Energy systems conference London, June 24-25, 2014

Predictive management of energy resources in a microgrid: a simulation case study

<sup>1</sup> PROMES-CNRS Laboratory, Perpignan, France

<sup>2</sup> University of Perpignan Via Domitia, Perpignan, France

Aurélie Chabaud<sup>1,2</sup>

**CNrS** 

PROMES

Julien Éynard<sup>1,2</sup>

Stéphane Grieu<sup>1,2</sup>

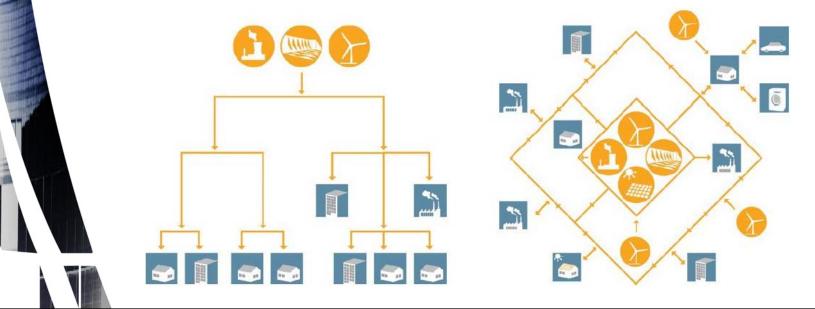
## Summary

Context and objectives

#### **2** Energy resources management

- Evaluation criteria
- Impact on the grid
- Overview of the strategy

#### 3 Microgrid modeling


- Single-storey house
- Energy production and storage systems

4 Design and impact on the grid

Conclusion and outlook

## Context of the study

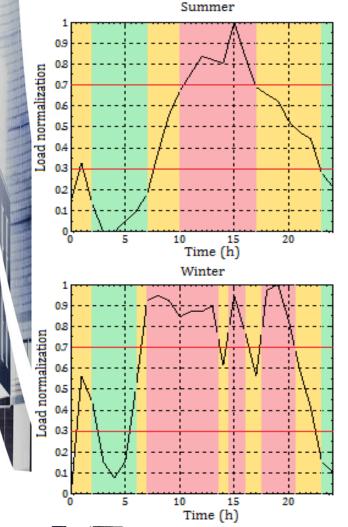
- Environmental issues and concerns are growing
- Fossil fuels are running out
- Decentralized energy production is developing
  - Intermittency in renewables
  - Production impacts on the grid operation and stability



## Objectives

Develop a predictive strategy for managing energy resources in houses equipped with production (PV solar panels/windmills) and storage systems (batteries)

- Promote energy self-consumption
- Minimize the impact of energy production on the grid
- Manage electricity storage
- Control energy consumption/Load shifting


### **Energy criteria**

- Renewable energy use:  $J_{EnR} = \frac{\%_{EnR_c} \times \%_{SC}}{100}$
- Energy self-consumption:  $\%_{SC} = 100 \times \frac{EnR_c}{EnR_p}$
- Renewable energy coverage rate:  $\%_{EnR_c} = 100 \times \frac{EnR_c}{EnR_p + E_{EDF}}$ 
  - $EnR_c$  is the amount of renewable energy consumed (kWh)
  - $EnR_p$  is the amount of renewable energy produced (kWh)
  - $E_{EDF}$  is the amount of energy extracted from the grid (kWh)
  - $\mathscr{W}_{EnR_c}$  is the ratio of the renewable energy produced and consumed in situ to the total energy consumed (%)
  - $\%_{SC}$  is the ratio of the renewable energy consumed in situ to the renewable energy produced (%)

### Economic cost & dynamic pricing

- Economic cost:  $J_{cost} = \sum_{k} E_{inj}(k) \cdot P_{En}(k) E_{EDF}(k) \cdot P_{En}(k)$
- Dynamic pricing:  $P_{En}(k) = \sum_{i,j} a_{ij} \times L_g^i(k) \times 10^{-3} \times T_{out}^j(k)$ 
  - $E_{inj}$  is the amount of energy injected to the grid (kWh)
  - $P_{En}$  is the energy price (€.kWh<sup>-1</sup>)
  - $E_{EDF}$  is the amount of energy extracted from the electricity grid (kWh)
  - $a_{ij}$  are the polynomial coefficients,  $\forall i, j \in [[1,5]]$
  - $L_g$  is the electricity grid load (kW)
  - *T<sub>out</sub>* is the outdoor temperature (°C)

