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Abstract 

In a context of sustainable development, enthusiasm for concentrated solar power technologies is developing. So, the CSPIMP 

(Concentrated Solar Power efficiency IMProvement) project started in 2013 in order to achieve a better competitiveness for the 

CSP plants. Its main target is to develop new procedures to improve steam turbine start up cycles, maintenance activities and 

plant control. One challenge in the project is to better forecast the solar resource in order to optimize plants operation. The 

development of a clear sky model is therefore an essential step to forecast Direct Normal Irradiance (DNI) because clear sky 

represents the nominal operating conditions of a concentrating solar power plant. This paper focuses on estimating DNI under 

clear-sky conditions using a knowledge model based on the coefficient of relative optical air mass, DNI and atmospheric 

turbidity fluctuations. The satisfactory results obtained validate the proposed methodology. 
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1. Introduction 

It is widely acknowledged by solar companies and plant operators that cost remains the main drawback of 

Concentrating Solar Power (CSP) systems. In that context, the CSPIMP (Concentrated Solar Power efficiency 

IMProvement) project has been initiated in 2013 in order to make CSP plants more competitive. The main target of 

the project is to improve plant efficiency by developing better procedures for steam turbine start up cycles and 

maintenance activities as well as proposing advanced plant control schemes. 

 

 
* Corresponding author. Tel.: +33468682257; fax: +33468682213. 

   E-mail address: stephane.grieu@promes.cnrs.fr 

http://www.sciencedirect.com/science/journal/22126716


 J. Nou/ Energy Procedia 00 (2015) 000–000 

Depending on the CSP configuration (turbine, back-up generator, buffer tank, storage system…), a customized 

forecast model must be built to deal with the plant's specific behaviour against solar variability. Different forecast 

models exist to assess the solar resource at short-term (i.e. a few minutes), medium-term (i.e. a few hours) and long-

term (i.e. a few days) horizons. 

For instance, Numerical Weather Prediction (NWP) models are well adapted to the forecast of changes in 

meteorological parameters at long-term horizon [1]. These models are able to provide forecasts of parameters such 

as temperature, relative humidity and wind speed but also global and direct irradiance, which is relevant information 

for CSP plant strategy improvement and integration into the electricity grid. However, NWP models do not take into 

account the cloud cover. So, to refine their spatial and temporal resolutions, such models can be coupled with 

satellite imagery. Indeed, satellite imagery is able to provide more comprehensive information about cloud motion 

[2]. Images are provided every 15 minutes by geostationary satellites, as Meteosat in Europe or GEOS in the USA, 

with a spatial resolution of ~1 km². From these images, it is possible to obtain a daily trend of solar irradiance, what 

can be relevant in order to optimize the use of a storage system. Moreover, NWP models and satellite imagery can 

be combined with time series forecasting models, based on a historical climate database, with the aim of identifying 

cycles and/or trends in the solar resource [3]. However, NWP models, even coupled with satellite imagery, are not 

suited to the real-time management of a solar power plant. 

Images can also be provided by ground-based cameras, named sky imagers. Such cameras allow solar radiation 

to be forecasted at high spatial (~100 m²) and temporal (< 30 min) resolutions. Indeed, sky imagers can provide in 

real-time a very short term forecast of the beam attenuation produced by clouds, allowing the power plant owner to 

make more accurate bids in the market with less risk of under-generation (leading to penalties) or over-generation 

(leading to losses due to curtailment). Sky imagers can also contribute to an increase in equipment lifetime and 

reliability using forecasting algorithms developed to take advantage of solar variability. It is especially interesting 

for storage systems for which the overall return on investment is directly related to the system's lifetime. A smart 

charging and release algorithm can take advantage of the future availability and variability of the solar resource to 

better coordinate the backup generator with a buffer tank. It could help to reduce the number of charging/release 

cycles and would make storage systems more economically feasible. Finally, sky-imaging systems can also be used 

to adjust the Heat Transfer Fluid (HTF) flow in real time. At the moment, CSP plants are working with strong 

limitations on the HTF flow in order to avoid bending absorber pipes during fast fluctuations of the solar resource. 

