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Abstract

Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making
cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs
generated gale force winds (>17 metres/second) within the Great Barrier Reef Marine Park
(GBRMP). Of the hurricane strength TCs (>H1—Saffir Simpson scale; > category 3 Austra-
lian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed
the GBRMP, participating researchers, managers and rangers assessed the extent and se-
verity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were
scaled into five damage levels representing increasingly widespread colony-level damage
(1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affect-
ed by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-
shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf
reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for
mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily dis-
tributed at all distances, but more so as distance from the track increased. Damage extend-
ed much further from the track than during other recent intense cyclones that had smaller
circulation sizes. Just over 15% (3,834 km?) of the total reef area of the GBRMP is estimat-
ed to have sustained some level of coral damage, with ~4% (949 km?) sustaining a degree
of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a
24-hour period since 1985. Severely impacted reefs have started to recover; coral cover in-
creased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assess-
ment of impacts described here is the largest in scale ever conducted on the Great Barrier
Reef following a reef health disturbance.

PLOS ONE | DOI:10.1371/journal.pone.0121272  April 15,2015

1/17


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0121272&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.3gn80
http://dx.doi.org/10.5061/dryad.3gn80

@’PLOS | ONE

Impacts of TC Yasi on the GBR

The other funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

Extreme winds during tropical cyclones (TCs—also known as hurricanes, typhoons) generate
heavy seas that can devastate coral reef communities [1,2], which can buffer human communi-
ties along coasts from the sea conditions that TCs generate. The types of damage to corals and
reefs include breakage of coral colony tips and branches, sand burial, dislodgement of large col-
onies, and structural damage where sections of the reef framework are partly or wholly re-
moved [1,3,4]. Recovery may take decades to centuries [2,5,6] in cases of structural damage
assuming access to a sufficient larval pool [7,8]. When such damage reoccurs frequently
enough, especially in combination with other disturbances and anthropogenic stress, coral
cover may be lowered sufficiently to threaten the ability of reefs to sustain themselves as coral-
dominated systems [9-13]. For example, recurrent cyclones combined with overfishing and
coral disease have been a major driver of the decline of reefs in the Caribbean over the last
three decades.

The Great Barrier Reef (GBR) is regularly exposed to gale force (>17 metres/second: m/s)
or higher winds generated by TCs, averaging 4 days per year from 1985 to 2009 in the central
GBR [14]. Where such TCs are intense or long-lasting enough or both, the heavy seas they gen-
erate can cause structural damage to coral reefs, as was recorded in field surveys after intense
TCs Ivor in 1990 [3] and Ingrid in 2005 [4]. Similar damage was also observed at Jamaican
reefs [15] following Hurricane Allen, which was H4 on the Saffir-Simpson scale while near the
surveyed reefs. These high-energy events leave a lasting legacy in the geological record, produc-
ing storm ridges that can be preserved for thousands of years [1]. Dating of such ridges
throughout the GBR and adjacent coast provides evidence of repeated TC structural damage
over the past 5,000 years [16]. Cyclones are a major driver of habitat condition in the GBR—
De’ath et al. [17] attribute nearly half of the observed coral loss across the GBR from 1985-
2012 to wave damage caused by TC-generated winds.

TC intensity is only one factor affecting the potential to generate heavy seas capable of dam-
aging coral communities. More intense TCs create faster maximum winds and higher maxi-
mum wave heights than less intense cyclones and are characterised by lower central pressures
[18,19]. However, the overall area encompassed by a cyclone’s circulation may be more impor-
tant in determining the total destructiveness of the T'C [20]. For a given intensity, large TCs ex-
tend extreme conditions over much greater distances than small TCs (100s vs 10s of km
[21,22]). In general, intense TCs can be any size [21], though near the northeast Australian
coast, TC intensity tends to peak when TCs are small [22]. Several recent studies of TC damage
to coral reefs assume that structural damage is generally not found beyond a distance to the
track determined by cyclone intensity ([23]-100 km; [24]- 90km) or by cyclone intensity and
side of the track ([25]- 160 km). To date, there are no published studies presenting field survey
data on the spatial extent of wave damage to coral reefs from a TC that is both large
and intense.