#### Status of the grid and grid threshold



Chabaud, Labidi, Eynard, Grieu

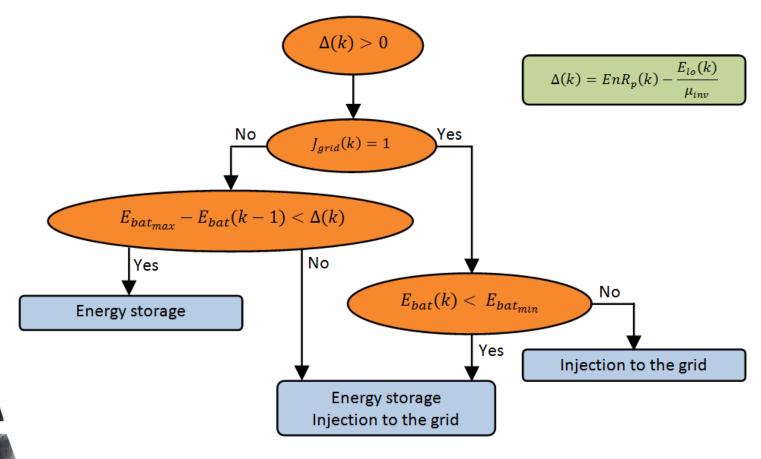
| Energy demand     |                        |                          |  |  |  |
|-------------------|------------------------|--------------------------|--|--|--|
| Periods           | May, 1 to October, 31  | November, 1 to April, 30 |  |  |  |
|                   |                        | 7:00 a.m 1:30 p.m.       |  |  |  |
| Peak periods      | 10:00 a.m. – 5:00 p.m. | 2:30 p.m. – 4:00 p.m.    |  |  |  |
|                   |                        | 5:30 p.m 8:30 p.m.       |  |  |  |
|                   |                        | 12:00 a.m 2:00 a.m.      |  |  |  |
|                   | 12:00 a.m 2:00 a.m.    | 6:00 a.m 7:00 a.m.       |  |  |  |
| Part-peak periods | 7:00 a.m 10:00 a.m.    | 1:30 p.m 2:30 p.m.       |  |  |  |
|                   | 5:00 p.m 11:00 p.m.    | 4:00 p.m 5:30 p.m.       |  |  |  |
|                   |                        | 8:30 p.m 11:00 p.m.      |  |  |  |
| Off most mariada  | 2:00 a.m 7:00 a.m.     | 2:00 a.m 6:00 a.m.       |  |  |  |
| Off-peak periods  | 11:00 p.m 12:00 a.m.   | 11:00 p.m 12:00 a.m.     |  |  |  |

Grid threshold: 30% or 70%

Status of the grid:

- Load > grid threshold : J<sub>grid</sub> = 1
- Load < grid threshold :  $J_{grid} = 0$

Energy Systems Conference, London, June 24-25, 2014 7/22

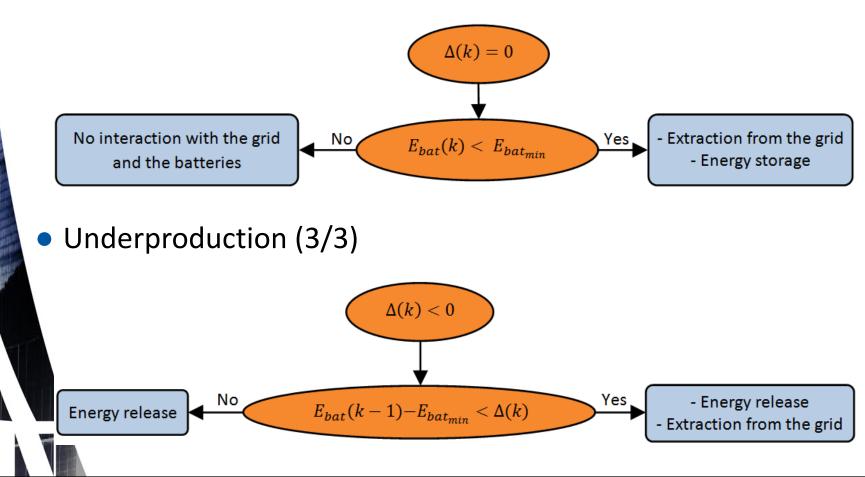

### Impact on the grid

- Injection impact:  $I_{inj} = \frac{1}{1000} \times \sum_k E_{inj}(k) \times \Delta E_{thres}(k)$
- Extraction impact:  $I_{ext} = -\frac{1}{1000} \times \sum_{k} E_{EDF}(k) \times \Delta E_{thres}(k)$
- Overall impact:  $I_{over} = I_{inj} + I_{ext}$ 
  - $E_{inj}$  is the amount of energy injected to the grid (kWh)
  - $E_{EDF}$  is the amount of energy extracted from the electricity grid (kWh)
  - $\Delta E_{thres}$  is the normalized deviation between the threshold and the status of the grid (-)

