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Abstract: 

We tested the applicability of the BIT (branched and isoprenoid tetraether) index as a proxy for 
palaeoflood events in the river-dominated continental margin of the Gulf of Lions (NW Mediterranean). 
We compared the concentrations of branched glycerol dialkyl glycerol tetraethers (br GDGTs) and 
crenarchaeol in suspended particulate matter (SPM) collected downstream in the Rhône River, as well 
as in surface sediments and a ca. 8m piston core from the Rhône prodelta. The core covered the last 
400 yr, with four distinct intervals recording the river influence under natural and man-induced shifts in 
four main channels of the river mouth (Bras de Fer, Grand Rhône, Pégoulier,and Roustan). The 
results indicate that there are mixed sources of br GDGTs and crenarchaeol in the prodelta, 
complicating applicationof the BIT index as an indicator of continental organic carbon input and thus 
as a palaeoflood proxy. However, the sedimentary BIT record for the period when continental material 
was delivered by the river more directly to the core site (Roustan phase;1892 to present) mimics the 
historical palaeoflood record. This shows the potential of the BIT index as a palaeoflood proxy, 
provided that the delivery route of the continental material by rivers to the core sites remains constant 
over time. The study also highlights the idea that shifts in river channels should be taken into account 
for the use of the BIT index as a palaeoflood proxy. 

Highlights 

► Sources of br GDGTs and crenarchaeol in the Rhône prodelta are mixed. ► The BIT index record
mimicked the historical palaeoflood record in the prodelta. ► Variation in Rhône River channel shifts 
influenced the BIT index. 
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1. Introduction

The Earth’s surface temperature rose by 0.6 ± 0.2°C over the 20th century, with 

accelerated warming over the past two decades (IPCC, 2013). With a warmer climate, the 

water holding capacity of the atmosphere and evaporation to the atmosphere increase (e.g. 

Trenberth et al., 2003). Therefore, it would be expected that perturbation of the global water 

cycle would accompany global warming (e.g. Allen and Ingram, 2002). The possibility of 

increased precipitation intensity and variability is projected to boost the risk of extreme events 

such as typhoons/cyclones, droughts and floods (IPCC, 2013). Many countries in temperate 

and tropical zones are vulnerable to such extreme events, exposing their coastal areas, 

including deltas, and their dense population to substantial human and economic consequences. 

Although the global climate models used for projections of future climate changes in the 

IPCC fifth assessment have been improved since the IPCC fourth assessment, the numerical 

model simulations still have difficulty in producing precipitation forecasts consistent with 

observations, whereas the prediction of temperature is more accurate (IPCC, 2013). 

Consequently, accurate predictions of changes in precipitation are more difficult to evaluate 

from current climate models. Therefore, the claim of increasing magnitude of extreme events 

due to global warming needs to be verified against paleodata with precise age dating, 

providing records of variation of precipitation that actually occurred in the past. 

Instrumental records of river flows have been used to establish statistical relationships 

between weather and runoff, which has been applied to predict hydrological changes in the 

future (e.g. Prudhomme et al., 2002). However, instrumental records of water discharge are 

too short to evaluate long term variation and already fall within the period of suggested strong 

human impact on natural conditions. The study of paleohydrological response to past global 

climate change can provide valuable information for indicating the potential impact of the 

present greenhouse global climate change and therefore contribute to design strategies for 



  

water and risk management (e.g. Gregory et al., 2006). Therefore, a wide range of tools and 

analytical techniques have been developed to extend hydrological data beyond the 

instrumental period of historical and geological scales: geological/geomorphological data (e.g. 

Starkel, 2003; Baker, 2006; Gregory et al., 2006), fossil pollen and plant macrofossil data (e.g. 

