent.

In Fig. we plot the relaxation rate for both ¢ > 0
and ¢ < 0 as a function of ¢ and different values of the
applied field h, for o = 15. In this case, as mentioned
above, the relaxation rate computed within our approach
is only valid for 0.1 < |{| < 1. For smaller values of |(]
Langer’s approach is no longer valid and the relaxation
rate is given by the Néel-Brown formula (I3 which does
not depend on (. This is shown by the dashed lines in Fig.
Bl Asit can be expected, the relaxation rate that includes
the cubic anisotropy is larger than the Néel-Brown relax-
ation rate since the creation of saddle points increases
the probability of escaping from the metastable state.

Next, if we write the relaxation rates given by Eq. (20)
in the form

To (hy0,¢,A) =T (h,0,(,A) 267 (O (22)

with € = + for ( > 0 and € = — for ( < 0 we can study



the behavior of the ratio of the prefactors and the dif-
ference of the energy barriers as the field is varied. The
corresponding plots are given in the inset in Fig. We
see that the ratio of the prefactors is a decreasing func-
tion of A while the difference of the energy barriers is an
increasing function thereof. This implies that there is a
competition between the prefactor-dominated dynamics
and the relaxation through the energy-barrier crossing,
or in other words, between the dynamics dominated re-
spectively by the fluctuations of the transverse and the
longitudinal components of the magnetic moment.

Caution is necessary when trying to compare the ex-
pression of the relaxation rate I'g (h, o, (, A) derived here
in the presence of both surface effects ({ # 0) and DDI
(€ # 0) with the relaxation rate obtained, in the absence
of the cubic anisotropy, by other authors.t!:28 Indeed, in
the presence of an arbitrary magnetic field, one cannot
simply set ¢ = 0 in our expressions because these have
been derived using Langer’s approach that relies on the
validity of the quadratic expansion of the energy at the
minima and saddle points ; a validity that breaks down
for rather small (but non vanishing) values of . From
a mathematical point of view, setting ¢ to zero in Egs.
(I8 M), for example, leads to a singularity.

Now, for the assembly we use the spin averages

<EZQ ”> and <52J_> obtained in Ref. for a monodis-
/0 /o

perse assembly on a SC lattice and in the absence of an
external magnetic field

2
<5§7H>0 - %[(1—52)R+35m,

(EfL), = % (24 S5) R — 35,77, (23)

where Sy is defined in Eq. ([@). R and T are lattice sums
given by R =23, 7’56, T =2 .le D,je)’. For a
simple cubic lattice we have, in the thermodynamic limit,
R ~16.8,T ~13.4.

Therefore, using Eqs. (@), 20), and 23) in Eq. (I3)

we obtain the relaxation rate for an assembly of interact-
ing clusters within the EOSP approach

T (h,0,C0€) =~ To (hy 0, \) [1 + gs (A)] L (24)
where S (M) is defined by
SO) = (1+F(\)R+(BT —R) (1 - @) Sy. (25)

Alternatively, using ng = wl'y ! we can also rewrite Eq.

@) as

n(haUaC7§a)‘) =To (haUaC7)‘) |:1 + ES ()‘):| : (26)

B. AC susceptibility

We rewrite the AC susceptibility (I]) separating its
real and imaginary parts y (h, o,C, €, 77) = x' —ix” with

1
1+n2’

_n
1+n2

/

X = x™

"

X" = x (27)

Now, we substitute for x°? and 7 their respective expres-
sions (7)) and (28, taking account of DDI and surface
anisotropy contributions given above. We obtain

X' Xheo + § A L 677—31\(2)
free 1+77(% 1+77(% ’
&Mo L -3
no_ A(l) OA(2)
X Xfree+1+n8 +§1+77§ ’

where we have defined the in-phase and out-of-phase sus-
ceptibilities in the absence of DDI

Xire 70X fre
/ h, , 7)\ = free , " h, : ,)\ = free
Xfree ( o C ) 1+ 77(% Xfree ( o g ) 14+ 773

together with the 1¢- and 2"d-order DDI contributions

A = 2400
A? = XeS()).

xil. and ;% are given by Egs. 8 @) and 19 = wI';" by
Eq. (20).

