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Abstract: the actual European energy context highlights the building sector 

as one of the largest sectors of energy consumption. Consequently, the 

"Energy Performance of Buildings Directive", adopted in 2002 and focusing on 

energy use in buildings, requires all the EU members to enhance their 

building regulations and to introduce energy certification schemes, with the 

aim of both reducing energy consumption and improving energy efficiency. 

That is why carrying out an energy performance diagnosis is mandatory, 

notably when buying or selling properties. Indeed, invisible defaults, like, for 

example, non-emerging cracks or delaminations, could have a detrimental 

effect on insulating qualities. Esimaing in-situ thermo-physical properties 

allowing locating these defaults, the present work focuses on proposing new 

and efficient approaches based on the use of both artificial intelligence tools 

(artificial neural networks and neuro-fuzzy systems) and inverse methods for 

characterizing building materials i.e. for estimating their thermal diffusivity 

using thermograms obtained thanks to a non-destructive photothermal 

method. 

 

Keywords: energy performance diagnosis, characterization of building 

materials, thermal diffusivity, non-destructive photothermal methods, inverse 

methods, artificial neural networks, neuro-fuzzy systems. 

 

1. Introduction 

  

The actual European energy context reveals that the building, industry and transport sectors 

are the three largest sectors of energy consumption. In France, about 25% of GreenHouse Gases 

(GHG) emissions and 45% of energy consumption are due to buildings [1]. Consequently, the 

adopted "Energy Performance of Buildings Directive" [2], focusing on energy use in buildings, 

requires all the European Union (EU) members to enhance their building regulations and to 

introduce energy certification schemes, with the aim of both reducing energy consumption and 

improving energy efficiency [3,4]. The European Council’s ambitious objectives of saving 20% of 

the energy consumption compared to projections for 2020 and of reducing of at least 20% the GHG 

emissions compared to the 1990 level play a central role in the EU energy policy [5]. Thus, an 

advanced energy performance diagnosis has to be done [6], notably when buying or selling buildings 

[7]. Presence of invisible defaults, like non emerging cracks, delaminations or moisture [8], in a 

wall or a ceiling, completely spoils the insulating qualities of a building [9]. A future owner would 

be pleased to locate these defaults. In the same way, during the renovation of a building, if a 

precise draught does not exit, it would be useful to know where are both gas or water ducts and 

electricity cables, if an old opening has been blocked up, or if a wall or a ceiling is crossed by a 

wooden beam. Unfortunately, all of these particularities are usually hidden. Whatever the 

situation, the challenge is the same: being able to locate invisible things under a layer of plaster 

or similar material, which amounts to locate inhomogeneities in a homogeneous medium. These 

defaults locally modify the global thermophysical properties of the medium. Thus, an in-situ 

estimation of these properties can lead us to locate the above-mentioned defaults, making a 

cartography of the observed medium. 

In the present work, properties estimation methods, alternative to classic ones, are proposed 

using thermograms obtained with a non-destructive photothermal method. Its principle is as 
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follows: the sample to be characterized is excited by a light source and its thermal response, 

called thermogram, is recorded. From the obtained thermogram, one can estimate several thermo-

physical properties such as the thermal diffusivity and effusivity or the thickness of a layer for a 

multi-layer material. These methods can be classified as follows, depending on the time profile of 

the excitation: one speaks of pulsed methods when the excitation is an impulse and of modulated 

methods when the excitation is periodic. Pulsed methods are rich in information but impose a 

high excitation level, which is a problem for fragile or ductile materials. With modulated methods, 

the excitation is weaker but they give information at the modulation frequency only. A recent 

solution is to apply an excitation with a random time profile. Previous studies have shown all the 

interest of this kind of methods [10,11]. Sample properties are usually estimated thanks to well-

known methods (Parker’s technique [12] or inverse methods), after rebuilding its impulse response 

using correlation analysis techniques (the GRESPI laboratory of the University of Reims Champagne-

Ardenne uses a signal processing method proposed by Jacques Max [13]). Unfortunately, these 

techniques are very complex to apply, require a large computational time to reach a given 

precision and are, in some cases, not very efficient. That is why the main objective of the present 

work is to test some tools belonging to the field of artificial intelligence (artificial neural networks 

and neuro-fuzzy systems) [14,15] with the aim of rebuilding the impulse response of a sample or 

for estimating directly its properties from its response to a random excitation. Artificial neural 

networks, a useful tool for modeling and controlling non-linear systems [16-22], are known as 

universal and parsimonious approximators. They present some interesting attributes, mostly 

their learning and generalization capabilities, to be used for rebuilding impulse responses of 

building materials (in this case, the thermal diffusivity of the concerned materials is thereafter 

determined by means of inverse methods; one could speak of "neuro-inverse" approach) or for 

directly estimating the above-mentioned thermophysical properties. As a more in-depth approach 

and with the objective of combining expert knowledge about characterization of materials, 

readability, learning ability and connectionist structure, neuro-fuzzy systems were also tested for 

estimating the thermal diffusivity of building materials; one could speak of "neuro-fuzzy" approach. 

First, we will present the fundaments of the photothermal experiment and we will focus on the 

random method (section 2). Inverse method for parameters estimation will be described too. Then, 

we will be interested in both the simulated data, provided by the GRESPI laboratory, and the 

artificial intelligence tools we use, i.e. multi-layer artificial neural networks [23] and adaptative 

network-based fuzzy inference systems [24] (section 3). Finally, we will present the results about 

impulse responses rebuilding and thermal diffusivities estimation (section 4). We will end this 

paper by a conclusion and future works (section 5). 

