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Abstract 
This work is devoted to the prediction, based on neural networks, of physicochemical parameters 
impossible to measure on-line. These parameters - the Chemical Oxygen Demand (COD) and the 
ammonia NH4 - characterize the organic matter and nitrogen removal biological process carried 
out at the Saint Cyprien WWTP (France). Their knowledge make it possible to estimate the 
process quality and efficiency. First, the data are treated by K-Means clustering then by principal 
components analysis in order to optimize the Multi-Level Perceptron (MLP) learning phase. K-
Means clustering makes it possible to highlight different operations within the Saint Cyprien 
treatment plant. The Principal Components Analysis (PCA) is used to eliminate redundancies and 
synthesizes the information expressed by a data set. With respect to the neural network used, these 
techniques facilitate the pollution removal process understanding and the identification of existing 
relations between the predictive variables and the variables to be predicted. 
 
Keywords : Wastewater Treatment Plant (WWTP) ; Neuronal prédiction ; Multi-Level Perceptron 
(MLP) ; K-Means clustering ; Principal Components Analysis (PCA) ; Chemical Oxygen Demand 
(COD). 

 
I. Introduction 

 
Since the implementation of European Directive 
91/271/CEE, nutrient removal of wastewater 
treatment plants (WWTPs) has been progressively 
adopted by existing and new facilities (Degrémont, 
1989).  
Nevertheless, when looking at nutrient removal, 
and specially nitrogen removal, on-line knowledge 
of influent quality could improve plant efficiency 
by implementing control schemes. It is possible to 
implement on-line ammonia or COD sensors, but 
all of these sensors are based on indirect 
measurements. The mechanism knowledge 
involved in wastewater treatment, related to carbon 
and nitrogen removal, has been widely studied 
since the presentation of ASM1 in 1986 (Henze, et 
al., 1986). From the actual process knowledge, it is 
possible to clearly identify variables affecting plant 
performances and the way the process is affected by 
variations in influent quality and quantity. 
 
Neural networks, a statistical tool for data analysis 
(Hertz, et al., 1991 ; Davalo and Naim, 1993), 
could be applied to establish a relation between 
variables describing a process state and different 
measured quantities. This relation depends, in a not 
always obvious way, on the predictive variables 
used. The principal characteristic of neural 
networks is their capacity to automatically establish 
relations between variables by means of a 
mechanism called training or learning (Moller, 
1993 ; Charalambous, 1992). Neural networks are 

designed for a specific application and, after a 
training phase, able to generate a prediction, 
applying the relationship developed during the 
training period. 
 
Artificial neural network models make it possible to 
develop non-linear empirical correlations. It is thus 
possible to connect a set of input variables, Xi (1 ≤ i 
≤ I), with a set of output variables, Yk (1 ≤ k ≤ K), 
assuming that we have N relevant experimental 
values for the couples [Xi, Yk]n (1 ≤ n ≤ N). As in all 
empirical models, the user must bear in mind that 
the regression models quality Y = f(X), will depend 
on the relevance and the quality of the available 
experimental data used during the training phase. 
Moreover, getting a good prediction over some 
given points with a regression model, does not 
guarantee an important generalization capability or 
a good prediction for a new number of couples [Xi , 
Yk]m (N+1 ≤ m ≤  P). Keeping this in mind, a neural 
network must establish general mechanisms and be 
able to adapt them continuously to new and 
unknown situations by means of recalibration 
procedures. The neural networks true power is their 
ability to represent both linear and non-linear 
relationships and to learn these relationships 
directly from data. Traditional linear models are 
simply inadequate when they try to model data that 
contains non-linear characteristics. 
 
This paper describes a procedure to estimate on-line 
influent and effluent COD and ammonia 
concentrations at the Saint Cyprien wastewater 
1Corresponding author, Tel. 33 4 68 66 17 55, Fax 33 4 68 66 20 87 
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treatment plant (France). This procedure includes a 
Multi-Level Perceptron (MLP) neural network as 
estimation tool and data treatment by K-Means 
clustering and principal components analysis. Only 
easily obtained on-line data are considered in order 
to minimize the implementation effort in a real 
WWTP. Thus, assuming that in real WWTPs, 
influent flow, air flow to aeration basis and 
dissolved oxygen concentration in aerobic reactors 
are, most of the time, continuously measured, a 
global scheme of prediction using such on-line data 
will be presented to estimate influent and effluent 
concentrations. 
 