Having the HTF flow as a function of the DNI and using a sky-imaging system would allow the plant to operate 

with lower limitations on this flow. Consequently, HTF temperature would be more often at its nominal point, 

allowing the plant to be more effective. 

Among the different approaches and devices available to perform the forecasting of solar resource, we focused on 

ground-based cameras which are well-suited to estimate and forecast the clearness index at a very short-term horizon 

and a high spatial resolution [4–6]. Usually, this forecasting approach consists in two complementary steps. The first 

one is about determining the clearness index (its value ranges between 0 and 1) corresponding to the sun occultation 

caused by clouds. The second step is related to the clear sky model used to estimate the theoretical solar irradiance 

received at ground level without clouds. Developing a clear sky model is therefore an essential step to forecast direct 

normal irradiance. Nowadays, clear sky models developed for satellite imagery [2,7] or ground-based camera 

applications [4–6] are often inappropriate to real-time applications. Indeed, at the moment, there are no works 

dealing with the clear sky detection in real-time. As an example, in a previous work [8], we proposed a methodology 

based on a multi-resolution analysis (using the discrete wavelet transform) in order to detect clear sky days in our 

database. This approach is useful for data preprocessing and model development but not adapted to real-time 

applications like solar power plants management. Moreover, the existing models dealing with clear sky irradiance 

are relatively basic. For instance, an approach is proposed to obtain short-term forecasts of DNI at the ground level 

by authors assuming that DNI is constant (900 W.m
-2

) during the considered period (from 10:00 PM to 14 PM) [6]. 

More often, clear sky irradiance models use yearly or monthly atmospheric turbidity values or are based on 

polynomials. In their work [4], Quesada-Ruiz et al. computed clear-sky DNI from an eighth-order polynomial of the 

cosine of the solar zenith angle using a Least Squares Method (LSM). However, the results they obtained show that, 

for clear sky conditions, the model is less effective than a basic persistent model. In another study, clear sky 

irradiance is computed from the Linke turbidity coefficient. This coefficient has the main drawback to be dependent 

on air mass [5]. In order to overcome these different problems, a knowledge model based on the coefficient of 

relative optical air mass, DNI and atmospheric turbidity fluctuations is proposed in order to estimate the clear sky 
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DNI in real time. The paper is organized as follows: section 2 is about the PROMES-CNRS experimental platform 

as well as the measured and computed variables used in the clear sky model development and validation. Section 3 

focuses first on atmospheric turbidity. In addition, the model development and optimization processes are described. 

Section 4 deals with the estimation results we obtained and an overall analysis. The paper ends with a conclusion 

and outlook on further work. 

Nomenclature 

  Multiplicative coefficient based on the altitude of a considered site 

  Position of an element in a given vector 

      Sequence of pseudo random values drawn from the standard distribution on [0,1] 

   Clearness index 

  Altitude-corrected air mass 

  Sun-Earth distance correction factor 

      Last time atmospheric turbidity is trustworthy 

  Binary sequence resulting from the visual highlight of clear sky instants  

  Pseudo Random Binary Sequence (PRBS) 

   Sequence of pseudo random values drawn from the standard distribution on [0,1] 
  Sequence obtained by multiplying the sequences   and   term by term 

   Model constant 1 

   Model constant 2 

   Coefficient of atmospheric turbidity 

  Direct normal irradiance (W.m
-2

) 

   Extra-terrestrial solar irradiance (W.m
-2

) 

    Broadband direct normal irradiance under clear sky conditions (W.m
-2

) 

   Generated solar irradiance sequence (W.m
-2

) 

  Total number of elements in a given vector 

     Degradation ratio dealing with the proportion of "1" in sequence   

  Atmospheric transmittance resulting from both scattering and absorption of the sunlight 

    Atmospheric turbidity (Ineichen and Perez [9]) 

   Elapsed time since the last trustworthy atmospheric turbidity measurement (s) 

      Maximum value of    (s) 

      Minimum value of    (s) 