Initially forming in the Coral Sea as a tropical low on 29 January 2011, TC Yasi intensified
to hurricane force (wind speeds >33 m/s) at 700 UTC on January 31. Maximum wind speeds
were estimated to be 215 km/hr (59.7 m/s) with gusts up to 285 km/hr (79.2 m/s) and a mini-
mum central pressure of 929 hectopascals when TC Yasi crossed the Queensland coast at
1400 UTC on 3 February. TC Yasi made landfall with the highest intensity of any T'C that
crossed the Queensland coast since 1918 [26]. With an estimated extent of gale force winds
more than 600 km wide, Yasi was also notably large (Fig. 1), posing challenges for assessing the
spatial extent of the damage caused to coral reefs. However, when TC Yasi crossed the coast,
the Great Barrier Reef Marine Park Authority (GBRMPA) had just finished incorporating me-
chanical damage into the Reef Health and Impact Survey (RHIS) protocol used in the Eye on
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Gale force winds
- Destructive winds
- Very destructive winds

300 kilometres

Fig 1. Spatial extent of TC Yasi with wind zone boundaries. (a) Satellite-based photograph of TC Yasi on February 2, 2011 prior to crossing the
Queensland coast between Townsville and Cairns on February 3 (images courtesy of the Australian Bureau of Meteorology (BoM)). (b) Boundaries of gale
force, destructive and very destructive winds from BoM; the extent of gale force winds north to south along the GBR exceeded 600 km.

doi:10.1371/journal.pone.0121272.g001

the Reef participatory monitoring network [27]. Training managers, rangers and participating
researchers to use the protocol meant that a large number of reefs could be rapidly assessed
spanning the entire potentially impacted area.

The impact assessment undertaken following TC Yasi is the most spatially extensive field
survey of TC impacts on coral reefs ever conducted and reported on (841 surveys of 70 reefs,
~10% of the 775 reefs within the gale force wind boundary, Fig. 1). Other published field sur-
veys after TC Yasi looked for evidence of damage at only 2 [28] or 4 reefs [29]. We first com-
pare the characteristics of TC Yasi with other TCs that have generated gale force winds in the
GBR Marine Park (GBRMP) between 1985 and 2014. This analysis sought to answer this ques-
tion: Was TC Yasi unique among TCs present in the GBRMP between 1985 and 2014, and if
so, in what way? We then present and discuss the results of the impact assessment and subse-
quent recovery surveys, which sought to answer these three research questions:

1. What are the spatial patterns in damage severity throughout the area affected by gale force
winds during TC Yasi?

2. Do the spatial patterns in damage vary significantly with direction and distance from the cy-
clone eye and with shelf position and habitat?

3. What are the spatial patterns in recovery of live coral between 2013 and 2011 and what are
the changes during that timeframe in the cover of recently dead coral, live coral rock, coral
rubble, sand and macroalgae.
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Materials and Methods

Data from the Australian Bureau of Meteorology were used to compare the key characteristics
of TC Yasi to each of the 43 other TCs that produced gale force winds in the GBRMP between
January 1985 and December 2014 (n = 44). The potential for a TC to cause structural damage
to reefs is driven by three key factors: the intensity, circulation size and the duration of extreme
conditions near reefs (‘persistence’). We classified each cyclone based on maximum intensity
(maximum surface wind speeds in m/s), average size (mean radius from the eye of the storm to
the outer edge of gale force winds in km), and persistence (total hours of gale force or higher
winds within the GBRMP). TCs with ‘severe’ intensity are those that reach hurricane force
(wind speeds >33 m/s; central pressure <970 hPa; H1 on the Saffir Simpson scale, category 3
on the Australian cyclone scale). The mean gale radii of ‘large’ TCs exceeded 300 km while the
radii of ‘small’ TCs were less than 150 km [21]. For severe TCs, the average gale radii was mea-
sured for only those eye positions when the TC was severe. Gale force wind duration was esti-
mated by finding the cyclone-generated wind speed across the GBR every hour during each TC
and counting the number of hours it met or exceeded gale force conditions. For each TC, values
for the three variables were scaled to the maximum recorded value over the time period while
present in the GBRMP (intensity—70 m/s; size—495 km; persistence—85 hours). The resultant
values were multiplied to create an index for the likelihood the storm caused structural damage,
which we call ‘structural damage risk’. The following categories are used in describing structur-
al damage risk: very low to none (index values less than 1), low (index values 1-5), moderate
(index values 5-10) and high (index values 10 or more). As the index measures persistence
within the GBRMP rather than near specific reefs, it is possible for a TC to be very persistent in
an area reasonably far from reefs. Manual adjustments to index categories were made in a few
cases to adjust for this. On our conceptual diagram, each TC’s intensity (x axis), circulation
size (y axis), persistence (boldness of circles) and structural damage risk value (colour of cir-
cles) are plotted.