II. Materials and methods 
 
In the following paragraph, the materials and 
methods used to obtain, by application of the 
procedure, on-line values of COD and ammonia 
concentrations (influent and effluent) at the Saint 
Cyprien WWTP will be described. 
 
1. Saint Cyprien wastewater treatment plant  
 
The used experimental data were provided by the 
Saint Cyprien WWTP employees. Three towns are 
connected to this "activated sludge" plant able to 
treat the wastewater of 80000 inhabitants : Saint 
Cyprien (8653 inhabitants), Alenya (2339 
inhabitants) and Latour Bas Elne (1711 inhabitants) 
(Eckenfelder and Musterman, 1995). 
 
This WWTP is a weak charges biological plant 
(denitrification, biological dephosphatation with 
physicochemical complement). It has the 
particularity of being able to adapt operation to the 
seasonal population variations. The town of Saint 
Cyprien is a seaside resort and its population 
increases considerably during the summer season. 
Therefore the plant consists of parallel treatment 
modules characterizing its adaptability. At the end 
of the wastewater treatment sequence, a sludge 
composting unit allows the sludge re-use in 
agricultural applications.  
The plant is divided into a water line and a sludge 
line. The water line consists of the primary 
treatment, the biological treatment tanks and the 
clarifiers. This line can be described in the 
following way (Degrémont, 1989) :  

 
Water line 

 
 Primary treatment : cleaning by tilted rake 

and grease and oil removal. 
 Biological treatment tanks  : 4 parallel tanks 

that can be used individually or jointly 
according to the period of the year (total 
volume of 15600 m3). 

 Clarifier : 2 clarifiers in parallel and 
individually usable (total volume of 3200 m3). 

The sludge line and the complementary treatments 
are the water line continuation. The sludge line 
deals with sludge dehydration and composting. The 
complementary treatments are the filtration of 
treated water and the ultraviolet disinfection. They 
can be described in the following way (Durand and 
Jacquinot, 1995) : 
 

Sludge line and complementary treatments 
 
 Sludge dehydration : 3 presses placed in a 

closed and ventilated room (increase by 16 % 
for dryness). 

 Sludge composting : compost prepared to be 
used in agriculture starting from dehydrated 
sludge and wood plates mixture. 

 Treated water filtration : 2 sand filters. Total 
capacity : 150 m3/h. 

 UV disinfection for bacterial decontamination 
with 2 possible files of respectively 850 m3/h 
and 150 m3/h throwing out water into the 
“canal d’Elne”. 

 
2. Neural network structure 
 
Linear approximation networks are too restrictive to 
treat such a process and nonlinear approximation 
networks offer much greater capacity. 
Thus, the used neural network is a multi-level 
Perceptron. This type of neural network is known 
as a supervised network because it requires a 
desired output in order to learn. 
It is based on the classical Perceptron network 
introduced by Rosenblatt (1957). It includes a 
number of active neurones, the basic building 
block, connected together to form a network. Its 
functionality resides in weights associated with 
links between neurones. 
When several levels of neurones are connected one 
after another, the problem is moving into the soft 
models area. All levels cannot be linear. The 
number of parameters to identify increases, and the 
model becomes essentially non-linear.  
 
The MLP and many others neural networks learn 
using an algorithm called “backpropagation”. With 
this algorithm, the input data are repeatedly 
presented to the neural network. With each 
presentation the neural network output is compared 
to the desired output (the target) and an error is 
computed. This error is then fed back 
(backpropagated) to the network and used to adjust 
the weights such that the error decreases with each 
iteration and the neural model gets closer and closer 
to producing the desired output. 
The minimization algorithm uses an iterative 
process and various weight values are explored 
with the aim of minimizing the quadratic criterion 
on the sum of squared error made during the 
learning phase (Hornik, et al., 1989). 
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Figure 1. Multi-level Perceptron structure 
 

It is very difficult to know which training algorithm 
will be the fastest for a given problem. It will 
depend on many factors, including the problem 
complexity, the number of data points in the 
training set, the number of weights in the network... 
Several training methods were used, but the 
Levenberg-Marquardt (LM) algorithm proved to be 
the fastest and the most robust. The error in the LM 
algorithm decreases much more rapidly with time 
than in the other algoritms used. It is particulary 
adapted for networks of moderate size and has 
memory reduction feature for use when the training 
set is large (Hagan and Menhaj, 1994). 
The Learning rate parameter may also play an 
important role in the network convergence, 
depending on the application and the network 
architecture. This parameter is used to increase the 
chance of avoiding the training process from being 
trapped in a local minimum instead of the global 
minimum (Hamed, et al., 2004). It is determined 
using an empirical approach. 
 