Bonnefille and Chalié, 2000), δD and δ13C data for higher plant derived leaf wax (e.g. Schefuß 

et al., 2005) and a process-based vegetation model (Hatté and Guiot, 2005). Nonetheless, 

reconstruction of paleohydrological change is still challenging, with seemingly no consensus 

on the occurrence of reconstructed millennial-scale variation. Continuous palaeoflood records 

beyond the instrumental period are rare or too short to assess natural variation in flood 

occurrences related to climate change. Establishing a proxy which can be used for palaeoflood 

reconstruction is therefore desirable.  

Due to the development of high pressure liquid chromatography-mass spectrometry 

(HPLC-MS) techniques for the analysis of glycerol dialkyl glycerol tetraethers (GDGTs) 

(Hopmans et al., 2000), the branched and isoprenoidtetraether (BIT) index was introduced as 

a tool, initially for estimating the relative amount of river borne terrigenous organic carbon 

(OC) in marine sediments (Hopmans et al., 2004) and later more specifically as a proxy for 

river borne soil OC input (Huguet et al., 2007; Walsh et al., 2008; Kim et al., 2009; Smith et 

al. 2010). The index is based on a group of branched GDGTs (br GDGTs, Fig. 1), 

presumablyderived from anaerobic bacteria (Weijers et al., 2006) which occur widely in soil 

(Weijers et al., 2007), and a structurally related isoprenoid GDGT, crenarchaeol (Fig. 1), 

produced predominantly by marine planktonic Group I Crenarchaeota (SinningheDamsté et 

al., 2002; see also Table 4 in Schouten et al., 2013), which was recently reclassified as the 

novel phylum Thaumarchaeota (Brochier-Armanet et al., 2008; Spang et al., 2010). The index 

has also shown potential as a proxy for paleohydrology change (Ménot et al., 2007; 

Verschuren et al., 2009). However, it has also been shown that variation in the index in 



  

marine sediments may reflect predominantly variation in marine crenarchaeol production 

rather than the soil-derived br GDGT flux (e.g. Weijers et al., 2009; Fietz et al., 2011; Smith 

et al., 2012). Therefore, it is necessary to further assess its applicability for palaeo studies of 

diverse river systems by constraining the source of br GDGTs and crenarchaeol.  

We have previously performed several studies of the BIT index in the Têt River system 

(France), which has a relatively small catchment area, and in the Gulf of Lions (NW 

Mediterranean) into which the Têt River and Rhône River flow (Kim et al., 2006, 2007, 2009, 

2010). A suspended particulate matter (SPM) study of the Têt River showed that variation in 

the concentration of br GDGTs was closely related to water and sediment discharges (Kim et 

al., 2007). The average BIT value for the Têt suspended particles (0.85) was substantially 

higher than that for the offshore seawater (< 0.01). Studies of marine surface sediments in the 

Gulf of Lions showed that the BIT index decreased from the inner shelf to the continental 

slope (Kim et al., 2006, 2010). Analysis of sediment trap and multicore material collected 

from the Têt inner shelf showed that the proportion of soil OC to total OC calculated on the 

basis of the BIT index was higher during flood periods than non-flood periods (Kim et al., 

2009).  

Although previous studies showed that the index was able to trace the input of soil OC 

in the Gulf of Lions, its applicability as a proxy for palaeoflood events was not assessed for 

the river-dominated continental margin of the Gulf of Lions. Therefore, we have extended our 

previous studies, by analysing the SPM from the downstream Rhône, as well as sediment 

samples from a 43 cm multicore and a ca. 8 m piston core from the Rhône prodelta. We 

compared GDGT data from the piston core with ostracod data from Fanget et al. (2013), 

which identified the extreme flood events based on the occurrence of freshwater (continental) 

ostracods. This enabled us to constrain the applicability of the BIT index as a palaeoflood 

indicator in the Gulf of Lions. 