IV. RESULTS
A. Noninteracting assembly of OSP nanomagnets

Using our formalism we first reproduce the well known
results for the in-phase and out-of-phase susceptibilities
for an assembly of noninteracting nanomagnets with uni-
axial anisotropy, in zero DC field 2726 In Fig. [§ we plot
the in-phase (left) and out-of-phase (right) susceptibili-
ties as functions of 1/0 o« T for zero field (z = 0) and
different frequencies. On the left we have also included
the equilibrium susceptibility g, (¢ = 0), represented
by the solid line.

The appearance in x’ and x” of a maximum at some
particular temperature Ty, and the displacement of the
latter to the right (higher temperatures) upon increas-
ing the measuring frequency is already well understood
and explained in details, e.g. in Ref. [17. In particular,
the maximum of x’ is formed as a result of the competi-
tion between the blocking effect (namely the decrease of
the relaxation rate) and the increase of x°9 as the tem-
perature decreases. At low temperature, the relaxation
time is longer than the measuring time ¢, = 27/w and
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Figure 3: (a) x" (left) and (b) x” for a free assembly (§ = 0) within the OSP model, i.e. without surface anisotropy (¢ = 0),

for different frequencies f = wrp/(27).

thereby over a large number of cycles of the AC field,
the over-barrier switching probability is nearly zero and
the response consists mainly of intra-well rotations. As
T increases the clusters magnetic moments start to de-
part from their respective energy minima due to ther-
mal fluctuations. Then, over the same number of cycles
of the AC field the switching probability acquires a non
negligible value. The response starts to increase with in-
creasing temperature within a range where the thermally-
activated mechanism of over-barrier crossing is not yet
efficient enough, leading to a considerable delay of the
response with respect to the excitation. This leads to
a considerable out-of-phase response x” as witnessed by
the increase of the latter, see Fig. Bl (right). At higher
temperatures, the over-barrier crossing mechanism be-
comes so efficient that the magnetic moments instanta-
neously distribute themselves among the various energy
minima, in phase with the probing field. At much higher
temperatures, the distribution of the magnetic moments
reaches its equilibrium state and the x’ curves become in-
dependent of the measuring frequency and superimpose
on the equilibrium linear susceptibility x°4, and corre-
spondingly x” tends to zero.

The displacement of Ti,.x is easily understood from
the expression of the latter as a function of the measur-
ing frequency v,,. Indeed, this temperature is related
with the over-barrier rotation process whose relaxation
time is approximately given by the simple Arrhenius law
7| = To exp (AE/kpT), where AE is the effective energy
barrier and 79 ~ 10712 — 107 s the characteristic time
of the intra-well dynamics. At T' = Tax We can write
T|| = tm, i.e. the measuring time (~ 100 s for a commer-
cial SQUID), and this then leads to

AFE Tm
Tax = — x In~* (—) : (28)

kg o
From this relation, one can easily infer the increase of
Tmax as the measuring frequency v, = 7,,! increases.

From the physical viewpoint, with higher v, one probes
on average more probable (with higher relaxation rate)

switching processes and this is in effect induced by an
increase in temperature.

B. Noninteracting assembly: effects of surface
anisotropy

Now, to investigate the effect of surface anisotropy on
the AC susceptibility we can compute the real and imag-
inary components of the latter as functions of tempera-
ture, for different values of the parameter ¢ > 0.

We have observed that the maxima of both x’ and x”
shifts toward higher temperatures as ¢ increases. Indeed,
setting to zero the first derivative of x’ with respect to
temperature and setting T' = Thax in the ensuing equa-
tion, we can solve the latter for Ti,.x as a function of
the other parameters, especially (. We indeed find a
monotonously increasing function of . Intuitively this
result appears to be at variance with the fact that since
the cubic (surface) anisotropy creates saddle points it
leads to an increase of the relaxation rate and thereby
to a decrease of Ti,.x. However, as mentioned earlier the
location of the maximum of the dynamic response, while
it does depend on the energy barriers, it is strongly de-
pendent on the equilibrium response (i.e. x°%) which is
rather different for the pure uniaxial case (¢ = 0). More
precisely, x°1 is a decreasing function of ¢ and thereby
when ( increases the dynamic response requires higher
temperatures to reach its maximum, thus leading to an
increasing Thax for increasing (.