Evaluation criteria Impact on the grid Overview of the strategy

#### Non-predictive strategy (reference)

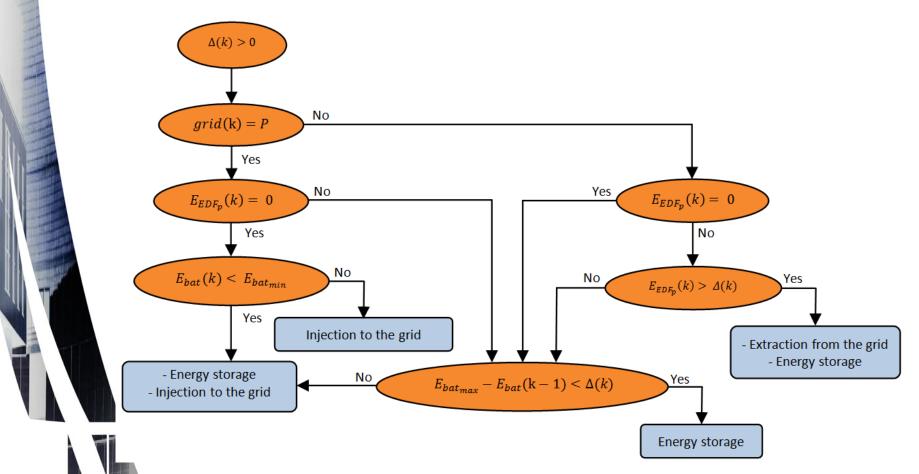
• Overproduction (1/3)




Chabaud, Labidi, Eynard, Grieu Energy Systems Conference, London, June 24-25, 2014 9/22

9/22

## Non-predictive strategy (reference)

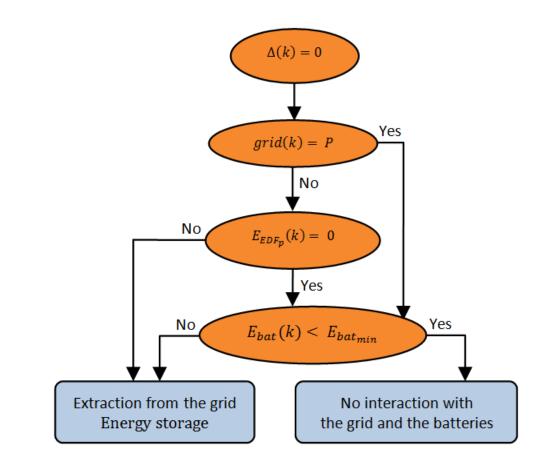

Balance (2/3)



Evaluation criteria Impact on the grid Overview of the strategy

#### Predictive strategy

• Overproduction (1/3)

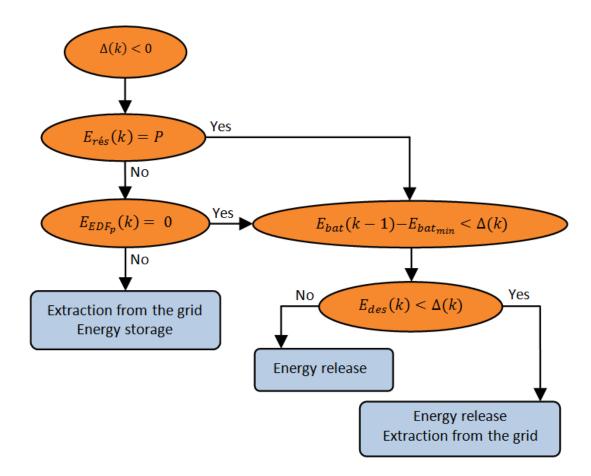



Chabaud, Labidi, Eynard, Grieu Energy Systems Conference, London, June 24-25, 2014 10/22

Evaluation criteria Impact on the grid Overview of the strategy

#### Predictive strategy

Balance (2/3)