Reef Health and Impact Surveys (RHIS) were used to document the geographical extent, se-
verity and patchiness of damage to reefs exposed to extreme winds (and consequently rough
seas) during T'C Yasi (Fig. 2). RHIS is a rapid survey method jointly developed by the
GBRMPA and the Queensland Parks and Wildlife Service (QPWS) [27]. To undertake a RHIS
survey, observers first select a location, swim to find the habitat type they intend to survey and
then do several fin kicks with their eyes closed to randomly select a starting point. The survey
area is a circle with a 5 m radius, so a 5 m swim is made to four points from the centre; like the
N, S, E and W of a compass. Those points form the circle perimeter and observers swim the cir-
cumference while looking into the survey area to estimate the percent cover of the substrate
made up by the various benthic groups. Coral and macroalgae are then classified by life form
and type, respectively, and then observers focus on signs of impacts and their potential causes
[27].

For these assessments, team members estimated the proportion of coral cover damaged and
classified the most common level of impact severity observed as one of the following: None,
Tips/Edges, Branches/Parts, and Colonies. A damage impact matrix was developed to integrate
the extent and severity scores for each survey into one of five levels of damage (Fig. 3). The ma-
trix and damage levels were developed to be comparable to those developed by AIMS to assess
the impact of TC Ingrid [4]. The five damage levels used encapsulate both colony and reef
damage. Damage Levels 1 and 2 indicate partial colony mortality. Damage Levels 3, 4 and 5 in-
dicate the increasing extent of complete colony mortality and reef framework damage. Of
these, levels 4 and 5 are referred to throughout as structural damage. Fig. 4 presents photo-
graphs of damage that are representative of each of the five damage levels.
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Fig 2. TC Yasi survey reef locations (surveyed February 10 to March 17,2011 and from January 1 to September 30, 2013). Bar charts for each 50-km
Marine Park segment north and south of the track of TC Yasi represent the proportion of surveys that recorded each of 5 levels of damage (n = 841).

Locations in red denote reefs where >60% of the surveys recorded structural damage (level 4 or 5) and the two labeled reefs are the locations in Fig. 8.
Locations in blue were surveyed during both 2011 and 2013. See Figs. 3 and 4 for damage level descriptions.

doi:10.1371/journal.pone.0121272.9002

PLOS ONE | DOI:10.1371/journal.pone.0121272  April 15,2015

5/17



'.@.' PLOS | ONE Impacts of TC Yasi on the GBR

Extreme coral damage / High reef damage

Damage matrix Damage Extent
Damage severity | . 0% | 1-10% | 11-30% | 31-50% | 51-75% | 76-100%
description
None 0 0 0 0 0 0 0
Damage Levels
. 0 No damage
Tips / Edges 1 0 10 30 50 75 100
1 Minor coral damage
2 Moderate coral damage
Branches / Parts 2 0 20 60
3 High coral damage / Minor reef damage
Severe coral damage / Moderate reef damage
Colonies 4 0 40 120

Fig 3. Cyclone damage matrix. Damage extent and severity scores in light blue represent the survey area damaged (Damage extent) and the dominant
type of colony-level damage observed (Damage severity description). Damage levels 1, 2 and 3 relate to coral damage, while 4 and 5 relate to reef structural
damage (see colour scale on right). Representative photographs of each damage level are shown in Fig. 4 with damage descriptions.