C. Effects of inter-particle interactions in the
absence of surface anisotropy

The effect of DDI on the AC susceptibility has been
widely investigated by many groups.=+5=22822 In
Ref. the authors provide a short review of the sit-
uation regarding the effect of DDI on the maximum of x’
and x” and their shift in temperature as the DDI inten-
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Figure 4: (a) X’ and (b) x” for an interacting prolate (10 x 10 x 20) assembly with varying DDI strength £, for the frequency

f=wrp/(2m) = 0.01 in the absence of an external field h = 0,

for an oblate (20 x 20 x 5) assembly.

sity is varied and the assembly shape changed from oblate
to prolate. It was argued that the discrepancy of conclu-
sions found in the literature as to whether the DDI shift
the maximum of " and x” towards higher or lower tem-
peratures resides in many reasons, mostly related with
the effects of damping, the shape of the (assembly) sam-
ple, and anisotropy. Here we use the same formalism
and approximations and obviously confirm the same re-
sults. Therefore, we shall not repeat the conclusions of
the previous work.

Nevertheless, Fig. Ml shows that as the shape of the
assembly changes from prolate to oblate, we obtain an
opposite shift in temperature in both the maximum of
x' and x” and also in the corresponding Ty,.x. In the
case of isotropic samples, such as cubes, the lattice sum
C(0.9) vanishes leading to a DDI coefficient € = 0. There-
fore, no shift is observed and the DDI do not contribute,
within the present approach. For prolate and oblate
samples, both shifts are explained by the fact that the
equilibrium susceptibility increases with DDI in a pro-
late sample whereas it decreases in an oblate sample.
More importantly, it is seen that the effect of DDI is

in the high damping regime A = 10. Same plots in (c) and (d)

more pronounced in the oblate case because there the
DDI are in competition with the uniaxial anisotropy and
thus strongly contribute to suppress the equilibrium sus-
ceptibility. The effect of damping, while remaining sec-
ondary as compared to that of the assembly shape, seems
to be somewhat more pronounced in the case of prolate
samples. This may be due again to the fact that in the
prolate case the increase of x°? with DDI is slower than
its decrease for the oblate shape. As such, x’ and x”, and
more so for x’, are more sensitive to the change of the
relaxation rate which then starts to prevail, and which
does depend on damping.

D. DDI versus surface effects

Now we are ready to investigate the interplay between
inter-particle DDI and intrinsic surface anisotropy. We
only present the case of ¢ > 0 in which surface (cubic)
anisotropy favors the magnetic alignment along the cube
diagonals. In order to deal with the case ( < 0 one has
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Figure 5: x’ for an interacting prolate (10 x 10 x 20) assem-
bly with a fixed DDI strength £ = 0.008 and varying surface
anisotropy coefficient ¢, for the frequency f = wrp/(27) =
0.01. h=0.

to use the corresponding relaxation rate, as discussed in
Section [[T[Al Yet, as shown in Fig. Bl the behavior of the
relaxation rate for ¢ < 0 is qualitatively the same as that
for ¢ > 0 and that even quantitatively the difference is
not really significant. Therefore, in the remaining part
of the paper we will focus our discussion on ¢ > 0.

We have systematically analyzed x’ and x” for various
values of the surface anisotropy coefficient ¢, for both
prolate and oblate assemblies. We have observed the
upward shift of Ti,.x as ¢ increases and the downward
shift of the maximum of x’ and x”, as already discussed
earlier. However, owing to the fact that the effect of
increasing ( is to draw the particle’s magnetic moment
towards the cube diagonals, it basically plays the same
role in a prolate sample where the magnetization is en-
hanced along the z axis, or in an oblate sample where
the magnetization is enhanced in the xy plane.