   Measured change in atmospheric turbidity 

      Threshold of atmospheric turbidity change 

      Maximum accepted change in atmospheric turbidity 

      Minimum accepted change in atmospheric turbidity 

2. Experimental set-up and database 

   
(a) Experimental platform (b) PROMES sky imager (c) Irradiance sensor (RSI) 

Fig. 1. View of the experimental platform.  
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To develop and validate our model, an experimental platform (Fig. 1.a) has been installed at the PROMES-CNRS 

laboratory in 2013 (Perpignan, France, latitude is 42.66° N, longitude is 2.91° E and elevation is ~50 m). This part 

of the paper provides a hardware overview of the platform and specifies the working conditions of the different 

instruments used. 

2.1. PROMES Sky Imager 

To determine the clear sky index (its value ranges between 0 and 1) corresponding to the sun occultation caused 

by clouds, the PROMES-CNRS laboratory has decided to build its own system, fully customizable from both a 

hardware and software point of view. This decision has been motivated by the fact that all the existing sky imagers 

suffer from drawbacks and PROMES-CNRS believes that a customizable solution would make such systems more 

attractive. After a detailed review of the different cameras proposed by manufacturers, a 5-megapixel camera with a 

color CMOS sensor has finally been selected. The camera, named 5481VSE-C and provided by IDS, is equipped 

with a Fujinon fisheye lens and protected by a waterproof enclosure manufactured by autoVimation (Fig. 1.b). 

Images are collected every 20 seconds at a resolution of 1920 x 2560 pixels and with a bit depth of 8 bits per 

channel (i.e. 3x8 bits). 

2.2. Irradiance sensor 

A Rotating Shadowband Irradiometer (RSI) (Fig. 1.c) has been installed next to the sky imager in order to 

measure every minute, with a good precision, the solar irradiance components. Equipped with a silicon photodiode 

radiometer and a shadow band, this instrument allows Direct Normal Irradiance (DNI), Global Horizontal Irradiance 

(GHI) and Diffuse Horizontal Irradiance (DHI) to be measured or deduced from measurements. The data are 

collected by the sky imager software and immediately included in the process analysis. In the present study, we only 

focus on DNI measurement because it is a key point in the clear sky model development and because in the CSP 

technology, the power production is only affected by the direct component. 

2.3. Database 

The database used to develop and validate the clear sky model is composed of data collected by the experimental 

platform and data derived from the sun-earth equations given by the SG2 algorithm [10]. Knowing the Julian date 

and the localization of the considered site (latitude, longitude, and altitude), this algorithm is able to give quickly 

and with high accuracy all information like air mass, azimuth/zenith angles, and extraterrestrial solar radiation. In 

order to avoid missing data, we considered measures from February the 5th to March the 21st, 2014. 

3. Clear-sky irradiance model  

Clear sky is the nominal operating conditions of a solar power plant. Consequently, the clear sky irradiance model 

is a key component in a forecasting approach. This section of the paper deals with the model developed by the 

PROMES-CNRS laboratory for our real-time sky imager application. So, a knowledge model based on the 

coefficient of relative optical air mass, DNI and atmospheric turbidity fluctuations is proposed in order to estimate 

the clear sky DNI in real time (   ). Before addressing the development phase, let's talk about atmospheric turbidity. 

3.1. Atmospheric turbidity 

Under clear sky conditions, the broadband DNI       is given by (1): 

           (1) 

with    the extraterrestrial solar irradiance (   = 1361.2 W.m
-2

 [11]),   the sun-earth distance correction factor and   

the atmospheric transmittance resulting from both scattering and absorption of the sunlight. This atmospheric 

transmittance can be obtained using radiation transfer models [12] or a broadband turbidity coefficient like the well-
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known Linke turbidity coefficient [13]. Although radiation transfer models have proven to be able to forecast clear 

sky DNI with unsurpassed accuracy, they require Aerosol Optical Depth (AOD) data which are difficult to measure 

or rarely available with high accuracy. On the other hand, models based on a broadband turbidity coefficient give a 

lower accuracy than radiation transfer models but can be easily implemented because they only derive from 

broadband beam radiation measurement networks. In 2002, Ineichen and Perez [9] proposed an empirical 

formulation of the turbidity coefficient for the normal beam clear sky radiation including both scattering and 

absorption phenomena. This new formulation is less dependent on air mass than the Linke turbidity coefficient. 