doi:10.1371/journal.pone.0121272.9003

Teams from GBRMPA, QPWS, the Australian Institute of Marine Science (AIMS), and the
tourism and fishing industries completed 841 surveys at 70 reefs within five weeks (between 10
February and 17 March 2011) of TC Yasi crossing the Queensland coast (3 February 2011,

Fig. 2). The reefs surveyed in 2011 included nearly 10 percent (70 / 775) of those located within
the gale force, destructive or very destructive wind boundaries (see Fig. 1B) and three reefs be-
yond these zones (Fig. 2). Surveys spanned the continental shelf (inner—12, middle—34,
outer—24 reefs), and extended from 150 km north (weak side) to 350 km south (strong side)
of the track of the cyclone eye. Geographic coordinates for the surveyed reefs are available with
our data via this DOI (doi:10.5061/dryad.3gn80). Teams completed at least three surveys for at
least three locations at each reef, including these habitat types: lagoon (1-3 m in depth), reef
flat (1-3 m), crest (~5 m), slope (7-10 m) or bommie fields (7-12 m). All required permits for
scientific surveys were obtained from the Permits section of the Great Barrier Reef Marine
Park Authority. Surveys were undertaken on snorkel and SCUBA.

Survey data were collated in 50 km segments from 150 km north to 350 km south of the
track (10 segments). Within these segments, the percentage of surveys that recorded each of
the five damage levels was calculated. To estimate the area of coral reef affected at each damage
level, the proportion of each level of cyclone damage observed during the surveys was extrapo-
lated to the known reef area within each of the ten 50 km segments. Estimates were then pro-
duced of the percentage of the total reef area within the Marine Park (24,839 km?) impacted by
TC Yasi at each damage category level. Data were aggregated at the scale of individual reefs to
identify the percentage of surveys at each reef for which structural damage was observed.

Damage levels for surveys within each 50 km segment were also averaged and a custom
coded bootstrap routine with R 2.15.3 (R Development Core Team, www.R-project.org) was
used to generate 95% confidence intervals using resampling with replacement (10,000 times) of
the ten 50 km segments. This method generates estimates of error while accounting for unequal
effort among the 10 segments and pools all data (no discrimination between habitat or shelf
position). A permutational analysis of variance (PermANOVA) was also used to test the effects
of three fixed factors on the mean level of damage experienced: side of track (two levels: north/
south of the eye), shelf position (two levels: mid-shelf and outer-shelf), and habitat (5 levels: la-
goon, reef flat, crest, slope and bommie fields). The independent effects of each factor and their
possible interactions and all post-hoc pairwise comparisons across levels were calculated using
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Damage Level 1 (Minor damage):

Some (1-30%) corals partially
damaged; primarily broken tips and
some branches or plate edges.

Damage Level 2 (Moderate damage):

Many (31-75%) corals partially

damaged; most fragile colonies have
tips or edges broken, some branches
missing or as large rubble fragments.

Damage Level 3 (High damage):

Up to 30% of colonies removed, some
scarring by debris, soft corals torn,
coral rubble fragments from fragile
and robust coral lifeforms.

Damage Level 4 (Severe damage):

Many (31-50%) colonies dead or
removed, extensive scarring by
debris, rubble fields littered with small
live coral fragments, soft corals
severely damaged or removed and
some large coral colonies dislodged.

Damage Level 5 (Extreme damage):

Most (51-100%) corals broken or
removed, soft corals removed and
many large coral colonies dislodged.

Fig 4. Representative photos of the 5 damage levels used in the impact assessment and analysis. The damage levels used follow the matrix in Fig. 3,

which combines damage extent with the dominant type of colony-level damage observed.

doi:10.1371/journal.pone.0121272.9g004
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PERMANOVA+. This analysis is based on a Bray-Curtis similarity matrix, 9999 permutations
of the raw data under a reduced model, and Type III (partial) sums-of-squares.