 

2. The photothermal experiment 

 

2.1. Fundamentals 

 

The photothermal experiment, a non-destructive control method, consists in submitting the 

sample to be characterized to a light flux. As a consequence, the absorption of light causes a local 

elevation of temperature. The IR emission is recorded (Figure 1). With low heating hypothesis, 

the obtained photothermal signal is proportional to the sample surface temperature and is 

dependent on the thermophysical properties of the observed sample, its structure, the possible 

presence of defects or delaminations, etc… The temporal profile of the excitation flux is one of the 

main photothermal experiment characteristics. If the excitation is a pulse (as close to a Dirac as 

possible), the experiment is called "pulsed method", better known as "flash method" [25-26]. This 

method is very efficient: the sample response contains all the frequencies of interest. However, 

using this technique, a high quantity of energy has to be deposited during a very short time lapse. 

Thus, analyzing fragile materials with the flash method is not possible. On the other hand, if the 

excitation is periodic (according to a fixed frequency), a sinusoidal profile for example, one speaks 

of "modulated method". The sample response is then recorded by the way of a lock-in amplifier. In 

this case, energetic stresses are smaller but the permanent regime has to be reached to begin 

measuring. The obtained response contains only one frequency and the experiment has to be 

repeated to obtain a complete study of the sample [27]. The last born of the photothermal 

methods, called "random method" [28], resorts to a random excitation: commonly, a Pseudo Random 

Binary Signal (PRBS) is used. 



 
 

Figure 1. The photothermal experiment. White and black arrows represent the light excitation and 

the IR response respectively. 

 

2.2. The random method 

 

The random method has been developed by the GRESPI laboratory of the University of Reims 

Champagne-Ardenne and combines elements from both the flash and the modulated methods. 

Energetic stresses are very low and if the excitation used is perfectly random, the sample 

response contains all the frequencies of interest. Using correlation analysis techniques, the 

sample impulse response is recalculated from its response to a random signal. Material properties 

are identified from the impulse response by well-known techniques [12]. Let us note that the 

main difficulty in applying the random method is to create experimentally an excitation as close 

as possible to a real random signal. After that several excitation types have been tested, a PRBS 

has been chosen to excite samples. Such a signal is composed of low (0) and high (1) states, the 

duration of which is practically random. Construction of pseudo random sequences consists in 

getting the output signal of a shift register with a feedback via a modulo-2 addition [29]. Samples 

can be stressed with a laser diode piloted by a PRBS. IR responses are recorded using an InSb or 

HgCdTe infrared detector. In parallel, a model of the response has been developed. Thus, 

simulating the experiment is possible. Up to now, to obtain the impulse response (    ) from the 

sample response to a random excitation (     ), the GRESPI laboratory uses the Jacques Max’s 

technique [13]: 

 

             
             

         
           

 

with      the inverse Fourier transform,          the Fourier transform of          and      the 

Fourier transform of the excitation. The aim of this paper is to show that correlation analysis 

techniques can be efficiently replaced by artificial intelligence tools such as multi-layer artificial 

neural networks or neuro-fuzzy systems. 

 

3. Materials and methods 

 

3.1. Database 

 

The used database is composed of responses to PRBS, impulse responses and thermophysical 

properties for the following seven building materials: glass wool, concrete, brick, glass, plaster, 

granite and stainless steel. Responses to a PRBS (Figure 2) and impulse responses (Figure 3) are 

both composed of 255 points (uniformly spaced in time,     3 s for responses to PRBS while     

3×10-2 s for impulse responses). Table 1 highlights some of the main properties of the seven 

considered materials: density (ρ), ranging between 200 kg/m3 and 7900 kg/m3, calorific capacity 

(Cp), ranging between 670 J/kg.K and 960 J/kg.K, thermal conductivity (k), ranging between 0.04 

W/m.K and 16 W/m.K, thermal diffusivity (a), ranging between 3×10-7 m2/s and 4×10-5 m2/s, and 

thermal effusivity (b), ranging between 73.21 J/m2.K.s1/2 and 8028.95 J/m2.K.s1/2. With the aim of 

developing the most effective tools, a preliminary study about thermal behaviour has been carried 

out and allowed choosing the materials used to train or to validate both artificial neural networks 

and neuro-fuzzy systems. As a conclusion of this study, glass wool, concrete, glass and stainless 



steel were considered as training materials while brick, plaster and granite were used for 

validating the developed models. Let us note that, among all these materials, only glass wool is 

an organic material and, as such, presents a very specific thermal behaviour. 

 

 
 

Figure 2. Responses to a PRBS of the seven considered building materials (linear scale). 

 

                              
 

Figure 3. Impulse responses of the seven considered building materials (log-log scale). 

  

Table 1. Materials properties (bibliography values). 
 

Material ρ [kg/m3] Cp [J/kg.K] k [W/m.K] a [m2/s] b [J/m2.K.s1/2] 

Glass wool 200 670 0.04 3×10-7 73.21 

Concrete 2300 960 0.92 4.2×10-7 1425.26 

Brick 1600 840 0.69 5.13×10-7 963 

Glass 2530 840 1.2 5.8×10-7 1596.95 

Plaster 1600 830 0.8 6×10-7 1030.73 

Granite 2600 870 2.5 1.1×10-6 2378.02 

Stainless steel 7900 510 16 4×10-6 8028.95 



3.2. Parameter estimation by inverse methods 

 

3.2.1. General principle 

 

The impulse response can be exploited using Parker’s technique [12] or by inverse methods 

[30] to identify thermophysical properties. We usually use inverse methods. The principle of an 

inverse method is to compare a model to experimental measurements. The model depends on 

parameters which are usually thermophysical properties combinations. The goal is to minimize a 

criterion by adjusting the parameters by an iterative process. Calculation is initiated by a priori 

parameters chosen by the user. Thus, having a mathematical model very close to the used 

experiment is crucial. First, let us note that bold characters represent vectorial quantities or 

matrices. Measurements are compared to values obtained by a model function of parameters. So, 

a comparison criterion (or cost function) can be calculated. The criterion value is minimized by 

adjusting step by step the parameters values and by computing the new values of the model. The 

process is stopped when the criterion reaches a critical value, parameters does not change 

anymore. Thus, we get the estimated values ( ) of the searched parameters ( ) (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Parameter estimation by inverse methods. 