The chosen MLP structure is depicted on Figure 1. 
In linear systems, there is no real benefit to 
cascading multiple layers : the equivalent weight 
matrix for the total system is simply the layers 
weight matrices product.  
The situation is quite different if nonlinear hidden 
neurones are inserted between the input and the 
output layers. In this case, it seems natural to 
assume that the more layers are used, the greater 
power the networks possesses. However, it is not 
the case in practice. According to our tests, an 
excessive number of hidden layers often proves to 
be improductive. It causes slower convergence in 
the backpropagation learning because intermediate 
neurones not directly connected to output neurones 

have very small weight changes and learn very 
slowly. Two elements can be advanced :  
 
 The error signals are numerically degraded 

when propagating across too many layers. 
 Extra layers tend to create additional local 

minima.  
 
Thus, it is essential to identify the proper number of 
layers. According to our tests, a MLP with only one 
hidden layer is adequate as universal approximator 
of any nonlinear functions and is used in the present 
study. 
  
The overfitting problem that can occur during the 
learning phase has an extremely negative effect on 
the network generalization capacity, which 
becomes unable to predict good behaviours. One of 
this research objectives is to prevent overfitting 
(Schittenkopf, et al., 1997). The prediction 
procedure thus utilizes a PCA and a K-Means 
clustering in order to optimize the network training. 
 
The influence on the learning phase of the two 
following user-definable parameters was also 
studied : 
 
 The number of iterations completed during the 

training phase. 
 The number of neurones placed in the network 

hidden layer. 
 
Although the relationship between the network 
performance and its hidden layer size is not well 
understood, a principle can be used as a guide : the 
principle of generalization versus convergence. 
Generalization means the network ability to 
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produce good results with a data set that has not 
been seen during the learning phase. Convergence 
is the ability to learn the training data. 
 
The number of iterations to effect during the 
training phase and the number of neurones to place 
in the network hidden layer are very important 
parameters. They increase the network calculation 
capacity during the learning process. However our 
network can become specialised on the learning 
data and only on those. 
Thus, the objective is to use as many hidden 
neurones and iterations as needed for convergence 
without inhibiting the ability of the network to 
generalize. So the network will be able to focus on 
the important features in the data rather than fitting 
the noise, an inherent component of any 
environmental field data set (Schittenkopf, et al., 
1997 ; El-Din and Smith, 2002). 
 
3. K-Means clustering 
 
K-Means clustering is also known as mobile centers 
clustering. The K-Means algorithm divides the 
observations constituting a data file in K 
independent clusters and specifies to which clusters 
each observation is assigned. Each data file 
observation is considered as an object localized in 
space. The algorithm implements a partition based 
on the fact that objects belonging to a cluster are as 
close as possible and as far as possible from objects 
pertaining to other clusters. The used distance 
parameter is the squared euclidean distance (Jain, et 
al., 1999). 
 
Each cluster is defined by its objects and its 
centroid or center. The cluster centroid is the point 
where the sum of all the distances between it and 
all the objects is minimal. The algorithm requires to 
know the number of clusters and breaks up into 
three principal stages :  
 
 an initialisation stage to randomly (or by means 

of a preset method) determine the centers,  
 a reallocation phase to assign each observation 

to its nearest center, 
 a centring phase to replace the centers by the 

centers of gravity.  
 
These stages are repeated up to convergence. The 
algorithm is iterative and minimizes the sum of the 
distances between each object and the cluster 
centroid (Jain and Dubes, 1988).  
The procedure can be synthesized in the following 
way : an object Oi belongs to the class characterized 
by the nearest center of gravity. The K-Means 
clustering procedure can be summarized as depicted 
in Figure 2 :  
 
1) Cut out the data in K subsets P1, …, PK  

2) Calculate the centers of gravity C1, …, CK for 
each subset P1, …, PK  

 
3) Update the subsets P1, …, PK such as any 

object Oi will be put in Pj if Cj is the center of 
gravity nearest to Oi  

 
4) Return to stage (2) if one or more Pj subsets 

were modified during stage (3) 
 

 
 

Figure 2. Example of K-Means clustering 
 
4. Principal Components Analysis 
 
The principal components analysis (PCA) is a 
factorial analysis method which enables to reduce a 
complex system of correlations to a smaller number 
of dimensions. During a phenomenon study, several 
variables can be correlated or be of weak interest. 
In this case, it is judicious to use multivariate 
statistical methods. The PCA main purpose is to 
reduce the number of variables in order to obtain 
new synthetic variables and to carry out geometrical 
representations. This reduction will only be 
possible if the initial variables are not independent 
and have nonnull correlation coefficients. They 
must be quantitative, heterogeneous and not 
globally independent (Morineau and Aluja-Banet, 
1998 ; Cibois, 1983).  
 