Because this coefficient (TLI) is well adapted for on-site and real-time applications, it has been selected as a starting 

point in the development of our clear sky model. It is calculated using equation (2): 

      [
    

 
   (

   
   

)] (2) 

with   the optical air mass and   a coefficient taking into account the altitude of the considered site. 

3.2. Real-time estimation of the atmospheric turbidity 

During the real-time DNI acquisition process, each new DNI value   must be classified as clear sky irradiance or 

not. It is a key information because it allows the clearness index    to be calculated. It is defined as follows (3):  

   
 

   
 (3) 

with   the measured irradiance and     the estimated clear sky irradiance. This index is a powerful indicator of the 

beam attenuation produced by clouds and is frequently used in solar resource forecasting [4–6]. To classify the last 

measured DNI value correctly, an algorithm based on the atmospheric turbidity transient behaviour has been 

developed. It takes advantage of the fact that atmospheric turbidity fluctuations are low through the day. The 

algorithm works as follows (Fig. 2): 

 

Fig. 2. Diagram of the developed knowledge model. 
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Each time DNI (    ) is measured (under clear sky conditions or not), a corresponding coefficient related to 

atmospheric turbidity       is calculated (A) using equation (2). This coefficient       is equal to atmospheric 

turbidity        only if the measured DNI (    ) corresponds to the clear sky DNI (      ). So, in order to decide if 

      corresponds or not to atmospheric turbidity, changes in atmospheric turbidity are considered via its maximum 

plausible change        (C) and its measured change    (D). These two variables are computed from the last time 

(     ) atmospheric turbidity     is trustworthy (B). So,       is the last time the coefficient related to atmospheric 

turbidity       is used as atmospheric turbidity. The threshold        has been computed on the basis of the transient 

atmospheric turbidity behaviour we highlighted in our database. Indeed, the bigger    is, the more plausible the 

atmospheric turbidity increase is. However, according to its daily behaviour (atmospheric turbidity never increases 

all the day), a maximum change is defined. Fig. 3 shows how       has been computed according to   . 

 

Fig. 3.        vs.   . 

For now, a simple linear interpolation has been performed in order to determine      . Therefore,       is given 

by equation (4), with    and    the slope and the intercept of the curve (between       and      ), respectively (5): 

                            (4) 
  

                             ⁄   and                    (5) 

      and        mean that atmospheric turbidity cannot increase more than       for two consecutive DNI 

acquisitions       (         seconds and            ).       and       mean that atmospheric turbidity 

cannot increase more than 1 through the day (         hours and        ). These four parameters have been 

set taking into account the acquisition time step, accuracy in RSI measurements as well as changes in atmospheric 

turbidity one can observe in the database. As a result, they are proper to both the considered site and measurement 

devices used.    is about the measured change in atmospheric turbidity. It is computed as follows (6): 

            (     ) (6) 

Once these two thresholds are computed (       and   ), a decision based on their comparison is taken (E) in 

order to determine if the computed coefficient       is, or not, the "real" atmospheric turbidity       . This decision 

is taken according to the following conditions (7): 

           or           or            (7) 

where      and      are constants defined empirically (using our database) and derived from the minimum and 

maximum possible values of atmospheric turbidity. If (7) is true (i.e.    is not plausible), the mean atmospheric 

turbidity value 〈   〉 calculated over the last five minutes is assigned to         However, the time of the day impacts 

the decision process. For example, during sunrise or sunset, 〈   〉 is consistently used because atmospheric turbidity is 

not easy to compute in such periods. This approach provides more stable values. Sunrise and sunset have been 

determined from both the air mass   and time, as shown in Table 1. Finally, once atmospheric turbidity (      ) is 

computed, the clear sky DNI (      ) is obtained (F) by inverting equation (2). 
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Table 1. Sunrise and sunset determining. 