Recovery surveys were conducted between January and December 2013 (24-35 months
after TC Yasi) at reefs from 150 km north to 150 km south of the cyclone track (the area where
damage was most severe). The recovery surveys were conducted in the same manner as the im-
pact assessments at a sub-set of the reefs surveyed in 2011 (see blue locations in Fig. 2). The
number of reefs re-surveyed in 2013 in each of the 50 km segments is as follows (150 km—

n =3, 100-3, 50-3, -50-4, -100-3, -150-2, -200-1). Reefs are only included where at least 3
surveys were completed during each survey year. Percent change was calculated for live coral,
recently dead coral, live coral rock, coral rubble, sand and macroalgae. Values for percent
changes are aggregated at the scale of individual reefs for comparison between the two years.
We then calculated the average values and standard deviation within each of the 50 km
segments.

Results and Discussion

Since 1985, TC Yasi was the only cyclone to generate gale-force winds within the GBRMP
when both intense and large, and the only large TC to pose a high structural damage risk

(Fig. 5). TC Oliver (1993) affected the far southern GBR when large and intense, but was locat-
ed far from all but a few reefs. Nearly a third (30%, n = 13) of the 44 TCs that produced gale
force winds in the GBR from 1985-2014 posed a very low risk of causing structural damage
(Fig. 5). These storms did not generate extreme sea conditions near reefs because they were not
sufficiently intense or large or were not sufficiently persistent near reefs. Just over one-third
(39%, n = 17) of the TCs in the study period were intense and more than half (64%, n = 28)
were persistent within the GBRMP (Fig. 5). TCs much more intense than TC Yasi (central
pressures < 920 hPa versus Yasi’s minimum hPa of 929) track within the GBR only once every
~200-300 years (~0.5% probability of occurrence in a given year [16,30]).

The extensive field data set we collected following T'C Yasi demonstrates that a single large
and intense cyclone can cause structural damage over a vast area within a very short timeframe
(~ a day). Damage was observed throughout the area of the Marine Park exposed to gale force,
destructive and very destructive winds during TC Yasi—an area spanning approximately 4 de-
grees of latitude (Figs. 1, 2). Damage from TC Yasi ranged from minor tissue injuries at the
edges and tips of fragile coral colonies to total removal of all sessile organisms and abrasion
and fracturing of the reef substrate. In total, just over 15% (3,834 km?) of the 24,839km” reef
area within the GBR Marine Park is estimated to have sustained some level of coral damage,
with 4% (949 km®) of reef area sustaining severe coral damage and some degree of structural
damage (Table 1). Structural damage (levels 4 and 5) extended as far as 150 km to the north
and 250 km to the south of the cyclone track. This demonstrates that structural damage from
an intense and large TC can extend farther than typically reported distance thresholds for
structural damage (90 km [24], 100 km [23], 160 km [25]).

At locations with structural damage (levels 4 and 5, Figs. 2 and 3) few corals escaped sub-
stantial physical injury, and many were so severely damaged that only their bases remained at-
tached to the reef. The majority of large soft corals either suffered substantial tissue loss or
were completely removed, as indicated by layers of spicules formed where the coral was at-
tached to the substrate. Extensive fields of freshly formed rubble were seen, including large
numbers of coral fragments still covered in live tissue. At the worst affected locations, extensive
areas of reef structure were completely scoured. Few corals or other sessile organisms remained
attached to the reef structure and some really large corals likely to be hundreds of years old had
been dislodged and overturned (picture example Fig. 4).
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Fig 5. Potential for structural damage (very low to high) of GBR coral communities from tropical cyclones (TCs, 1985-2014). The 44 TCs are plotted
on the diagram with respect to their intensity along the horizontal axis and their circulation size along the vertical axis. Of the 7 TCs that were large, only TC
Yasi was also intense and posed a high risk of structural damage.

doi:10.1371/journal.pone.0121272.g005

Structural damage to corals from TC Yasi was spatially extensive. Overall, 24% of the sur-
veys recorded structural damage, and some incidence of structural damage was found at 66.2%
of the reefs that were surveyed. The spatial distribution of structural damage was highly patchy,
as would be expected [2] even for an intense TC (for example, the same was observed for TCs
Ivor [3] and Ingrid [4]). Only four (5.3%) of the surveyed reefs showed structural damage for
60% or more of the surveys. These more uniformly devastated reefs were Pellowe, Unnamed
17-065, Unnamed 18-023 and Hopkinson (see red, Fig. 2). They fell within the highly destruc-
tive and destructive wind zones defined by the Australian Bureau of Meteorology (Fig. 1),
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Table 1. Total and percentage reef area affected within each damage level. Damage levels are described in Figs. 2 and 3.