When p quantitative variables X1, …, Xp are 
correlated, the expressed information is 
characterized by some redundancy. Principal 
components analysis has as objective to extract 
from a redundant list of p variables X1, …, Xp a 
nonredundant list of K new variables or factors f1, 
…, fk (k ≤ p). This extraction is made in the simplest 
possible way, i.e. linearly : factors are built like 
linear combinations of variables and reciprocally. 
So, the PCA is a factorial method because the 
number of variables reduction is not effected by a 
simple selection, but constructing new synthetic 
variables obtained by combining initial variables. 
The PCA proceeds by reduction of the variables 
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space dimension while eliminating correlations 
between initial variables.  
 
In this linear context, the non-redundancy condition 
of the factors list f1, …, fk (k ≤ p), is expressed by 
the non-correlation between factors. Each factor 
explains a part of the variability observed on the 
original variables. It makes it possible to summarize 
the information contained in the p initial variables 
thanks to a number of factors lower than p. This 
represents an appreciable information compression. 
Any correlation matrix R (p x p) can be analyzed 
and decomposed with principal components 
analysis. Of course, a matrix decomposition 
supposes that the correlations are suitable 
measurements of the variables connection : these 
connections have to be linear. In the opposite case, 
it is judicious to try to linearize these relations by 
means of adequate transformations before carrying 
out a PCA. 
 
5. Structure of the procedure 
 
Data used to carry out this study describe the Saint 
Cyprien WWTP operation during the year 2002. It 
is important to note that this work depends on the 
form and quantity of measurements and analysis 
provided by the Saint Cyprien WWTP. Thus, the 
procedure is adapted, as well as possible, to 
available data, always keeping in mind the work 
initial objective, i.e. to estimate the state of a 
pollution removal process from on-line data. Table 
1 presents the used parameters. Influent flow (Qin), 
influent air flow (Qair) and dissolved oxygen (DO) 
are easily on-line measured parameters at the Saint 
Cyprien wastewater plant but only available as 
daily average data. They were used, because of 
their predictive character, as neural network inputs.  
 
The influent flow is the water quantity entering the 
plant. The influent air flow is the air quantity 
injected in the biological treatment tanks and 
necessary to an efficient pollution removal. The 
dissolved oxygen is an influential ecological 
parameter and can be considered as an indicator of 
pollution and biological activity. The parameters to 

be predicted (COD and NH4), obtained from 
laboratory analysis carried out on samples (on 
average twice a week during the year 2002), are 
specific measurements. Daily average data are 
sufficient to obtain exploitable and significant 
predictions for parameters characterizing the 
various processes, because the studied systems have 
a very slow evolution rate. Evolution to a critical 
state being relatively slow, the use of daily profile 
measurements is not essential. 
COD and NH4 are physicochemical parameters, 
very difficult to measure on-line, characterizing a 
biological process of organic mater and nitrogen 
removal. Their knowledge allows to estimate the 
process quality and efficiency. COD represents the 
oxygen quantity necessary for chemically 
eliminating the organic matter. NH4 presence in 
water is a human or industrial contamination sign. 
   
As previously mentioned, the Saint Cyprien WWTP 
is a weak charges biological station able to adapt its 
working to seasonal population fluctuations. Saint 
Cyprien is a tourist resort and its population rises 
sharply during the summer season. Consequently, 
the plant can function in a much lower mode than 
its maximum capacity (15 to 20 %) or, during 
certain periods, in a very close mode (90 to 95 %). 
Differences between day-time and night-time 
operations are also characteristic of the studied 
process (considerable reduction in the quantity of 
water to be treated during the night due to a reduced 
human activity). A classification by K-Means 
clustering allows us to highlight these significant 
differences in operation and to carry out fractional 
training which greatly facilitates the phenomena 
comprehension by the neural network.  
 
The data treatment by K-Means clustering and 
principal components analysis is carried out to 
improve the necessary effectiveness of the neural 
network learning phase. This effectiveness is 
difficult to obtain because of the strong non-
linearity characterizing the biological phenomena 
and the data limited quantity. Jointly to the network 
intrinsic parameters optimisation, it allows to 
minimize overfitting.  