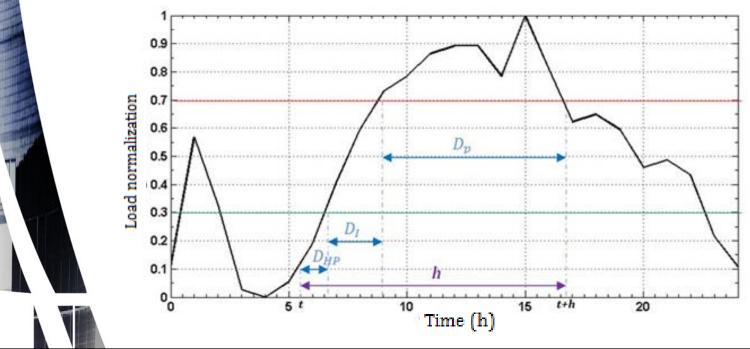



Chabaud, Labidi, Eynard, Grieu Energy Systems Conference, London, June 24-25, 2014 10/22

Evaluation criteria Impact on the grid Overview of the strategy

#### Predictive strategy

Underproduction (3/3)

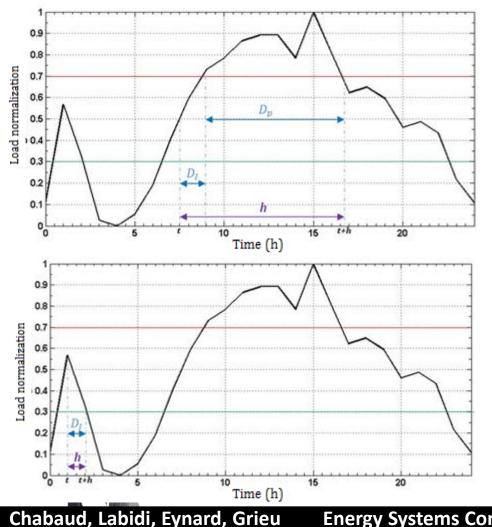



Chabaud, Labidi, Eynard, Grieu Energy Systems Conference, London, June 24-25, 2014 10/22

### **Prediction horizon**

#### 1 Off-peak period:

- $h = D_{HP} + D_I + D_P$
- Threshold is 30%




Chabaud, Labidi, Eynard, Grieu

Context and objectives

Energy resources management Microgrid modeling Design and impact on the grid Conclusion and outlook

### **Prediction horizon**

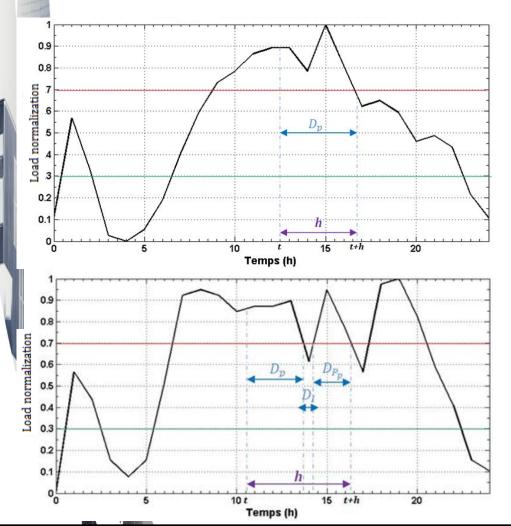


2 Part-peak period:

• Followed by a peak period

$$- h = D_{I} + D_{P}$$

- Threshold is 70%
- Followed by an off-peak period
  - $h = D_1$
  - Threshold is 30%


Energy Systems Conference, London, June 24-25, 2014

11/22

Context and objectives Energy resources management Microgrid modeling

Design and impact on the grid Conclusion and outlook

### **Prediction horizon**



③ Peak period:

- Followed by a part-peak period
  - $h = D_p$
  - Threshold is 70%
- Followed by a new peak period
  - $h = D_P + D_I + D_{Pp}$
  - Threshold is 70%

Chabaud, Labidi, Eynard, Grieu

Energy Systems Conference, London, June 24-25, 2014 11/22

**Overview of the strategy** 

### Prediction data

#### Housing load:

$$L_{h}^{j+1}(k+i) = L_{h}^{j}(k+i) + \beta_{h} \times (T_{out}^{j+1}(k) - T_{out}^{j}(k))$$