 

3.2.2. Comparison criterion 

 

First, let       
      

      
    be a vector composed of n experimental measurements 

uniformly spaced in time between    and   . Next, let                      be the model 

values vector with           ,   being the parameters to be identified. Finally, let        be an 

objective function, defined as the sum of the least square of    and     , to be minimized with 

respect to the unknown  . It could be written [31]: 
 

           
      

 

   

                               

 

So,        is a scalar function of the searched parameters ( ). Searching the best estimate 

(    ) of   is searching the     function minimum. 

 

3.2.3. Sensitivity coefficients 
 

The sensitivity coefficient    related to a parameter    is given by the first derivative of the 

model        with respect to the just-mentioned parameter. This coefficient depicts the influence 

of the parameter    on the model: 
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3.2.4. Criterion minimization method 

 

The criterion minimization method depends on the model linearity versus the parameters. We 

use methods belonging to the gradient methods class: Gauss-Newton’s, Box-Kanemasu’s and 

modified Box-Kanemasu’s methods [31]. These methods optimize the slope step around the 

solution. General principle is represented by Figure 4. Model values are firstly calculated with 

initial parameters, chosen a priori, then, the first criterion value is calculated. If the stopping 

condition is not satisfied, the algorithm calculates the parameter corrections to make the criterion 

       decreases at the next iteration. New parameters are used to calculate new model values 

and to resume the process. A recurrence relationship can be written between respective parameter 

values at     and         iterations, with    
   

 the corrective step applied to parameter    of   at 

    iteration: 

 

  
     

   
   

    
   

          

 

We frequently use the following criterion (Eq.5), proposed by Beck [31], as stopping condition. 

If this criterion is satisfied, it means    has been corrected by a negligible value at     iteration: 

 

   
     

   
   

 

  
 
   

    

   with          and                 

 

3.2.4.1. Gauss-Newton’s method 

 

The Gauss-Newton’s method is one of the simplest and most efficient minimization methods. 

The Gauss-Newton’s step     
   

 is given by the following expression: 

 

    
   

             
  

                               

 

Let us note that the Hessian approximation            has to be inversed and needs to be well-

conditioned. So,      values must be maximum, small values leading to an ill-conditioned matrix 

and, as a consequence, the inverse algorithm will not converge. Indeed, the efficiency of the Gauss-

Newton’s method is dependent on the problem conditioning. Ill-conditioned problems need an 

adapted method such as the Box-Kanemasu’s method. 

 

3.2.4.2. Box-Kanemasu’s method 

 

The Gauss-Newton’s method is based on a linear approximation of the model. If this hypothesis 

is really wrong, calculated corrections can oscillate with growing amplitude and the algorithm 

cannot converge. The Box-Kanemasu’s step     
   

 is calculated as follows: 

 

    
   

    
   

     
   

          

 

Taking a look at Eq.7, one can note that a coefficient     is assigned to the Gauss-Newton’s 

step     
   

. This coefficient is obtained thanks to the procedure depicted by Figure 5.   has a 

constant value of 1.1 while      is calculated at each iteration in the following way: 

 

          
   

 
  

                   
   

 
  

          
 

3.2.4.3. Modified Box-Kanemasu’s method: Bard’s method 

 

The Box-Kanemasu’s method does not verify if        decreases at the next iteration. That is 

why Bard modified the method, calculating differently the coefficient     
   

 assigned to the Gauss-

Newton’s step     
   

, as depicted by Figure 6 [31]. So: 

  

     
   

     
   

     
   

          



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Calculation of     
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Figure 6. Calculation of      
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3.3. Multi-layer artificial neural networks 

 

Two kinds of multi-layer artificial neural networks have been used for estimating, directly or 

indirectly, the thermal diffusivity of building materials, with the aim of developing a new and 

effective approach contributing to the energy performance diagnosis of buildings: the commonly-

used Multi-Layer Perceptron (MLP) and the Elman recurrent network. Both networks’ topology 

and the training algorithm used will be described summarily in the present section of the paper. 

 

3.3.1. The multi-layer Perceptron 

 

The Perceptron, the simplest neural network, is only able to classify data into two classes [32]. 

Basically it consists of a single neuron with a number of adjustable weights [33]. It uses an 

adaptative learning rule. Given a problem which calls for more than two classes, several 

Perceptrons can be combined: the simplest form of a layered network just has an input layer of 

source nodes that connect to an output layer of neurons. The single-layer Perceptron can only 

classify linearly separable problems. For non-separable problems it is necessary to use more 

layers. A multi-layer network has one or more hidden layers whose neurons are called hidden 

neurons. The network is fully connected, every node in a layer being connected to all nodes in the 

next layer. According to the previous remarks, the first network used for the present work is a 

multi-layer Perceptron, one speaks of feedforward networks. It consists of one layer of linear 

output neurons and one hidden layer of nonlinear neurons [34] (Figure 7). According to previous 

tests, more than one hidden layer proved to cause slower convergence during the learning phase 

because intermediate neurons not directly connected to output neurons learn very slowly. Based 

on the principle of generalization versus convergence, both number of hidden neurons and 

iterations completed during the training phase were optimized [19]. The multi-layer Perceptron 

neural network learns using an algorithm called backpropagation. During this iterative process, 

input data are repeatedly presented to the network. At each iteration: (1) the entire input 

sequence is presented to the network, and its outputs are calculated and compared with the 

target sequence to generate an error sequence; (2) for each time step, the error is backpropagated 

to find gradients of errors for each weight and bias. This gradient is actually an approximation 

since the contributions of weights and biases to errors via the delayed recurrent connection are 

ignored; (3) this gradient is then used to update the weights with a backpropagation training 

algorithm like the Levenberg-Marquardt algorithm [35-36]. 