 

 
 

Table 1. Parmeters used for the prediction 
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Figure 3. General scheme of the prediction various stages 
 

As mentioned above, data treatment by K-Means 
clustering makes it possible to define various 
operation classes characterizing the pollution 
removal process. Particularly, these classes are 
defined by the seasonal variations in plant 
operation. According to clustering results, the 
network learning phase is conducted separately for 
each class and is so more precise and effective. 
Too many variables used as neural network inputs 
can cause overfitting. A principal components 

analysis was thus carried out after the clustering in 
order to synthesize the information without 
important losses. This PCA was interesting to 
reduce the number of network inputs, used for the 
prediction of COD (effluent) and NH4 (effluent) 
without information loss. For the prediction of 
COD (influent) and NH4 (influent), the number of 
input variables being less important, the PCA 
impact on the obtained results quality will be less 
sensitive. 
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Table 2. Optimal number of clusters 
 
Figure 3 represents the whole used procedure. It 
consists of four successive stages and can be 
synthesized in the following way :  
 
 Stage 1 : data treatment by K-Means clustering 

to highlight significant differences in operation. 
 Stage 2 : data treatment by PCA to synthetize 

the information. 
 Stage 3 : prediction by MLP neural network of 

COD (influent) and NH4 (influent), using as 
inputs Qin, Qair and DO. 

 Stage 4 : prediction by MLP neural network of 
COD (effluent) and NH4 (effluent), using as 
inputs Qin, Qair, DO and stage 3 results. 

 
III. Results 

 
This paragraph presents the results obtained with 
the proposed procedure including K-Means 
clustering, principal components analysis and 
neural network prediction. 
 
1. K-Means clustering results 
 
Two parameters have to be taken into account to 
carry out this classification : the desired number of 
clusters and the initial position of the various 
centers (or centroids). The optimal number of 
clusters is not easy to fix a priori, so the best 
possible choice was determined empirically.  

Like the majority of numerical minimization 
techniques, the solution provided by the K-Means 
clustering algorithm depends on the centroids initial 
position. This position can greatly influence the 
obtained results quality.  
It is thus possible for the algorithm to reach a local 
minimum and for any redistribution of points to a 
new cluster to cause an increase in the total sum of 
distances between the points and the centroid. In 
order to minimize this problem, it is advisable to 
carry out several replicates based on random initial 
centroids positions. The best solution is retained. 
 
The K-Means clustering result is presented using a 
silhouette representation. The optimal number of 
clusters is empirically determined by evaluating the 
clustering quality on the average value of the 
silhouette. The higher it is the more separate and 
compact are the clusters. Ten replicates were 
carried out for a K fixed number of clusters ranging 
between 2 and 6. The average values obtained are 
presented in the table 2. 
Figure 4 shows two compact and perfectly separate 
clusters. The majority of individuals presents very 
high silhouette values (ranging between 0.8 and 1). 
This confirms the perfect clusters separation 
determined by K-Means clustering. The average 
value is equal to 0.8792, which is very high, and 
confirms the visual impression given by the 
representation. 

 

 
 

Figure 4. K-Means clustering results for K = 2 
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The classification obtained by K-Means clustering 
highlights the existence of two subsets in the data 
file obtained from the Saint Cyprien WWTP and 
characteristic of its operation during 2002. The two 
obtained classes clearly distinguish the plant 
working during the summer period characterized by 
an increase of the water quantity to be treated and 
the pollution to be removed (class 1) from the 
working during the rest of the year (class 2). 
 
Class 1 is made up of 25 days : the totality of 
summer days for which the station functions almost 
at its maximum capacity (4 tanks) and a few days 
more marked by an increase in the influent flow due 
to strong rains. Class 2 is composed of 75 days, 
distributed on the remainder of the year, for which 
the plant functions clearly below its maximum 
capacity (2 tanks). The K-Means clustering 
technique allowed to insulate the two principal 
operation types in the Saint Cyprien plant, and to 
confirm the very clear separation existing in the 
data file characterizing these operations. These 
results give the possibility of carrying out a specific 
neuronal training operation for each class in order 
to facilitate the network comprehension of the 
mechanisms expressed by the data, and to consider 
its capability to react and face up to various 
behaviors. 
 