The effect of increasing the strength of DDI alone is
shown in Fig. @ In the case of a prolate sample, we have
observed a shift of the maximum toward lower temper-
atures, in the absence of surface anisotropy. Note again
that this is not the ¢ = 0 limit of the expressions of
Section [ITAl It is simply the OSP model with the re-
laxation rate (IH). The effect of frequency observed by
Lee et al?® is similar to the behavior that we observe
here: Th,.x increases and ' decreases. Furthermore, the
fact that Thax increases as the concentration increases
is in line with what we observe for oblate samples and
corresponds to the type of samples investigated by Lee
et al. Despite the relative success of our model in in-
terpreting the experimental data, one has to be careful
as not to push the comparison too far because our ap-
proach has been derived for textured monodisperse as-
semblies and, more importantly, is perturbative and thus
inherently restricted to weak DDI. This is in general not
the case in experiments where the assemblies are often
random and rather dense. In such cases (especially high

densities), a more quantitative comparison with experi-
ments can only be accessible with the help of numerical
investigations2349,

In Fig. we present a specific case in order to
highlight the competing effects of surface and dipolar
interaction on the susceptibility. The curves are ob-
tained for £ = 0.008 and small (and increasing) surface
anisotropy parameter (. These results show that the sur-
face anisotropy, in the present case of positive ¢, has the
opposite effect to that of DDI. More precisely, this im-
plies that surface effects can screen out the effect of DDI
and the other way round. This confirms the results of
Ref. [2 for equilibrium properties for both negative and
positive (.

E. Discussion

Very often the experimental results related with the
dynamics of an assembly of DDI-coupled nanoparti-
cles are analyzed with the help of the Vogel-Fulcher
law=22022,20

A P ) (29)

where vy = 75 " ~ 10? — 10'? Hz, Oyy represents an effec-
tive temperature supposed to include the DDI correction
and AF is the energy barrier, which reads AE = K5V in
the case of uniaxial anisotropy and zero field. The main
concern with this phenomenological formula is to pro-
vide an interpretation of the parameter fyr on physical
grounds. Accordingly, in Ref. 50. there is a discussion of
a few approaches in this regard. For instance, it is shown
how the work of Shtrikman and Wohlfarth®? leads to an
expression of fyr in terms of the applied magnetic field
and how the work by Déjardin® yields an expression in
terms of the DDI coupling. In the work of Landi itself
Ovr is expressed in terms of the inter-particle distance
and other parameters such as the particles magnetic mo-
ment and the uniaxial-anisotropy energy.

Here we show that our formalism is in full agreement
with the previous results and further extends them along
the following lines: i) surface anisotropy, ii) particles spa-
tial distribution and shape of the assembly, iii) damping
parameter.

In Eq. (@4) the factor T'g (h,0,(,\) depends on the
applied field, surface anisotropy and damping, together
with other parameters, as is seen in Eq. ([22). It turns
out that in fact the prefactor F; (h,0,(,\) is a slowly
varying function of ¢ and as such can be written as
Iy (h,0,¢,A) =~ I'(h,0,\). This implies that the de-
pendence of the relaxation rate I'g (h, 0, (, \) ¢ is mainly
borne by the energy barrier Aé'g_o) (¢). Therefore, in zero

field Agio) (¢) ~ —o +0(/4 and upon expanding in ¢ we
obtain
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L (h,o, N E) ~T (h=0,0,)\) e’ <1+ "f + ES
(30)
where S(\) is defined in Eq. (23). Note that
I'(h=0,0,)) is given in the second line of Eq. (6) in
Ref. [37.
Now, an expansion of Eq. (Z9) with respect to Oyg/T
yields®?

A
=" e’“B(Ti’VF) ~7yte? (1 —i—UHVTF)

which is of the same form as our expression ([B0). Next,
using Néel’s approximation with a constant prefactor
Ty 1, thus ignoring any dependence on temperature,
damping and applied field, T (h = 0,0, )) can be iden-
tified with 75 ! Then, we can further identify the terms
between parentheses leading to the following expression
for Oyr (in Néel’s approximation)

Ovr _
T

NG

+on (€9). 31)

This expression provides a somewhat “microscopic”
description of the phenomenological parameter 6y g
in terms of the inter-particle interactions, the surface
anisotropy and damping. Indeed, the last term in (3II),
which is similar to the one derived in Ref. @, includes
both the damping parameter and the shape of the as-
sembly, owing to the expression of S () [see Eq. (Z3))].
In addition, we note that £ is proportional to the as-
sembly concentration? Cy and thereby to a3, a be-
ing the inter-particle distance. Therefore, we expect
that in the absence of surface anisotropy, fyr scales as
Oy ~ C% ~ a=5. In Ref. |46 experimental estimates of
Ovr are given for an assembly of Ni nanoparticles with
varying concentration. A comparison of Eq. &Il with
the corresponding data is given in Fig.