 

 
 

Figure 7. Topology of the multi-layer Perceptron used for estimating the thermal diffusivity of 

building materials. 

 

3.3.2. The Elman recurrent network 

 

Feedforward neural networks have been successfully used to solve problems that require the 

computation of a static function i.e. a function whose output depends only on the current input, 

and not on any previous inputs. In the real world however, one encounters many problems which 

cannot be solved by learning a static function because the function being computed changes with 



each input received. It should be clear from the architecture of feedforward neural networks that 

past inputs have no way of influencing the processing of future inputs. This situation can be 

rectified by the introduction of feedback connections in the network [37]. Now network activation 

produced by past inputs can cycle back and affect the processing of future inputs. The class of 

neural networks, which contain cycles or feedback connections, is called recurrent neural 

networks. The Elman network used for rebuilding impulse responses of building materials is a 2-

layer network with feedback from the first-layer output to the first layer input [38]. This recurrent 

connection allows this kind of network to both detect and generate time-varying patterns. The 

Elman network differs only from conventional 2-layer networks, such as the just-described multi-

layer Perceptron, in that the first layer has a recurrent connection (Figure 8). The delay in this 

connection stores values from the previous time step, which can be used in the current time step. 

Because the network can store information for future reference, it is able to learn temporal 

patterns as well as spatial patterns. The Elman recurrent network can be trained, using an 

iterative process, to respond to, and to generate, both kinds of patterns. Just as the multi-layer 

Perceptron, it can approximate any function (with a finite number of discontinuities) with arbitrary 

accuracy. The only requirement is that its hidden layer must have enough neurons. More hidden 

neurons are needed as the function being fitted increases in complexity.  

 

 
 

Figure 8. Topology of the Elman recurrent network used for rebuilding impulse responses of 

building materials. 
 

3.3.3. The Levenberg-Marquardt algorithm  
 

Several training methods were used, but the Levenberg-Marquardt algorithm [39] proved to be 

the fastest and the most robust, whatever the neural network considered. It is particularly 

adapted for networks of moderate size and has memory reduction feature for use when the 

training set is large. Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was 

designed to approach second-order training speed without having to compute the Hessian matrix. 

When the performance function has the form of a sum of squares, then the Hessian matrix can be 

approximated as: 
 

                
 

The gradient can be computed as: 

 

                
 

where   is the Jacobian matrix that contains first derivatives of the network errors with respect to 

the weights and biases, and   is a vector of network errors. The Jacobian matrix can be computed 

through a standard backpropagation technique that is much less complex than computing the 



Hessian matrix. The Levenberg-Marquardt algorithm uses this approximation to the Hessian 

matrix in the following Newton-like update:  

 
                                   

 

When the scalar   is zero, this is just Newton’s method, using the approximate Hessian 

matrix. When   is large, this becomes gradient descent with a small step size. Newton’s method is 

faster and more accurate near an error minimum, so the aim is to shift towards Newton’s method 

as quickly as possible. Thus,   is decreased after each successful step and is increased only when 

a tentative step would increase the performance function. In this way, the performance function 

will always be reduced at each iteration of the algorithm. The main drawback of the Levenberg-

Marquardt algorithm is that it requires the storage of some matrices that can be quite large for 

certain problems. The size of the Jacobian matrix is      , where   is the number of training 

sets and   is the number of weights and biases in the network. It turns out that this matrix does 

not have to be computed and stored as a whole. For example, if we were to divide the Jacobian 

into two equal submatrices we could compute the approximate Hessian matrix as follows: 

 

          
   

    
  
  

    
       

              

 

Therefore, the full Jacobian does not have to exist at one time. The approximate Hessian can 

be computed by summing a series of subterms. Once one subterm has been computed, the 

corresponding submatrix of the Jacobian can be cleared. 

 

3.4. Neuro-Fuzzy Systems (NFS) 

 

In the field of artificial intelligence, neural networks and fuzzy logic can be combined in neuro-

fuzzy systems in order to achieve both properties of readability and learning ability. Neuro-fuzzy 

systems synergizes the two techniques by combining the human-like reasoning style of fuzzy 

systems (through the use of fuzzy sets and a linguistic model consisting of a set of if-then fuzzy 

rules) with the learning and connectionist structure of neural networks [40,41]. Various neuro-

fuzzy architectures can be found in the scientific literature [42,43], one can mention: NEFCLASS 

(classification), FALCON and GARIC (process control), ANFIS (process control, signal processing, 

non-linear approximation, identification)…etc. Because ANFIS is a widely-used and powerful 

architecture, it has been chosen for estimating the thermal diffusivity of building materials, 

taking into account expert knowledge.    

 

3.4.1. Fuzzy if-then rules  

 

Fuzzy if-then rules are expressions of the form if A then B, where A and B are labels or fuzzy 

sets characterized by appropriate membership functions. Due to their concise form and through 

the use of linguistic labels and membership functions, fuzzy if-then rules are often employed to 

capture the imprecise and subjective modes of reasoning that play a central role in the human 

ability to make decisions in an uncertain environment [44,45]. Another form of fuzzy if-then rule, 

proposed by Takagi and Sugeno, has fuzzy sets involved only in the premise part, the consequent 

part being described by a non-fuzzy equation of the input variable [46]. Both types of fuzzy if-then 

rules have been used extensively for modelling and controlling systems. Due to the qualifiers on 

the premise parts, each fuzzy if-then rule of a set of rules can be considered as a local description 

of the studied system under consideration. 