2. Principal components analysis results 
 
As part of the prediction procedure, principal 
components analysis is used in order to reduce the 
number of network inputs. The set of variables is 
used for its predictive character and the PCA 
enables to reduce its dimension in order to support 

the network learning process without notable 
information loss. The technique was applied to each 
of the two data classes, used to predict COD 
(effluent) and NH4 (effluent). The data file is 
composed of the following variables : Qin, Qair, DO, 
COD (influent) and NH4 (influent). These 
quantitative variables have a high degree of 
correlation and thus a redundant character. The 
PCA allows us to extract from this set of correlated 
variables a nonredundant list of new (synthetic) 
variables. These synthetic variables are linear 
combinations of the initial quantitative variables. 
They make it possible to minimize the risks of 
overfitting and the consequences of a too low 
number of examples characterizing each class 
defined by K-Means clustering. 
 
According to the obtained results (Tables 3 & 4), 
the number of preserved synthetic variables can 
vary but must always be representative of the 
information expressed by the set of initial variables. 
For class 1 the first three principal components 
which express 88.7 % of the system total variance 
are preserved. It is important to emphasize that 
more than 60 % of this total variance is expressed 
by the 1st principal component alone. The two 
principal components not selected to form part of 
the new synthetic data file express 8.32 % and 2.98 
% of the original variance respectively. Their 
contribution is thus very low. The three new 
definite synthetic variables allow us to reduce 
considerably the data file dimension used for its 
predictive character, while preserving the 
information large majority. Figure 5 presents the 
results obtained by an histogram showing the total 
variance expressed by the principal axes (class 1). 

  

 
 

Figure 5. Histogram showing the variance expressed by the principal components (class 1) 
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Table 3. Percentage of variance expressed by the principal components (class 1) 
 

 
 

Table 4. Percentage of variance expressed by the principal components (class 2) 
 

Table 4 presents the variance expressed by each of 
the 5 principal components using class 2 data. We 
also preserve for class 2 the first three principal 
components which express 88.6 % of the system 
total variance (Figure 6). The first principal 
component expresses almost 63 % of the total 
variance, whereas not selected components express 
only 6.44 % and 4.89 % of this variance. As for 
class 1, the three synthetic variables obtained by 
principal components analysis make it possible to 
significantly reduce the data file dimension. 
 
The results provided by the principal components 
analysis are satisfactory for the 2 classes defined by 
K-Means clustering, and make it possible to reduce 
significantly the data file dimension used as neural 
network input for the prediction of COD (effluent) 

and NH4 (effluent) : i.e. from 5 variables to 3 
synthetic variables. 
The prediction tests carried out showed that a too 
large number of variables (observations) used as 
network inputs, combined with a too restricted 
number of examples (individuals) has a negative 
impact on the learning process and favours 
overfitting. The strongly nonlinear nature of the 
biological process to model amplifies the problem. 
The reduction of the data file dimension used for 
the learning phase could also be obtained by 
eliminating several variables but this would be to 
the detriment of the information they express. The 
principal components analysis allows to carry out 
this reduction while preserving almost all the 
information used for its predictive character 
(Philippeau, 1986). 
 

 
 

Figure 6. Histogram showing the variance expressed by the principal components (class 2) 
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3. Influential parameters optimization 
 
It is important to optimize the number of iterations 
used during the learning phase and the number of 
neurones placed in the network hidden layer. These 
two parameters have an important influence on the 
learning process efficiency. This optimization 
completes the data treatment by PCA and K-Means 
clustering used to minimize the overfitting 
phenomenon. This optimization was carried out 
empirically, varying each parameter successively 
and independently for the two classes. The 
procedure was repeated several times, using 
different validation data subsets (every time that the 
procedure is repeated, the data file is randomly 
divided into two subsets), in order to  eliminate a 
local minima possibility. This kind of problems is 
frequently encountered using back propagation 
algorithms. These influential parameters were 
considered as optimized when the average absolute 
error was the weakest (Grieu, et al., 2003). 
For both classes, the results show, independently of 
the used validation data subset, that if the number 

of hidden neurones is too weak, the network has not 
enough parameters and cannot exploit efficiently 
the information. On the other hand, if this number 
is too important, the number of model parameters 
increases and it becomes possible, during the 
optimization phase, to model relations which are 
only the result of statistical fluctuations in the 
training data file and not fundamental relations of 
dependence between variables. The results also 
show that a too high number of iterations leads to 
overfitting.  
Tables 5 and 6 present the optimal number of 
hidden neurones and the optimal number of 
iterations for both classes. Figures 7 to 10 show 
these two parameters influence on the average 
absolute error during learning and validation phases 
for class 2 (only graphics for class 2 are presented 
but similar ones were obtained for class 1). They 
present the results obtained using a specific 
validation data subset but it is important to note that 
for all the tested distributions of available data 
between learning and validation subsets, 
optimization results were similar and very closed. 