Damage Damage Level Descriptions Total Reef Area Affected Proportion of Affected Reef Area Within the Marine
Level (km?) Park (%)
Level 0 No Damage 21,005 84.5
Level 1 Minor Coral Damage 1,388 5.6
Level 2 Moderate Coral Damage 933 3.8
Level 3 Severe Coral Damage 564 2.3
Level 4 Severe Coral Damage and Moderate Structural 447 1.8
Damage
Level 5 Extreme Coral Damage and High structural 502 2.0
Damage

doi:10.1371/journal.pone.0121272.1001

ranging from 100km north to 150 km south of the track and include 1 mid-shelf reef and 3
outer-shelf reefs. At these reefs, remaining coral cover after TC Yasi was typically less than 20%
(Pellowe—33%, UN17-069-17%, UN18-023-19%, Hopkinson -14%).

In both the very destructive and destructive wind zones (Fig. 1) there were some reefs where
structural damage was observed within 50 m of reef that escaped completely unscathed (Fig. 6),
which is not suprising. The amount of TC-generated wave energy actually reaching a given
part of a reef within the complex GBR setting depends on the location of other nearby reefs
and land given the incoming wave direction and the tide [31]. The wave energy is then trans-
formed as it interacts with the variable topography characteristic of reefs and their colonies
[32] with some areas far more exposed to extreme conditions than others even if the areas are
in close proximity. In addition, the likelihood of structural damage from a given level of wave
energy is greater where colonies of mechanically vulnerable shapes are prevalent [33], especial-
ly when such vulnerability rises with colony size [34].

Average damage severity did not differ significantly between any of the 50 km segments
from 150 km north to 200 km south of the cyclone track (Fig. 7). Average damage peaked
100 km south of the track (3.09+0.19) but was not significantly greater there than for 150 km
north (2.73+0.18). The proportion of reefs with structural damage was roughly equal for all
three 50 km segments north of the track (24, 21 and 23% for 50, 100 and 150km segments, re-
spectively). Within 50 and 100 km of the cyclone track the prevalence of high coral damage
and structural damage was greater to the south (high—33%, structural—47% of surveys) than
to the north (high—24%, structural—21%) of the track (Fig. 7). South of the cyclone track, av-
erage damage (+ 95% confidence interval) rapidly declined as distance from the track exceeded
200 km (Fig. 7). Accordingly, the proportion of surveys recording minor damage or no damage
increased with distance south of the track, from 33% of reefs up to 50 km south to >90% be-
yond 250 km (Fig. 7). No structural damage was recorded for surveys of reefs south of 250 km
(Fig. 7).

Aside from distance from the track (reviewed above), side of track, shelf position, and habi-
tat all significantly influenced the severity of damage observed. There was a significant interac-
tion between the side of track, shelf position, and habitat in the PermANOVA (Pseudo-Fs ;54 =
3.2054, p = 0.003). In pairwise comparisons to determine interactions, side of track and habitat
were significant (Pseudo-Fs ;54 = 3.8805, p<0.01) as were habitat and shelf position (Pseudo-
Fs 754 = 2.1667, p<0.05) but not side of track and shelf position. The prevalence of the worst
structural damage (level 5) peaked at outer shelf reefs south of the track in the 150 km segment,
where more than half of surveys detected it. This was double the prevalence of such damage in
the 150 km segment north of the track (Fig. 8). This is in keeping with sea states generated by
TC winds being most extreme south of cyclone tracks; a a feature of tropical cyclones (southern
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Fig 6. Photos taken within 50 m showing the patchiness of damage at Bramble Reef in the very
destructive wind zone and Dip Reef in the destructive wind zone. See Fig. 1 for destructive and very
destructive wind zone boundaries and Fig. 2 for reef locations.