 

3.4.2. Fuzzy Inference Systems (FIS) 

 

Fuzzy inference systems are also known as fuzzy-rule-based systems or fuzzy controllers when 

used as controllers. Basically, a fuzzy inference system is composed of five functional blocks [24]: 

(1) a collection of fuzzy if-then rules; (2) a database which defines the membership functions of the 

fuzzy sets used to design the fuzzy rules; (3) a decision-making unit allowing performing the 

inference operations on the rules; (4) a fuzzification interface which transforms the crisp inputs 

into degrees of match with linguistic values; (5) a defuzzification interface which transforms the 



fuzzy results of the inference into a crisp output. The steps of fuzzy reasoning performed by fuzzy 

inference systems can be described as follows: (1) the fuzzification step during which the input 

variables are compared with the membership functions on the premise part to obtain the 

membership values of each linguistic label; (2) the combination of the membership values on the 

premise part to get the weight of each rule of the rule base; (3) the generation of the qualified 

consequent (fuzzy or crisp) of each rule depending on the weight; (4) the defuzzification step during 

which the qualified consequents are aggregated to produce a crisp output [47,48]. 

 

3.4.3. Adaptative Network-based Fuzzy Inference Systems (ANFIS) 

 

The acronym ANFIS derives from Adaptative Network-based Fuzzy Inference System. A 

network-type structure, similar to that of artificial neural networks, which maps inputs through 

input membership functions and associated parameters and then through output membership 

functions and associated parameters to output, can be used to interpret an input/output map. The 

parameters associated with the membership functions changes through the learning process. The 

adjustment of these parameters is facilitated by a gradient vector. This gradient vector provides a 

measure of how well the fuzzy inference system is modelling the input/output data for a given set 

of parameters. When the gradient vector is obtained, any of several optimization routines can be 

applied in order to adjust the parameters to reduce some error measure [49]. 

 

3.4.4. ANFIS architecture 

 

For simplicity, we assume, first, that the considered fuzzy inference system has two inputs   

and   and one output   and, secondly, that the rule base contains only two fuzzy if-then rules of 

Takagi and Sugeno’s type [46]. The rules are designed in the following way: 

 

First rule:                                           

Second rule:                                           

 

Implementing both rules requires the 5-layer ANFIS architecture shown in Figure 9 [24]. A 

membership function    
    or    

   , specifying the degree of which   satisfies    or   satisfies   , 

with      , is associated with every node in the first layer. Usually    
    and    

    are chosen 

to be bell-shaped with a minimum and a maximum equal to 0 and 1 respectively: 
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with            and    
    

    
   two parameter sets. As the values of these parameters change, the 

bell-shaped functions vary accordingly, thus exhibiting various forms of membership functions on 

linguistic label     Any continuous and piecewise differentiable functions, such as commonly-used 

trapezoidal or triangular-shaped membership functions, can be used. Nodes in the second layer 

evaluate the premises of the rules, multiplying the incoming signals and sending the product out. 

So, the     node output represents the firing strength of rule  . Let us note that many other T-norm 

operators, allowing performing generalized AND, can be used in this layer [50]. 

 
      

       
    with                 

 

The     node in the third layer calculates the ratio of the     rule’s firing strength to the sum of 

all rules’ firing strengths (i.e. the contribution of the     rule), such as: 

 

    
  

     

 with                 



Nodes in the fourth layer evaluate the conclusions of the rules. So, the     node evaluates the 

conclusion of the     rule, with     the output of layer 3 and            a parameter set. Parameters 

in this layer can be referred as consequent or conclusion parameters. So: 

 
                      with                 

 

Finally, the single node in the fifth and last layer computes the overall output as the summation 

of all incoming signals. It is observed that given the values of premise parameters, the overall 

output can be expressed as a linear combination of the consequent parameters: 

 

         
      

     
 with                 

 

 
 

Figure 9. 5-layer adaptative network-based fuzzy inference system for the implementation of the 

two following fuzzy rules:                                           and 

                                         . 
 

To train the ANFIS, a data set that contains the desired input/output data of the system to be 

modeled is used. The modeling approach is similar to many system identification techniques: first, 

you hypothesize a parameterized model structure and next, thanks to an iterative and hybrid 

optimization method, basically a combination of least squares estimation and backpropagation 

gradient descent method [35], the membership function parameters are adjusted, the consequent 

parameters are identified and a rule base is designed, according to a chosen error criterion. The 

training process stops whenever the maximum iteration number is reached or the training error 

goal is achieved. In general, this type of modeling works well if the training data presented to the 

ANFIS is fully representative of the features of the data the trained system is intended to model. 

Checking and testing data sets allow checking the generalization capability of the resulting fuzzy 

inference system and avoiding overfitting [51]. 
 

3.5. Approaches proposed for estimating the thermal diffusivity of building materials    
 

As previously-mentioned, three new and effective approaches are proposed for estimating the 

thermal diffusivity of building materials: the neuro-inverse (in this case, artificial neural networks 

are used for rebuilding impulse responses of building materials, their thermal diffusivity being 

thereafter determined by means of inverse methods), the neuronal and the neuro-fuzzy approaches. 
 

3.5.1. Neuro-inverse approach 
 

An Elman recurrent network has been trained using the glass wool, concrete, glass and 

stainless steel responses to a PRBS as network inputs and their respective impulse responses as 

targets, i.e. as desired network outputs. Let us note, and this is a key-point when rebuilding 

impulse responses using neural networks (or when directly estimating thermal diffusivities), that 



responses to a PRBS and impulse responses were presented to the network, during both training 

and validation phases, as "sequences". Whatever the response, it is considered as an entity in which 

all elements are connected to, and dependent upon, each other. The network’s number of hidden 

neurons, the number of iterations carried out during its training phase and the learning rate 

were empirically optimized. Then, the trained network has been used for rebuilding the impulse 

responses of brick, plaster and granite using their responses to a PRBS as new and unknown 

network inputs. This is the validation phase. After rebuilding the impulse response of a material, 

the inversion algorithm is used for estimating its thermal diffusivity. First, the Gauss-Newton’s 

method has been tried but the inverse problem is very ill-conditioned so we used the Box-

Kanemasu’s method. A self-made condition has been added, close to the Box-Kanemasu’s modified 

method, to be sure that the criterion to be minimized decreases during calculations (Figure 10). 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 10.Neuro-inverse approach for estimating the thermal diffusivity of a building material. 