On the other hand, the first term in Eq. (3] accounts
for the contribution from surface anisotropy. As dis-
cussed earlier, in practice it should be possible to adjust
the assembly characteristics (assembly shape, particles
size and underlying material) so as to achieve to some
extent a compensation between surface effects and the
DDI contribution. This could in principle suppress the
dependence of Oy on the assembly concentration. In ad-
dition, the term in ¢ can also be used to extract from the
experimental data an estimate of the surface anisotropy
coefficient ¢ by reading off the intercept from the plot in
Fig.

In the most often encountered situation where the par-
ticles anisotropy is modeled with an effective uniaxial
anisotropy of constant Kg, as would apply for elongated
particles, dropping the ( term, the effective temperature
Oyr explicitly reads (as a function of the assembly con-
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Figure 6: Ovr against the assembly concentration. (stars)
Experimental data from Masunaga et al® and (full line) fit

of Eq. (B1).

centration Cy )

2 (M2V)* s
kBQVF = (Z—;) 7(Kéﬂ‘) gXC‘% (32)
e

For example, consider a monodisperse assembly of
spherical cobalt nanoparticles of 3 nm in diameter with
My ~1.4x108J. T m™3, Keg ~ 5 x 10°J.m™3 , and
Cy ~ 1%. Then, if the assembly is assumed to be in the
form of a box-shaped sample with its particles arranged
into a simple cubic lattice, the lattice sums R and T
were given earlier in the thermodynamic limit. Then,
using F'(\) ~ 1 and Sy ~ 1, the factor S evaluates to
S =~ 45. This yields Oyp ~ 0.05K, which is small com-
pared to the particle’s blocking temperature Ty ~ 14 K.
However, one should keep in mind that 6y scales with
the particle’s volume.

It is worth emphasizing the fact that fyg given by
Eq. (32) is independent of temperature, as can be often
encountered in the literature. However, if we take ac-
count of surface anisotropy, Eq. (BI]) shows that the phe-
nomenological parameter fyp is in fact a linear function
of temperature via the term in (. This can be understood
by noting that surface anisotropy, which is of cubic na-
ture in the EOPS model, drastically modifies the energy
potential and thereby affects the dynamics of the parti-
cle’s magnetization. As a consequence, the effect of DDI
becomes strongly dependent on the thermal fluctuations
and the elementary switching processes they induce.

V. CONCLUSION

We have studied the combined effects of surface
anisotropy and dipolar inter-cluster interactions on the
dynamic response of a mono-disperse assembly of mag-
netic nanoclusters with textured anisotropy. We have
derived semi-analytical expressions for the in-phase and



out-of-phase components of the AC susceptibility as func-
tions of temperature, applied field, surface anisotropy,
damping, frequency, and (weak) dipolar interactions. If
we ignore the surface anisotropy, we recover the well
known results of frequency- and interaction-induced shift
in both the maximum of x’ and x” and of the tem-
perature Ti,.x thereat, taking into account the effect of
the assembly shape (oblate or prolate). In the presence
of surface anisotropy we have derived and used a semi-
analytical expression for the relaxation time and investi-
gated the effect of surface (cubic) anisotropy. We have
done so in the limit of small field, high uniaxial anisotropy
barrier and weak surface anisotropy. The expressions ob-
tained for the small ¢ show that the relaxation rate or the
switching probability increases with surface anisotropy,
but the equilibrium susceptibility decreases, thus lead-
ing to an overall upward shift of Ti,.x. When the inter-
particle interactions are switched on, a competition sets
in between the latter and surface anisotropy that may

11

lead, in adequately prepared samples, to a mutual com-
pensation of the two effects.

Finally, our results for the relaxation rate have been
analyzed in connection with the so-called Vogel-Fulcher
law and an expression for the ad hoc effective tempera-
ture has been given in terms of the inter-particle dipolar
interactions, the intra-particle surface anisotropy and the
damping parameter, in addition to the other physical pa-
rameters such as the applied magnetic field and uniaxial
anisotropy.
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