Sunrise        Sunset 

m > 10 and time < 12:00 p.m. m > 6 and time > 12:00 p.m. 

3.3. Model evaluation 

In order to validate our model, an evaluation methodology has been defined. This methodology is based on the 

different steps presented by Fig. 4. The main target is to quantify model accuracy. The idea is then to generate a 

signal similar to DNI and a noise is added to simulate variations caused by clouds. This noise is only added during 

some clear sky instants in order to use clear sky DNI measurements as reference during the validation step. The next 

section of the paper gives more details about this process. 

 
Fig. 4. Overview of the five steps used for model evaluation. 

From the measured DNI     and thanks to pictures taken by our sky imager (in order to be sure that the sun disk 

appears clearly), clear sky instants have been visually highlighted (a).   is the resulting signal (b). It is a binary 

sequence where 0 corresponds to a sun occulted by clouds while 1 is about clear sky. On Fig. 4, only five 

consecutive days are plotted.  However, our study considers 45 days of the database, which is about 150 hours of 

clear sky data. In order to evaluate our clear sky model, we degraded a part of these 150 hours of data (c). 

Considering this noisy signal, we compared the clear sky values given by our model and measured clear sky data 

(without noise). Firstly, we generated a random sequence denoted    (in which each element     [   ]). From    

we generated  , the Pseudo Random Binary Sequence (PRBS), by using (8), according to the ratio      dealing with 

the proportion of "1" in such a sequence: 

            

                   
                    

 (8) 

In our study, this ratio ranges between 0.1 and 0.9 (because it can be very different, depending on the season of 

the year). As a consequence, the initial signal   has been degraded according to     . For instance, a ratio      equal 

to 0.7 means that the initial clear sky DNI signal is degraded by 70 %. Then, multiplying the sequences   and   term 

by term, we obtained the sequence   (d). This sequence was determined by using the following expression (9): 

                    (9) 
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where   is about the position of an element in a given vector and   is the total number of elements in that vector. 

Finally, from this signal, we generated another signal   , used as input of our model (e). It is defined as follows: 

when   is equal to 0,      and when   is equal to 1,           .       is a sequence of pseudo random values 

drawn from the standard distribution on the interval [0,1]. From this methodology, it is possible to test our model 

and evaluate its efficiency knowing the real values of the clear sky DNI (when     , with      ). In order to 

quantify the model accuracy, we considered both the Mean Absolute Error (MAE) and the Normalized Root-Mean-

Square Error (NRMSE), defined as follows (10): 

    
 

 
∑|     ̂  |                      

√ 
 
∑(     ̂  )

 

      
       

 
(10) 

with       
,       

,     and  ̂   the minimum, maximum, measured and estimated values of the clear sky DNI, 

respectively. The results we obtained using the proposed knowledge-based model are presented in the following 

section of the paper (section 4). 

4. Results and discussion 

Using our knowledge model and the noisy signal   , one can obtain clear sky DNI values. To obtain more 

relevant and reliable results, we generated ten times the pseudo random binary sequence  . The impact of      on 

both the MAE and NRMSE is highlighted by Table 2. 

Table 2. Impact of      on both the MAE and NRMSE. 

     0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

MAE (W.m-2) 16.1 17.5 19.2 20.3 21.4 22.7 24.6 27.2 33.4 
STD MAE (W.m-2) 4.77 4.68 3.44 2.95 3.05 2.84 1.83     1.90 2.46 