  

 

2. Study area 

The Gulf of Lions is a river dominated continental margin in the NW Mediterranean 

Sea between 42°N 3° E and 44° N 6°E (Fig. 2). Freshwater input and sediment input to the 

gulf originate mainly from the Rhône River, which has a catchment area of 97,800 km² and a 

length of 812 km, with its source in the Alps. The mean annual water discharge is ca.1700 

m3/s and the annual solid discharge variesbetween 2 and 20 x 106 tonnes, with flood events 

responsible for > 70% of the amount (Pont et al, 2002; Eyrolle et al, 2006, 2012; Sabatier et 

al., 2006). In the marine coastal area, close to the river mouth, both flocculation and 

aggregation lead to the formation of fine grained deposits, i.e. the subaqueous prodelta (30 

km²). Most of the sediment delivered by the river is primarily entrapped in the prodelta (Ulses 

et al., 2008), characterized by a sediment accumulation rate of up to 20–50 cm/yr (Calmet and 

Fernandez, 1990; Charmasson et al., 1998; Radakovitch et al., 1999). Sedimentation rate 

strongly decreases seaward, with values of 0.2–0.6 cm/yr at 20 km distance (Miralles et al., 

2005). The prodelta cannot, however, be considered as a permanent sedimentary repository 

since it is subject to episodic reworking (Marion et al., 2010) and subsequent seaward export 

through several turbid layers, i.e. nepheloid layers (Aloïsi et al., 1982; Estournel et al., 1997; 

Naudin and Cauwet, 1997).  

 

3. Material and methods 

3.1. Sample collection 

The SPM samples are listed in Table 1 and sampling positions are shown in Fig. 2. Six 

SPM samples were collected close to the water surface and thebottom of the Rhône River at 

three different stations (RW1, RW2 and RW3). At the river mouth (RW4), the samples were 

collected at four different water depths. The hydrodynamics and mixing of river water with 



  

marine water in the estuary is typical of a micro-tidal salt wedge estuary (Ibañez et al., 1997). 

The salt marine water forms a wedge in the river water column underneath the freshwater 

layer. Therefore, we considered three SPM samples from beneath the surface layer at the river 

mouth as mixed SPM from both seawater and freshwater. For elemental analysis of SPM and 

the concentration, water was collected manually with a bucket. A small portion of the water 

(0.5-0.7 l) was filtered on to ashed (450 °C, overnight) and pre-weighed glass fibre filters 

(Whatman GF-F, 0.7 µm, 47 mm diam.). For lipid analysis, 5-23 l water were filtered on to 

ashed glass fibre filters (Whatman GF-F, 0.7 µm, 142 mm diam.) with an in situ pump system 

(WTS, McLane Labs, Falmouth, MA). All samples were kept frozen at -20 °C and freeze 

dried before analysis. 

The multicore, Dyneco 23B, (Fig. 2) was retrieved,from the Roustan,prodeltaic,lobe at 

46 m water depth (43.307 N; 4.855 E) during the RHOSOS cruise (R/V Le Suroît) in 

September 2008. The surface sediment (0-0.5 cm) was sliced and immediately deep frozen on 

board. The piston core RHS-KS57 (Fig. 2) was obtained from 79 m water depth (43.285 N; 

4.8495 E) during the same cruise. The age model for this core was established using 137Cs, Pb 

isotopic ratio (206Pb/207Pb) and one accelerator mass spectrometer (AMS) 14C date on a well-

preserved Turritella sp.,as described by Fanget et al. (2013). The core was subsampled at 5 

cm intervals for elementalanalysis and GDGT analysis. The samples were freeze dried and 

homogenized prior to analysis. 

 

3.2. Bulk geochemical analysis 

The OC content of the marine sediments was obtained using an elemental analyser 

(LECO CN 2000 at CEFREM), after acidification with 2 M HCl (overnight, 50 °C) to remove 

carbonate. The OC data for core RHS-KS57 were published by Fanget et al. (2013). The 

freeze dried filter samples were decarbonated with HCl vapour as described by Lorrain et al. 