#### $\succ$ Electrical grid load:

i

i

k

в

$$L_g^{j+1}(k+i) = L_g^j(k+i) + \beta_g \times (T_{out}^{j+1}(k) - T_{out}^j(k))$$

$$\begin{array}{lll} L_h^{j+1} & : & \text{Housing load prediction (kWh)} \\ L_h^j & : & \text{Housing load of previous day (k)} \\ L_g^{j+1} & : & \text{Grid load prediction (kWh)} \\ L_g^j & : & \text{Grid load of previous day (kWh)} \end{array}$$

: Grid load prediction (kWh)

: Grid load of previous day (kWh)

 $T_{out}$ : Outside temperature (°C)

: Index day of the year

: Time index for predicting with i=k:k+h

: Time index

: Parameter to optimize ( $eta_h=0,1$  et  $eta_g=0,001$ )

Chabaud, Labidi, Eynard, Grieu

Energy Systems Conference, London, June 24-25, 2014 12/22

Evaluation criteria Impact on the grid Overview of the strategy

### Prediction data

#### ≻PV production:

$$EnR_{PV}^{j+1}(k+i) = EnR_{PV}^{j}(k+i) + \beta_{PV} \times (I_r^{j+1}(k) - I_r^{j}(k))$$

#### > Vertical-axis windmill production:

| $EnR_{wind}^{j+1}(k+i) =$ | E | $SnR_{\text{wind}}^{j}(k+i) + \beta_{\text{wind}} \times (V_{\text{wind}}^{j+1}(k) - V_{\text{wind}}^{j}(k))$ |
|---------------------------|---|---------------------------------------------------------------------------------------------------------------|
| $EnR_{PV}^{j+1}$          | : | PV production prediction (kWh)                                                                                |
| $EnR_{PV}^{j}$            | : | PV production of previous day (kWh)                                                                           |
| $EnR_{wind}^{j+1}$        | : | Windmill production prediction (kWh)                                                                          |
| $EnR_{wind}^{j}$          |   | Windmill production of previous day (kWh)                                                                     |
| $I_r$                     |   | Solar irradiation (kWh.m <sup>-2</sup> )                                                                      |
| $V_{wind}$                | : | Wind speed (m.s <sup>-1</sup> )                                                                               |
| j                         | : | Index day of the year                                                                                         |
| i                         | : | Time index for predicting with i=k:k+h                                                                        |
| k                         | : | Time index                                                                                                    |
| β                         | : | Parameter to optimize ( $eta_{PV}=$ 0,001 et $eta_{wind}=$ 1,1)                                               |

Chabaud, Labidi, Eynard, Grieu

12/22

# TRNSYS thermal model of an individual house

<u>Case study</u>: 150 m<sup>2</sup> single-storey house located in Perpignan (south of France), facing south and inhabited by four persons (two adults and two children)

|                 |                   | Kitchen<br>12 m² | Bathroom<br>16 m <sup>2</sup> | Bedroom 1<br>19 m²             |
|-----------------|-------------------|------------------|-------------------------------|--------------------------------|
| Garage<br>38 m² | I                 |                  | 17 m²                         | Corridor                       |
|                 | ing room<br>53 m² | Livir            | Bedroom 3                     | Bedroom 2<br>19 m <sup>2</sup> |

Chabaud, Labidi, Eynard, Grieu

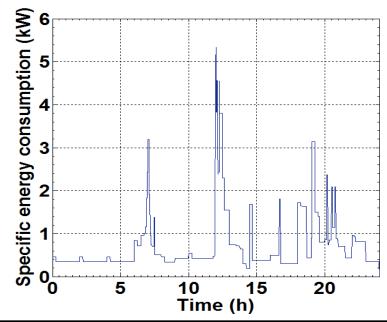
Chabaud, Labi

# TRNSYS thermal model of an individual house

Characteristics of the materials used in the considered single-storey house:

| Element        | Material             | Thickness<br>[m] | U<br>[W.m <sup>-2</sup> .K <sup>-1</sup> ] | U <sub>RT2005</sub><br>[W.m <sup>-2</sup> .K <sup>-1</sup> ] |
|----------------|----------------------|------------------|--------------------------------------------|--------------------------------------------------------------|
|                | BA13                 | 0.013            |                                            |                                                              |
| External wall  | Rockwool             | 0.06             | - 0.602                                    | 0.45                                                         |
|                | Cinderblock          | 0.2              | 0.002                                      | 0.45                                                         |
|                | Surface coating      | 0.02             |                                            |                                                              |
|                | BA13                 | 0.013            | _                                          |                                                              |
| Internal wall  | Glass wool           | 0.04             | 0.845                                      | /                                                            |
|                | BA13                 | 0.013            |                                            |                                                              |
|                | Tiles                | 0.022            |                                            |                                                              |
| -              | Mortar               | 0.05             | - 0.415                                    | 0.4                                                          |
| Floor          | Heavy concrete       | 0.16             | - 0.415                                    | 0.4                                                          |
|                | Expanded polystyrene | 0.08             | -                                          |                                                              |
|                | BA13                 | 0.013            |                                            |                                                              |
| Colling        | Glass wool           | 0.1              | - 0.100                                    | 0.24                                                         |
| Ceiling        | Air knife            | 0.5              | - 0.196                                    | 0.34                                                         |
|                | Terracotta           | 0.01             | -                                          |                                                              |
| Garage ceiling | BA13                 | 0.013            | 2.27                                       | 0.24                                                         |
|                | Terracotta           | 0.2              | - 2.37                                     | 0.34                                                         |
| Window         | Double glazed        | 0.2              | 1.43                                       | 2.6                                                          |
| Eynard, Grieu  | Energy Systems Confe |                  |                                            |                                                              |

## Modeling of lifestyle and habits


#### Conventional occupation scenario set by RT 2005

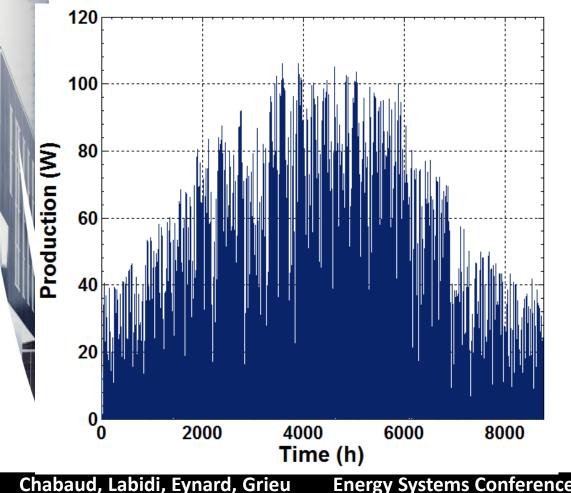
| Week occupancy   | Weekend occupancy |
|------------------|-------------------|
| 0h-10h ; 18h-24h | 0h-24h            |



temperature set-points

| Set point        | Occupancy | Non occupancy |
|------------------|-----------|---------------|
|                  | periods   | periods       |
| Heating          | 19°C      | 16°C          |
| Air conditioning | 28°C      | 30°C          |




Chabaud, Labidi, Eynard, Grieu

Energy Systems Conference, London, June 24-25, 2014

Behaviour scenario

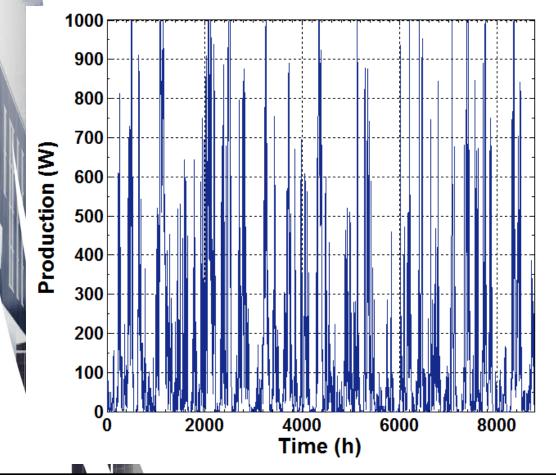
14/22

# Production and storage systems modeling (energy mix)



Photovoltaic array TRNSYS model 194

Based on the calculation method presented by DeSoto<sup>1</sup> and defined with various semi-empirical equations


Determines the current and power of a photovoltaic array at a specific voltage

<sup>1</sup> DeSoto W., Klein S.A., Beckman W.A., 2006. Improvement and validation of a model for photovoltaic array performance, Solar Energy, vol. 80, pp. 78-88.

15/22

Energy Systems Conference, London, June 24-25, 2014

# Production and storage systems modeling (energy mix)



Vertical-axis windmill TRNSYS model 90

➢ Based on the work of Quilan<sup>1</sup>

Calculates the power output of energy conversion systems based on a power versus wind speed characteristics

<sup>1</sup> Quilan P.J., 2000. A time-series wind turbine array simulator. In Proceeding of ASES Conference SOLAR 2000, Madiso, USA.