 

 
 

Table 5. Optimization results for COD and NH4 (influent) prediction 
 

 
 

Table 6. Optimization results for COD and NH4 (effluent) prediction 
 

 
 

Figure 7. Number of hidden neurones influence on the COD (influent) and NH4 (influent) prediction - Class 2 
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Figure 8. Number of hidden neurones influence on the COD (effluent) and NH4 (effluent) prediction - Class 2 
 

 
 

Figure 9. Number of iterations influence on the COD (influent) and NH4 (influent) prediction - Class 2 
 

 
 

Figure 10. Number of iterations influence on the COD (effluent) and NH4 (effluent) prediction - Class 2 
 

4. Neuronal prediction results 
 
This paragraph presents the results obtained for the 
COD and NH4 prediction before the pollution 
removal treatment (influent) and after the pollution 
removal treatment (effluent), using class 1 and 2 
data defined by K-Means clustering (only graphs 
for class 2 are presented , Figures 11 to 18). 

The data distribution between learning and 
validation phases is significant. If the majority of 
available data is used during the learning phase, the 
quantity of data usable to test its effectiveness will 
be tiny and consequently non-representative of the 
whole distribution.  Then, the performances will not 
characterize the learning smoothness. On the other 
hand, if the majority of data is used during the 
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validation phase, the learning will be certainly very 
rough and the network generalization capacity 
limited. According to various tests, a suitable 
distribution was determined : 80 % of the data are 
reserved for the learning and 20 % for the 
validation. This distribution proved to be a good 
choice and is the one most frequently used. 
 
Let’s note that data standardization was also carried 
out. Raw data obtained from the Saint Cyprien 
activated sludge WWTP consists of many process 
variables. Each of these variables is measured in 
different units having different magnitudes.  
If raw data are fed into the multi-level perceptron, 
then variables having a larger magnitude are given 
unequal importance due to the nature of the weight 
update procedure. Standardizing the dynamic range 
of each variable in the input vector using data 
transformation techniques is required and ensures 
that any movements in a given direction in feature 
space are co-measurable, and this will improve the 
model performance. 
As previously mentioned, the most effective 
backpropagation algorithm is, according to our 
tests, the "Levenberg-Marquardt" one. It was used 
for all the predictions. A suitable learning rate was 
determined to be 0.1 and was also used for all the 
neuronal predictions.  
 
In agreement with the results obtained during the 
preliminary study, 10 neurones are placed in the 
network hidden layer and 15 iterations are carried 
out during the learning phase for the COD 
(influent) and NH4 (influent) prediction (class 1). 
For the prediction based on class 2 data, the number 
of hidden neurones is changed to 15, while the 
number of iterations remains unchanged. For the 
COD (effluent) and NH4 (effluent) prediction (class 
1), 15 neurones are placed in the network hidden 
layer and 15 iterations are carried out during the 
learning phase. For class 2, the optimal number of 
hidden neurones is set to 20 and the optimal 
number of iterations to 15. 
 
For each WWTP operation highlighted by K-Means 
clustering (class 1 and 2), prediction results can be 
considered as satisfactory, according to the work 

initial objective. Tables 7 to 10 synthesize the 
obtained results and present the average relative 
errors calculated for the COD (influent / effluent) 
and NH4 (influent / effluent) prediction. The results 
are considered as satisfactory for the following 
reasons : 
 
 The studied process being strongly nonlinear, 

the estimation of parameters characterizing its 
progress is extremely delicate. This difficulty is 
amplified by the WWTP operation variability. 
In fact, the plant is able to adapt to important 
population (and water to be treated) 
fluctuations. 

 
 The information provided by the prediction 

procedure is sufficiently reliable and precise to 
be exploitable by operators in charge of the 
plant monitoring and maintenance. Indeed, 
COD and NH4 on-line knowledge at plant entry 
and exit allows to estimate the pollution level 
before and after biological treatment. It makes 
it possible to check whether the biological 
process in charge of the pollution removal 
corresponds (or not) to the fixed objectives for 
the plant.  
The information precision is satisfactory and 
makes it possible to know how the system is 
evolving (possibly towards a critical state 
requiring an operator action, for example, to 
avoid a biomass deterioration) and how to 
react. A highher degree of accuracy for the 
results would be extremely difficult to obtain 
and is not necessary.  
Thus, this information effectively completes 
the process expert knowledge brought by 
operators and the knowledge provided by 
various on-line sensors measurements carried 
out on the site. 