  

(2003) and analysed with a Thermo Flash EA 1112 Elemental Analyzer. The OC content was 

expressed as wt. % dry sediment. The analyses were determined at least in duplicate. The 

analytical error was on average better than 0.2 wt. %. 

 

3.3. Lipid extraction and purification  

The filters on which SPMwas collected (10 in total 10) were freeze dried and 

extracted using a modified Bligh and Dyer method (White et al., 1979; Pitcher et al., 2009) 

in order to analyse core lipids and intact polar lipids. The Bligh and Dyer extract (BDE) 

was separated over a small silica gel (activated overnight) column with n-hexane:EtOAc 

(1:1, v:v) and MeOH as eluents for core lipids and intact polar lipids, respectively. For 

GDGT quantification, 0.01 µg C46 GDGT internal standard was added to each fraction. The 

core lipid fractions from the BDE were separated into two fractions over an Al2O3 column 

(activated 2 h at 150 ˚C) using hexane:DCM (1:1, v:v) and DCM:MeOH (1:1, v:v), 

respectively. 

For the upper 3m of core RHS-KS57, GDGTs were analysed every ca. 5 cm, and 

every ca. 10 cm between 3 m and 7.7 m (in total 79 samples). These samples and the core 

top sediment from multicore Dyneco 23B were extracted with an accelerated solvent 

extractor (DIONEX ASE 200) using DCM:MeOH(9:1, v:v) at 100 °C and 1500 psi. The 

extracts were collected in vials. Solvents were removed using Caliper Turbovab®LV, and 

the extracts were taken up in DCM, dried over anhydrous Na2SO4, and blown down under a 

stream of N2. For quantification of GDGTs, 0.1 µg internal standard (C46 GDGT) was 

added to each total extract before it was separated into three fractions over an activated 

Al2O3 column using hexane:DCM (9:1, v:v), hexane:DCM (1:1, v:v) and DCM:MeOH (1:1, 

v:v).  

 



  

3.4. GDGT analysis and BIT calculation 

For the SPM samples, the analysis of GDGTs incore and intact polar lipid fractions 

was carried out as described by Zell et al. (2013a). For the marine sediments, the polar 

DCM:MeOH fractions were analyzed for core lipid GDGTs as described by Schouten et al. 

(2007). The fractions were dried down under N2, redissolved by sonication (5 min) in n-

hexane:propan-2-ol (99:1, v:v) to a concentration of ca. 2 mg/ml and filtered through 0.45 

µm PTFE filters. The samples were analyzed using HPLC-APCI-MS according to the 

procedure described by Schouten et al. (2007), with minor modifications. GDGTs were 

detected using selective ion monitoring of (M+H)+ ions (dwell time 237 ms) and 

quantification was achieved by integrating peak areas and using the C46 GDGT internal 

standard according to Huguet et al. (2006). Note that the two different extraction methods 

used for quantification of GDGTs of core lipids should provide comparable results (cf. 

Lengger et al., 2012). 

The BIT index was calculated according to Hopmans et al. (2004): 

 

      (1) 

 

The roman numerals refer to the GDGTs indicated in Fig. 1. I, II and III are br GDGTs and IV 

is crenarchaeol (Hopmans et al., 2004). The reproducibility in the determination of the BIT 

index was better than ± 0.01. The BIT index varies between 0 and 1, representing marine and 

terrestrial OC end members, respectively (Hopmans et al., 2004). 

 

3.5. Statistical analysis 

We performed the nonparametric Mann-Whitney U test,which does not meet the 

normality assumption of the one way analysis variance (ANOVA), to evaluate the differences 



  

in mean values between two different groups in a similar way to Zell et al. (2013). Groups 

that showed significant difference (p < 0.05) were assigned different letters. Linear regression 

analysis was also performed to investigate the relationship between GDGT parameters. The 

statistical testswere performed using the R-3.0.1 package. 