Chabaud, Labidi, Eynard, Grieu

Energy Systems Conference, London, June 24-25, 2014

15/22

# Production and storage systems modeling (energy mix)

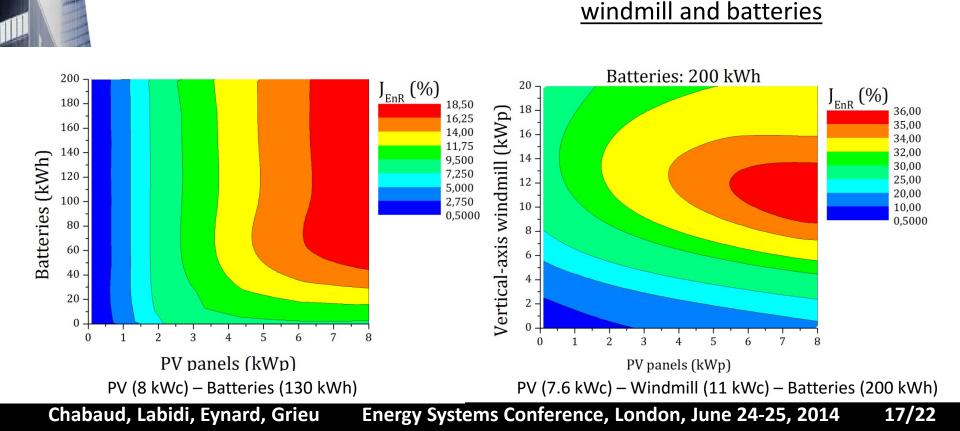
Description of the functioning of the batteries:

 $\succ \text{ Charging mode: } E_{bat}(t) = (1-\tau) \cdot E_{bat}(t-1) + \left(E_{EnR}(t) - \frac{E_{ch}(t)}{\eta_{inv}}\right) \cdot \eta_{bat}$ 

> Discharging mode:  $E_{bat}(t) = (1 - \tau) \cdot E_{bat}(t - 1) + \left(\frac{E_{ch}(t)}{r_{inv}} - E_{EnR}(t)\right)$ 

Constraints:  $E_{bat_{min}} = (1 - DOD) \times E_{bat_{max}}$  and  $E_{bat_{max}} = C_n$ 

- $\eta_{inv}$  : Inverter performance
- $\eta_{bat}$  : Charge performance
- E<sub>bat</sub> : Energy stored (kWh)
- $E_{ch}$  : Energy required (kWh)
- $E_{EnR}$ : Energy produced by the local production systems (kWh)
  - au : Hourly self-discharge rate
- DOD : Depth Of Discharge
- $C_n$  : Nominal capacity (kWh)


Chabaud, Labidi, Eynard, Grieu Energy Systems Conference, London, June 24-25, 2014 16/22

Conclusion and outlook

With PV panels and batteries

With PV panels, a vertical-axis

## Design of energy production and storage systems (predictive)



Conclusion and outlook

## Design of energy production and storage systems (predictive)

#### With PV panels and batteries

| System / Criterion    | Predictive | No predictive<br>without storage | •             | No predictive<br>with storage |
|-----------------------|------------|----------------------------------|---------------|-------------------------------|
|                       |            | without storage                  | 70% threshold | 30% threshold                 |
| PV panels (kWp)       | 8          | 8                                | 8             | 8                             |
| Batteries (kWh)       | 130        | -                                | 130           | 130                           |
| $EnR_c$ (kWh)         | 8011       | 5632                             | 7988          | 5736                          |
| $EnR_{inj}$ (kWh)     | 3404       | 6201                             | 3428          | 6079                          |
| $E_{EDF}$ (kWh)       | 21367      | 23743                            | 21383         | 23647                         |
| $E_{st}$ (kWh)        | 17882      | 6                                | 2362          | 111                           |
| % <sub>SC</sub> (%)   | 67.70      | 47.60                            | 67.50         | 48.47                         |
| $\%_{EnR_{c}}$ (%)    | 27.27      | 19.17                            | 27.19         | 19.53                         |
| $J_{EnR}$ (%)         | 18.46      | 9.13                             | 18.36         | 9.46                          |
| J <sub>cost</sub> (€) | -1035.34   | -1011.08                         | -1034.89      | -1013                         |