doi:10.1371/journal.pone.0121272.g006

hemisphere). At least one instance of severe structural damage was observed at a greater num-
ber of mid-shelf (17) than outer-shelf (13) reefs located between 150 km north and south of the
track. The total number of surveys that recorded structural damage was higher for mid-shelf
(47) than outer-shelf (38) locations. This may be due to mid-shelf reefs serving as a barrier for
outer-shelf reefs south of the cyclone track given mid-shelf reefs reduce the fetch for outer-
shelf reefs for westerly winds. At outer-shelf reefs north of the cyclone track, lagoon habitats,
reef flats and reef crests all suffered more damage than reef slopes, which may have been pro-
tected due to their slightly greater depth (10-15 m versus 1-7 m) (3.269, 2.857, and 2.778 vs.
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Fig 7. Average damage severity (with 95% confidence intervals) in each of the surveyed 50 km
segments of the Marine Park (see Fig. 2, surveys February-March, 2011). The percent of reef with
structural damage (damage level of 4 or 5, Figs. 3 and 4) is also shown (+SE). The cyclone symbol denotes
the location of the track of the cyclone eye.

doi:10.1371/journal.pone.0121272.g007

1.643;t = 4.96, p<0.001; t = 3.12, p<0.01; t = 2.34, p<0.05 [respectively]). However, there were
no significant differences in average damage between habitats for mid-shelf reefs north of the
cyclone track. There were also no significant differences in average damage between habitats
for outer-shelf or mid-shelf reefs south of the cyclone track, meaning the slightly greater depth
of reef slopes only reduced damage severity at some locations.

During the impact assessment surveys extensive algal growth was observed on many of the
damaged reefs. Green filamentous algae were observed growing over remnant coral fragments
and injured colonies, and blanketing large areas of damaged reef substrate. Dense algal growth
was seen on reefs up to 200 km south of the cyclone track (Fig. 9C). The morphology of the
algal growth varied with depth, taking the form of a low mat on the mid and lower reef slope,
and dense stands of long filaments on the upper slope and reef flat. During the impact assess-
ment algae cover varied from 6.65% (100 km north) to 34.50% (200 km south of the track).

We observed early signs of recovery in the years between 2011 and 2013. Coral cover in-
creased on average in all segments from 150 km north to 100 km south and was >9% in the
segments 100 km north and 100 km south of the cyclone eye. Coral cover declined (-5.9£1.5%
(sd)) in the segment 150 km south of the track. Between 2011 and 2013, the average change
(across all reefs re-surveyed) in coral cover from 150 km north to 150 km south of the track
was 4.4% (£9.25%, sd) or ~2% per year. Algae cover declined greater than 7% in all 4 segments
between 50 km north and 150 km south and changed <3% 100 and 150 km north of the track.
Recently dead coral in 2011, which included recently created ‘rubble’, declined between 8.5%
(50 km south of track) and 20.5% (100 km south of track). Some of this space transitioned to
live coral, though most transitioned to live coral rock, or stayed as coral rubble (but lost the ‘re-
cently dead’ classification, Fig. 9B).
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the Marine Park. Damage level descriptions can be found in Figs. 3 and 4.

doi:10.1371/journal.pone.0121272.9g008

The rate of coral cover increase we observe per year is less than the rate reported in Emslie
etal. [35] between 1993 and 2000 for the Cooktown/Lizard and Capricorn Bunker sectors of
the GBR. During those years, coral cover increased 6-7% per year from ~15% in 1993 to ~60%
in 2000, at which point coral cover mostly stabilised for the 5 years that followed [35]. Those
researchers saw commensurate declines in algae cover as coral cover increased, which we also
observed between 2011 and 2013. As an annual rate, the 6-7% per year that Emslie et al. [35]
document is ~3 times greater than the ~2% per year rate of recovery we observed between 2011
and 2013. However, in a recent study, the AIMS long-term monitoring program team reported
a per year coral cover increase rate of 3.9% for disturbance-free years [36], slightly less than
twice the rate we observe. Modelled recovery rates for 1989 to 1994 of 2.5-3.5% [37] are closer
to the 2% per year increases we observe. There are probably two causes for the difference be-
tween the coral cover rate we document and rates published for the 2 decades preceding TC
Yasi. Firstly, structural damage was extensive during TC Yasi and locations with structural
damage may take decades to centuries to recover [2,5,6]. This is in keeping with the results
from similar surveys presented by Halford et al. [38] who observe exponential differences in re-
covery rates when comparing the first 5 years after a cyclone with the 5-10 year period. Sec-
ondly, an outbreak of crown-of-thorns starfish (COTS, Acanthaster planci) started during the
recovery period within the area of the GBR where our recovery surveys took place, which is
where damage from TC Yasi was most severe. This COTS outbreak is still ongoing at the time
of writing. De’ath et al. [17] estimate rates of increase in coral cover in the absence of cyclones,
COTS and bleaching to be 2.85% per year during recent decades, which is only 0.7% greater
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recruitment and recovery at Helix Reef.