 

3.5.2. Neuronal approach 

 

Considering the results provided by the neuro-inverse approach when estimating the thermal 

diffusivity of building materials, a second approach, named "neuronal approach", has been tested. 

Using this approach, the thermal diffusivity of the considered materials is directly estimated, 

thanks to a multi-layer Perceptron and their respective responses to a PRBS. So, the network has 

been trained using the glass wool, concrete, glass and stainless steel responses to a PRBS as 

network inputs and their respective thermal diffusivities as targets, i.e. as desired network 

outputs (Figure 11). Let us note that the neuronal approach is really innovative with respect to 

those usually used for characterizing materials. Indeed, taking advantage of the response to a 

PRBS instead of its impulse response for estimating its thermal diffusivity is not a common way 

to do it. However, not having to rebuild the impulse response of a (fragile) material is a good thing 

because it allows avoiding the use of inverse methods, in some cases not very efficient (for 

example, when the sensitivity coefficients are weak or because ill-conditioned matrix, close to 

singular, cannot be well-inversed). The network’s number of hidden neurons, the number of 

iterations carried out during its training phase and the learning rate were again empirically 

optimized. Then, the trained multi-layer Perceptron has been used for estimating the brick, plaster 

and granite’s thermal diffusivities using their respective responses to a PRBS as new and 

unknown network inputs. 

 

 

 

 

 

 

 

Figure 11.Neuronal approach for estimating the thermal diffusivity of a building material. 

 

3.5.3. Neuro-fuzzy approach 

 

As for both neuro-inverse and neuronal approaches, glass wool, concrete, glass and stainless 

steel were used to train the ANFIS, while brick, plaster and granite allowed carrying out its 

validation phase. As a result of the training phase, the membership function parameters are 

Elman recurrent 

network 
Response to a pseudo 

random binary signal 

Box-Kanemasu’s method 

with self-made condition 
Thermal diffusivity 

Rebuilt impulse 

response 

Multi-layer Perceptron  
Response to a pseudo 

random binary signal 
Thermal diffusivity 



adjusted, the consequent parameters are identified and fuzzy rules are designed. The number of 

training iterations has been empirically optimized. Considering that the response to a PRBS is 

correlated with both the thermal diffusivity of the excited material and some of the main 

characteristics of the PRBS used as excitation, and taking into account expert knowledge about 

characterization of materials, various set of potential model inputs were tested. As a first 

approach, the PRBS pulses’ widths and, for each of the pulses, the mean value of the obtained 

response, were considered. The results being disappointing, the first and the last point of the 

obtained response were considered instead of its mean value, but no significant improvement has 

been noted. Finally, the PRBS pulses’ widths (                 ) and the absolute value of the 

slopes, calculated, for each of the pulses, considering the line between the first and the median 

point of the obtained response (            ) were chosen and proved to be a better option 

(Figure 12). The thermal diffusivity of the studied material has been considered as model output 

(Figure 13). Let us note that, as when using the neuronal approach, the neuro-fuzzy approach 

allows not having to rebuild the impulse response of the considered materials. This is, again, a 

really innovative approach with respect to those usually used for characterizing materials.  
 

 
 

Figure 12. ANFIS input parameters. B2, M2 and E2 are the first, median and last point of the 

response to the PRBS used as excitation, considering the pulse    . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13.Neuro-fuzzy approach for estimating the thermal diffusivity of a building material. 
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4. Results 

 

This section of the paper deals with the results obtained using the three proposed approaches 

for both estimating the thermal diffusivity of building materials and contributing to the energy 

performance diagnosis of buildings. Rebuilt impulse responses will be compared with theoretical 

impulse responses using a widely-used similarity criterion (Eq.20). Mean relatives errors will also 

be computed when rebuilding impulse responses and estimating thermal diffusivities. Let us also 

note that the topology of the neural networks used and the way the training parameters have 

been optimized will be mentioned. 

 

           
                    

 

                        
 

            

 

4.1. Neuro-inverse approach results 

 

Figures 14 to 16 present the rebuilt impulse responses of brick, plaster and granite, using a 

log-log scale. Let us remember that glass wool, concrete, glass and stainless steel were used to 

train the Elman recurrent network used. The network’s hidden layer was composed of 8 neurons 

and 35 iterations have been carried out during the training phase. The learning rate was set to 

0.3. The Levenberg-Marquardt algorithm (section 3.3.3) allowed optimizing the network’s 

weights. Table 2 specifies, for the three validation materials, the curve fitting (FIT) and the Mean 

Relative Error (MRE) observed when rebuilding their respective impulse responses. Table 2 also 

presents, using the rebuilt impulses responses and the Box-Kanemasu’s method (section 3.2.4), 

the result of the thermal diffusivity estimation. A Relative Error (RE) is calculated. 

The results provided by the neuro-inverse approach allow, first, validating both the proposed 

approach and the use of artificial neural networks for rebuilding impulse responses. Whatever the 

validation material, the MRE is very low, ranging between 0.1% and 0.7%, while the FIT is very 

high, ranging between 96.5% and 99.1%. Let us note that taking into account the PRBS used as 

excitation (i.e. using it as network’s second input sequence), jointly to the material response, has 

been considered for rebuilding impulse responses. Finally, and because one can suppose that the 

response to a PRBS is dependent on both the thermophysical properties of the excited material 

and the characteristics of the signal used as excitation, only the response to a PRBS was 

considered as network input sequence. 