Chabaud, Labidi, Eynard, Grieu

Energy Systems Conference, London, June 24-25, 2014 18/22

Conclusion and outlook

## Design of energy production and storage systems (predictive)

#### With PV panels and batteries

| System /<br>Criterion |           | Predictive | No predictive<br>without storage | with storage | No predictive<br>with storage<br>30% threshold |       |       |
|-----------------------|-----------|------------|----------------------------------|--------------|------------------------------------------------|-------|-------|
| PV panels (kWp)       |           | ls (kWp)   | 8                                | 8            | 8                                              | 8     |       |
|                       | Batte     | erie       | s (kWh)                          | 130          | -                                              | 130   | 130   |
|                       | 1d<br>70% |            | I <sub>inj</sub>                 | 1316         | 778                                            | 1318  | 859   |
| ld                    |           | >          | I <sub>sout</sub>                | 12800        | 5233                                           | 6390  | 6790  |
| sho                   |           |            | $I_g$                            | 14116        | 6011                                           | 7709  | 7649  |
| Threshold             |           | ,<br>,     | I <sub>inj</sub>                 | 2509         | 3518                                           | 2524  | 3580  |
| E                     | 30%       |            | I <sub>sout</sub>                | 4636         | -3119                                          | -1415 | -2172 |
|                       | 3         |            | Ig                               | 7145         | 399                                            | 1108  | 1407  |

Conclusion and outlook

## Design of energy production and storage systems (predictive)

With PV panels, a vertical-axis windmill and batteries

| System / Criterion           | Predictive | No predictive without storage | No predictive<br>with storage<br>70% threshold | -       |
|------------------------------|------------|-------------------------------|------------------------------------------------|---------|
| PV panels (kWp)              | 7.6        | 7.6                           | 7.6                                            | 7.6     |
| Vertical axis windmill (kWp) | 11         | 11                            | 11                                             | 11      |
| Batteries (kWh)              | 200        | -                             | 200                                            | 200     |
| $EnR_{c}$ (kWh)              | 16388      | 12057                         | 16382                                          | 13244   |
| EnR <sub>inj</sub> (kWh)     | 8589       | 13681                         | 8590                                           | 12284   |
| $E_{EDF}$ (kWh)              | 13001      | 17318                         | 12998                                          | 16141   |
| $E_{st}$ (kWh)               | 14423      | -                             | 4330                                           | 1195    |
| % <sub>SC</sub> (%)          | 63.67      | 46.85                         | 63.65                                          | 51.46   |
| $\%_{EnR_{c}}$ (%)           | 55.79      | 41.05                         | 55.77                                          | 45.09   |
| $J_{EnR}$ (%)                | 35.52      | 19.23                         | 35.50                                          | 23.20   |
| $J_{cost} (\epsilon)$        | -220.98    | -209.59                       | -254.03                                        | -222.27 |

Chabaud, Labidi, Eynard, Grieu

Energy Systems Conference, London, June 24-25, 2014

20/22

Conclusion and outlook

## Design of energy production and storage systems (predictive)

With PV panels, a vertical-axis windmill and batteries

|           | -               | vstem /<br>iterion  | Predictive | No predictive without storage | with storage | No predictive<br>with storage<br>30% threshold |
|-----------|-----------------|---------------------|------------|-------------------------------|--------------|------------------------------------------------|
| P         | V pane          | ls (kWp)            | 7.6        | 7.6                           | 7.6          | 7.6                                            |
| v         |                 | al axis<br>ll (kWp) | 11         | 11                            | 11           | 11                                             |
| I         | Batteries (kWh) |                     | 200        | -                             | 200          | 200                                            |
|           | <u>`0</u>       | I <sub>inj</sub>    | 4550       | -145                          | 1327         | 1001                                           |
| p         | 70%             | I <sub>sout</sub>   | 2713       | 4762                          | 3525         | 4368                                           |
| [outs     |                 | $I_g$               | 7453       | 4616                          | 4852         | 5369                                           |
| Threshold | <u>`0</u>       | I <sub>inj</sub>    | 1316       | 5762                          | 4561         | 6859                                           |
| Ε         | 30%             | I <sub>sout</sub>   | 7625       | -1812                         | -1219        | -1734                                          |
|           | (7)             | Ig                  | 8940       | 3950                          | 3342         | 4843                                           |

Chabaud, Labidi, Eynard, Grieu

Energy Systems Conference, London, June 24-25, 2014

Conclusion Outlook

## Conclusion

Several configurations promoting energy selfconsumption are highlighted

Impact of local production on the grid is minimized

Better match between decentralized production, energy needs and injection to the grid