 
 The whole procedure (K-Means clustering, 

principal component analysis and neural 
networks) uses tools which proved to be 
efficient and complementary. These tools 
allowed it to be robust, particularly in case of 
disturbed data or measurement errors due to 
on-line sensors faulty operation. 

 

 
 

Table 7. Prediction results for parameters COD and NH4 (influent) (class 1) 
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Table 8. Prediction results for parameters COD and NH4 (effluent) (class 1) 
 

 
 

Table 9. Prediction results for parameters COD and NH4 (influent) (class 2) 
 

 
 

Table 10. Prediction results for parameters COD and NH4 (effluent) (class 2) 
 

 
 

Figure 11. Learning phase for parameter COD (influent) (class 2) 
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Figure 12. Validation phase for parameter COD (influent) (class 2) 
 

 
 

Figure 13. Learning phase for parameter NH4 (influent) (class 2) 
 

 
 

Figure 14. Validation phase for parameter NH4 (influent) (class 2) 
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Figure 15. Learning phase for parameter COD (effluent) (class 2) 
  

 
 

Figure 16. Validation phase for parameter COD (effluent) (class 2) 
 

 
 

Figure 17. Learning phase for parameter NH4 (effluent) (class 2) 
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Figure 18. Validation phase for parameter NH4 (effluent) (class 2) 
 

Three important remarks can be made on the results 
before concluding this work :  
 
 The error levels show that NH4 prediction is 

more difficult than COD one. The predictive 
character of the variables used as neural 
network inputs is more pronounced and thus 
more efficient with the COD parameter. 

 The influent parameters prediction is more 
difficult than the effluent one. The error rate is 
generally more significant because the 
biological process efficiency has an important 
influence on the effluent parameters prediction. 

 For parameter NH4 (effluent) (class 2), the 
average relative error made during learning and 
validation phases is very weak. In fact, this 
parameter has weak variations which make 
easier its estimation. 

 
IV. Conclusion 

 
In this paper, a prediction procedure was presented, 
based on a multi-layer neural network, to obtain a 
COD and NH4 on-line estimation for WWTP 
influent and effluent. These parameters are not 
directly measurable and can only be evaluated by 
laboratory analyses which can be relatively long (a 
few days for the COD). Knowledge of these 
parameters, at WWTP entry and exit, is 
fundamental, and makes it possible to estimate the 
correct working of the organic pollution removal 
process. Their estimation by neural networks was 
carried out using real data obtained from the Saint 
Cyprien WWTP.  
A preprocessing phase by K-Means clustering and 
principal components analysis completed the 
neuronal prediction phase in order to improve the 
results obtained from real data characterizing a 
strongly nonlinear process. A classification by K-
Means clustering allows us to highlight significant 
differences in plant operation and thus to carry out 

fractional training which facilitates the phenomena 
comprehension by the neural network.  
A too great number of variables used as network 
inputs can further overfitting. The principal 
components analysis was interesting in order to 
reduce, without information loss, this number of 
variables used as MLP inputs.  
 
The choice of a single network making it possible 
to predict both chemical oxygen demand and 
ammonia content is confirmed by the predictions 
quality and can be justified by the desire to obtain 
the most possible compact model.  
Compactness and transportability were privileged 
to the detriment of a possible precision gain for the 
results. The predictions quality is sufficient to 
provide exploitable information by operators 
supervising the Saint Cyprien WWTP. The 
precision is satisfactory because it allows to know 
how the system is evolving and how to react. The 
model simplicity and its low cost facilitate its 
integration in supervision and control systems 
already existing in the great majority of such plants.  
 
One of this research significant constraints was to 
facilitate the system installation on various 
wastewater treatment sites. An easily reproducible 
methodology allowing to automatically design the 
software sensor from a new learning base respects 
this constraint. Such a methodology must include 
the data preprocessing carried out prior to the 
prediction phase.  
The possibility of installing the system on another 
plant depends, however, on the on-line measured 
parameters and on the frequency of laboratory 
analyses. In case of significant changes in the 
system state, the model could need a recalibration 
in order to be always able to provide good 
predictions. This recalibration is carried out within 
a relatively short time using a procedure reserved 
for this purpose. 
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