 

 
 

Figure 14. Rebuilding of the impulse response of brick using a previously-trained Elman recurrent 

network (log-log scale). 



 
 

Figure 15. Rebuilding of the impulse response of plaster using a previously-trained Elman 

recurrent network (log-log scale). 

 

 
 

Figure 16. Rebuilding of the impulse response of granite using a previously-trained Elman 

recurrent network (log-log scale). 

 

Table 2. Neuro-inverse approach results. 

 

Material 

Impulse response rebuilt 

using an Elman network 

Thermal diffusivity estimated using the Box-

Kanemasu’s method 

MRE [%] FIT [%] 
Theoretical 

value (m2/s) 

Estimated 

value (m2/s) 
RE [%] 

Brick 0.7% 96.5% 5.17×10-7 4.63×10-7 10.4% 

Plaster 0.5% 96.6% 6.00×10-7 5.06×10-7 15.7% 

Granite 0.1% 99.1% 1.10×10-6 1.11×10-6 < 1% 



Taking a look at Table 2, one can also observe that the Box-Kanemasu’s method allows taking 

advantage of the rebuilt impulse responses for correctly estimating the thermal diffusivity of the 

considered building materials. Relative errors are ranging between less than 1% and 15.7%; this 

leads to a MRE of about 9%. One could be surprised when analyzing these late results but because 

both theoretical and rebuilt impulse responses contain very few points in the high sensitivity 

area, inverse methods are not very efficient. As a consequence, one can expect improving accuracy 

using both neuronal and neuro-fuzzy approaches. 

 

4.2. Neuronal approach results 

 

Let us remember that glass wool, concrete, glass and stainless steel were used to train the 

multi-layer Perceptron used for directly estimating the thermal diffusivity of building materials. 

The network’s hidden layer was composed of 10 neurons and 30 iterations have been carried out 

during the training phase. The learning rate was set to 0.3. The Levenberg-Marquardt algorithm 

(section 3.3.3) allowed optimizing the network’s weights. Table 3 specifies, for the three validation 

materials, the result of the thermal diffusivity estimation. A Relative Error (RE) is calculated. 

Taking a look at Table 3, one can observe that the neuronal approach allows improving significantly 

the estimations’ accuracy. One can note, considering the neuro-inverse results as reference results, 

that the neuronal approach allows reducing the RE by 40.4% (from 10.4% to 6.2%) and 57.3% 

(from 15.7% to 6.7%) when estimating the thermal diffusivities of brick and plaster respectively. 

Concerning granite, the RE increases from less than 1% to 4.5%. One can conclude, and this is a 

very interesting result, that artificial neural networks are able to provide very good estimations of 

the thermal diffusivity of building materials, without rebuilding impulse responses, even if the 

sensitivity of the considered responses to a PRBS is weak. As a consequence, one can highlight 

that using inverse methods for estimating thermophysical properties of materials is not the only 

way to do it: artificial neural networks can also do it! Concerning granite, a much more diffusive 

material than brick and plaster, the sensitivity coefficients are weak in the used identification 

area, but high enough to obtain a very good estimation of its thermal diffusivity even from its 

rebuilt impulse response, using the Box-Kanemasu’s method. 

   

Table 3. Neuronal approach results. 

 

Material 

Thermal diffusivity estimated using a MLP 

Theoretical value 

(m2/s) 

Estimated value 

(m2/s) 
RE [%] 

Brick 5.17×10-7 4.85×10-7 6.2% 

Plaster 6.00×10-7 5.60×10-7 6.7% 

Granite 1.10×10-6 1.15×10-6 4.5% 

 

4.3. Neuro-fuzzy approach results 

 

As we did for developing both neuro-inverse and neuronal approaches, glass wool, concrete, 

glass and stainless steel were used to train the ANFIS allowing directly estimating the thermal 

diffusivity of building materials. The two model inputs (   and  ) and their respective universes 

of discourse have to be characterized by means of fuzzy sets and membership functions with the 

aim of designing an appropriate base of fuzzy rules that best maps inputs to single output. Due to 

the nature of both the signal used as excitations and the obtained responses, the pulses’ widths 

(  ) may be in the range [1s ; 8s] while the absolute value of the slopes ( ), calculated, for each of 

the pulses, considering the line between the first and the median point of the obtained response, 

may be in the range [0 ; 0.4675]. Both universes of discourse have been split using only two fuzzy 

sets and trapezoidal membership functions. The thermal diffusivity may be in the range [3×10-7 ; 

4×10-6]. During the ANFIS training process, the rule extraction method allows generating rules, 

adjusting the shape of the input membership functions, defined, at the end of the process, as 

highlighted by Table 4 (considering four parameters: the left and right base points and the left 

and right top points), and finally identifying the coefficients of the linear output membership 

functions (each generated rule has one output membership function) (Table 5). 25 iterations have 

been carried out. Table 6 presents the obtained fuzzy rules. 



Table 4. Input membership functions’ parameters. 

  

ANFIS 

input 

Trapezoidal 

membership function  

Left base 

point 

Left top 

point 

Right top 

point 

Right base 

point 

   
1 1 1 3.099 5.9 

2 3.099 5.899 8 8 

  
1 0 0 0 0.3926 

2 0.09571 0.2885 0.4675 0.4675 
 

Table 5. Output membership functions’ parameters. 