NRMSE (%) 1.01 1.26 1.56 1.63 1.72 1.79 1.90 2.14 2.77 

STD NRMSE (%) 0.63 0.82 0.65 0.58 0.58 0.50 0.35 0.31 0.32 

 
Taking a look at this table, one can notice that the more the ratio      increases (i.e. the higher the degradation of 

the signal) the quicker the MAE and NRMSE increase. Indeed, considering a high degradation, clear sky data are 

less available to facilitate a good computation of atmospheric turbidity and, therefore, the clear sky DNI. With a 

ratio      set to 0.1, the MAE and NRMSE are 16.1 W.m
-2

 and 1.01%, respectively. With a ratio      set to 0.9, the 

MAE and NRMSE are 33.4 W.m
-2

 and 2.77%, respectively. Moreover, we clearly notice that the results are very 

dependent on the operating conditions considered for model evaluation (     values). According to the DNI 

measurements realized for this study, the mean ratio of clear sky data during a day is close to 32 %. This 

corresponds to a ratio      equal to 0.68. So, the results obtained for the on-site measured ratio (        ) are 

satisfactory because of a MAE equal to 24.6 W.m
-2

 and a NRMSE equal to 1.9% (Table 2). Fig. 5 presents the 

results obtained using the proposed clear sky model for three consecutive days of March 2014. These three days 

have been selected in order to highlight how the model is able to work with different DNI behaviours.      has been 

set to 0.7 in order to be representative of on-site measurements.  

The three selected days (March 1 to March 3) have different solar irradiance profiles. For each day, we can note 

sharp and frequent changes in DNI (i.e. cloudy periods of limited duration) and periods during which DNI is 

insignificant (overcast). Indeed, when the coefficient related to atmospheric turbidity (     ) does not correspond to 

atmospheric turbidity (i.e. condition (7) is true), the mean value of atmospheric turbidity is used (if it is not available 

during the last five minutes, like during sunrise, the last value of the day before is used). However, when       can 

be considered as equal to atmospheric turbidity (i.e. condition (7) is false), the values of        are updated. These 

updates produce more or less important changes in the red curve, depending on the time between two measurements 

or the magnitude of the update. 

Generally, the clear sky DNI values given by the model form an upper limit envelope (the red curve on Fig. 5) 

and clear sky DNI fluctuations, caused by the atmospheric turbidity updates, are relatively slight. It was a key point 
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to obtain slight fluctuations on clear sky DNI estimation in order to avoid problems during the short-term DNI 

forecasting process. Indeed, as previously explained, the development of a reliable and accurate clear sky model is 

an essential step in solar resource forecasting. Thus, the more reliable the forecast is, the more efficient the real-time 

management of a solar power plant will be. 

 

 
Fig. 5. Measured clear sky DNI and clear sky DNI estimated by the model, with      set to 0.7. 

5. Conclusion and outlook 

The CSPIMP (Concentrated Solar Power efficiency IMProvement) project started in 2013 in order to achieve a 

better competitiveness for the CSP plants. One challenge in the project is to improve forecast of the solar resource in 

order to optimize plants operation. The development of a clear sky model is therefore an essential step to forecast 

Direct Normal Irradiance (DNI) because clear sky represents the nominal operating conditions of a concentrating 

solar power plant. So, this paper focuses on estimating DNI under clear-sky conditions using a knowledge model 

based on the coefficient of relative optical air mass, DNI and atmospheric turbidity fluctuations. This model takes 

advantage of the lower variability of atmospheric turbidity, in comparison to the DNI variability.  

The empirical formulation of atmospheric turbidity proposed by Ineichen and Perez has been selected in this 

study because it proved to be less dependent on air mass than the widely-used Linke turbidity coefficient; it is also 

well adapted for on-site and real-time applications. A validation procedure has been proposed and allowed the 

model accuracy to be highlighted. With a ratio      equal to 0.7 (see section 3.3), the MAE and NRMSE are 

25 W.m
-2

 and 2 %, respectively. In addition, the structure of the proposed knowledge-based model makes it well 

adapted to real-time applications. As a result, it will be soon implemented and validated on site (Palma del Rio CSP 

plant, Spain). 

Future work will focus on evaluating the error distribution in the course of the day (error vs. air mass) as well as 

new options to deal with       (i.e. the coefficient related to atmospheric turbidity) not corresponding to atmospheric 

turbidity. Finally, in order to forecast at short-term horizon the clear sky DNI and then DNI for all types of sky 

conditions, a persistent model based on atmospheric turbidity will be developed and evaluated. For such a forecast 

horizon, this approach has proven to be adequate, due to the low variability of atmospheric turbidity. 
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