doi:10.1371/journal.pone.0121272.9g009

than what we observe. In this sense, we observed strong recovery given both years in our recov-
ery study period were not disturbance free. It is encouraging that we observed increases in
coral cover in the years since TC Yasi’s crossing of the GBRMP but the low coral cover increase
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rate we see of 2% per year is also indicative of the challenges for reefs in recovering from
cumulative disturbances.

The recent spate of intense TCs crossing the GBRMP (TCs Ingrid 2005; Monica 2006; Larry
2006; Hamish 2009; Ului 2010; Yasi 2011; Ita 2014) is in stark contrast to the extreme rarity of
such TCs from 1970 to 2003. No TCs crossed the GBRMP at greater than category 1 on the Saf-
fir-Simpson scale (category 3 on the Australian scale) from 1970-2003 [39,40]. This has led to
speculation that the intensification of TCs (fewer TCs overall, more of them at higher intensity)
projected for the southwest Pacific under global warming [41-44] is already occurring in the
GBR region. Holland and Bruyere [45] argue that global warming has already substantially in-
creased the proportion of very intense (Saffir Simpson category 4 and 5) TCs globally and re-
gionally since 1975 but that the rate of intensification of TCs is likely to slow. In contrast, large
cyclones did not become more prevalent globally or locally from 1978-2011 [22]. There is cur-
rently no evidence to suggest large cyclones will occur more frequently as the climate warms
[46]. Further, potential changes to the spatial distribution of TC tracks globally and in the
southwest Pacific is uncertain [46]. However, even if large TCs remain rare within the GBR, a
greater proportion of TCs are predicted to be intense in the future [46]. This indicates an in-
creased likelihood that the large TCs that do cross the GBR in the coming decades will do so at
high intensity—as was the case with TC Yasi.

The impact assessment presented here is the largest-in-scale ever conducted on the GBR fol-
lowing a reef health disturbance. In summary, the results of the impact assessment presented
here demonstrate all of the following. (1) Structural damage from TC Yasi extended much fur-
ther on both sides of the cyclone track than has previously been recorded in field surveys of in-
tense cyclones. Following TC Yasi, structural damage was observed: a) nearly 8 times further
from the left and 4 times further from the right sides of the track than was the case in 2005 for
TC Ingrid [4], and b) nearly 5 times further from the left and 8 times further from the right
sides of the track than was the case in 1990 for TC Ivor [3]. (2) Damage at all severity levels was
extremely widespread, but structural damage was patchy within all wind zones, which can facil-
itate future recovery. (3) Many early signs of recovery have already been observed; algae
blooms have subsided, crustose coralline algae are covering dead coral and corals are actively
recruiting and recovering, albeit at lower rates than seen in previous decades. Understanding
patterns in impact severity and recovery enables managers to target local-scale actions to sup-
port reef resilience and recovery and conserve the ecological, social, cultural and economic val-
ues provided by coral reefs. Examples of such actions include: crown-of-thorns starfish
eradication, active reef restoration and the establishment of special management areas or tem-
porary fishing closures (some of which are ongoing at time of publication in response to TC
Yasi’s impacts). The process we present here of assessing impacts and recovery and targeting
actions is critically important to the adaptive management cycle [47] (Uychiaoco et al. 2005)
and will be of increasing importance as disturbance frequencies increase under climate change.
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