 

ANFIS 

output 

Linear membership 

function 

1st 

coefficient 

2nd 

coefficient 

3rd 

coefficient 

Thermal 

diffusivity 

(a) 

1 (rule n°1) -3.117×10-7 -3.855×10-5 5.375×10-6 

2 (rule n°2) 1.944×10-7 -1.213×10-5 5.504×10-6 

3 (rule n°3) -1.078×10-8 -4.095×10-5 4.345×10-6 

4 (rule n°4) -2.65×10-7 -3.219×10-5 1.243×10-5 

 

Table 6. Fuzzy rules. 

 

Rule N°1 N°2 N°3 N°4 

   1 1 2 2 

  1 2 1 2 

  1 2 3 4 

 

Table 7 depicts the performance of the trained ANFIS. As we did when estimating the thermal 

diffusivity of the chosen validation materials using the neuro-inverse and the neuronal approaches, 

a relative error is calculated. One can observe that the neuro-fuzzy approach allows improving 

significantly the estimations’ accuracy. Indeed this approach provides the best results over the 

other proposed approaches. Taking a look at the results provided by the neuro-inverse approach 

(Table 2), one can highlight that the neuro-fuzzy approach allows reducing the RE by 72.1% (from 

10.4% to 2.9%) and 71.3% (from 15.7% to 4.5%) when estimating the thermal diffusivities of brick 

and plaster respectively. Concerning granite, both estimations are very similar (1.11×10-6 m2/s 

and 1.09×10-6 m2/s when using the neuro-inverse and the neuro-fuzzy approaches respectively). 

Taking a look at the results provided by the neuronal approach (Table 3), one can remark that the 

neuro-fuzzy approach allows reducing the RE by 53.2% (from 6.2% to 2.9%), 32.8% (from 6.7% to 

4.5%) and 75.6% (from 4.5% to 1.1%) when estimating the thermal diffusivities of brick, plaster 

and granite respectively. Table 8 summarizes all the results obtained, for the three proposed 

approaches. 
 

Table 7. Neuro-fuzzy approach results. 

 

Material 

Thermal diffusivity estimated using an ANFIS 

Theoretical value 

(m2/s) 

Estimated value 

(m2/s) 
RE [%] 

Brick 5.17×10-7 5.32×10-7 2.9% 

Plaster 6.00×10-7 5.73×10-7 4.5% 

Granite 1.10×10-6 1.09×10-6 1.1% 

 

Table 8. Synthesis. 

 

Material 
Neuro-inverse 

approach (RE [%]) 

Neuronal approach 

(RE [%]) 

Neuro-fuzzy 

approach (RE [%]) 

Brick 10.4 % 6.2 % 2.9 % 

Plaster 15.7 % 6.7 % 4.5 % 

Granite < 1 % 4.5 % 1.1 % 



The obtained results validate the neuro-fuzzy approach and highlight the significant contribution 

of expert knowledge, which has been considered using, as ANFIS inputs, characteristics of both 

the PRBS used as excitation and the response to this excitation. Again, these results confirm, 

first, that artificial intelligence tools are useful for characterizing materials and, secondly, that 

rebuilding impulse responses for estimating thermophysical properties is not mandatory: one can 

directly estimate the thermal diffusivity of materials using artificial neural networks or neuro-

fuzzy systems and responses to pseudo random binary signals. As a consequence, and this is the 

main result of the study, one can maintain that both neuronal and neuro-fuzzy approaches allow 

not using inverse methods (these methods are not very efficient when impulse responses contain 

very few points in the high sensitivity area) and correlation analysis techniques (as previously-

mentioned, these techniques are very complex to apply, require a large computational time and 

are, in some cases, not very efficient). 
 

5. Conclusion and perspectives 
 

With the building sector being one of the largest sectors of energy consumption in Europe, and 

consequently one of the major causes of greenhouse gas emissions and therefore of global warming, 

reliable and robust tools are needed for carrying out an advanced energy performance diagnostic 

and issuing energy performance certificates for buildings. Because invisible defaults, like, for 

example, non emerging cracks or delaminations, completely spoil the insulating qualities of 

buildings, owners (and future owners) would be pleased to locate these defaults. Whatever the 

situation, the challenge is the same: being able to locate invisible things under a layer of plaster 

or similar material, which amounts to locate inhomogeneities in a homogeneous medium. These 

defaults locally modifying the global thermophysical properties of the medium, they can be located 

by an in-situ estimation of these properties. 

The present work deals with new and effective approaches, alternative to commonly-used (and 

not always very efficient) approaches and based on artificial intelligence tools, for estimating the 

thermal diffusivity of building materials, using thermograms obtained with a non-destructive 

photothermal method. Three approaches are proposed, based on responses to a PRBS: rebuilding 

impulses responses using an Elman recurrent network and then estimating thermal diffusivities 

thanks to an inverse method (neuro-inverse approach) and directly estimating thermal diffusivities 

using a multi-layer Perceptron (neuronal approach) or an adaptative network-based fuzzy inference 

system (neuro-fuzzy approach). The first conclusion of the work is that artificial intelligence tools 

are useful for characterizing materials. Indeed, whatever the proposed approach, the results are 

very satisfactory. Let us note that the best results are provided by the neuro-fuzzy approach, 

highlighting both the significant contribution of expert knowledge and the fact that rebuilding 

impulse responses for estimating thermophysical properties is not mandatory. One can directly 

estimate the thermal diffusivity of building materials from responses to PRBS, using artificial 

intelligence tools. Future works will now focus, first, on considering more materials, and as a 

consequence more thermal behaviors, for developing global models about thermal diffusivity 

estimation. In particular, we will be interested in organic building materials, such as, for 

example, wood or clay. Among all the materials used for developing and testing the proposed 

approaches, only glass wool is such a material. Characterizing dual-layer materials will also be 

considered. Finally, future works will also centre on, first, validating experimentally the 

developed models and, secondly, on extending the range of application of these models to other 

interesting thermophysical properties (such as thermal effusivity or thermal contact resistance).  
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