 

4. Results  

The SPM concentration and OC content of Rhône River SPM samples are summarized 

in Table 1. SPM concentration varied between 12 and 15 mg/l and the OCcontent of the SPM 

was relatively constant at 2-3 wt. %. Br GDGTs and crenarchaeol were detected in all the 

SPM samples. Summed br GDGT concentration (normalized to OC content) ranged from 8 to 

36 μg/g OC (avg. 16 ± 9, n=7; Fig. 3A), while crenarchaeol concentration was substantially 

lower, i.e.between 1 and 4 μg/g OC(avg. 2 ± 1, n=7; Fig. 3B). The BIT index averaged 0.89 ± 

0.02 (n=7; Fig. 3C). Summed br GDGT concentration values for the SPM samples from the 

mixed zone, i.e. beneath the surface layer at the river mouth as a mixture of both seawater and 

freshwater, were slightly lower than those in the river, with an average value of 11 ±3 μg/g 

OC(n=3; Fig. 3A). In contrast, the crenarchaeol concentration was higher, ranging from 4 to 7 

μg/g OC (avg. 6 ± 1 μg/g OC, n=3; Fig. 3B). Consequently, the BIT index was lower, varying 

between 0.56 and 0.81 (avg. 0.65 ± 0.11, n=3; Fig. 3C).  

Br GDGTs and crenarchaeol were also detected in all marine sediment core samples. 

The concentration of summed br GDGTs and crenarchaeol, as well as the BIT index for the 

core top sediment from the Dyneco 23B multicore were 8μg/g OC and 5μg/g OC, and 0.64, 

respectively (Fig. 3; data points indicated with a star).The summed br GDGT concentration of 

for piston core RHS-KS57 varied between 2 and 14μg/g OC, while the concentration of 

crenarchaeol ranged from 3 to 45 μg/g OC(Fig. 4A-B). The records of the accumulation rate 



  

(AR) of these GDGTs mimicked those of their concentration, varying between 0.02 and 

0.38(μg/cm2/yr) for summed br GDGTs and between 0.02and 0.82(μg/cm2/yr) for crenarchaeol, 

respectively (Fig. 4). The BIT index varied widely between 0.17 and 0.78 (Fig. 4C).  

 

5. Discussion 

5.1. Present-day source of GDGTs in the Rhône River and prodelta system: consequences for 

the BIT index 

The SPM results provide only a “snap-shot” at the time of sampling and should 

therefore be interpreted cautiously. The BIT index for the riverine SPM revealed only a 

narrow range of variation (0.89 ± 0.02, n=7; Fig. 3). The riverine BIT values were slightly 

lower than the hypothetical terrigenous end member value of 1 (Hopmans et al., 2004). This is 

probably due to the production of crenarchaeol in soil, as shown in the drainage basin of 

theTêt River, a typical small Mediterranean river, which flows into the Gulf of Lions,with an 

average BIT value of 0.84 (Kim et al., 2010). SPM of the Têt River also has locally lower BIT 

values (down to 0.6), explained by crenarchaeol production in the river (Kim et al., 2007). In 

situ production of crenarchaeol in other rivers has also been reported (e.g. Zell et al., 

2013a,b;Yang et al., 2013). It is also possible that br GDGTs were produced in the Rhône 

River itself, as reported for other river systems (Zhu et al., 2011; Kim et al., 2012; Zhang et 

al., 2012; Yang et al., 2013; Zell et al., 2013a,b; De Jonge et al., 2014). Hence, GDGTs in 

Rhône River SPM might have a mixed source of soil- and river-produced br GDGTs and 

crenarchaeol. Nevertheless, despite potential in situ production, BIT values were high for the 

river itself, consistent with the original proposition for the BIT index (Hopmans et al., 2004). 

Values of the BIT index of SPM in the mixed zone decreased significantly in 

comparison with that of riverine SPM (Fig. 3C). This is caused by the substantial increase in 

crenarchaeol concentration in the mixed zone of seawater and freshwater at the Rhône River 



  

mouth (Fig. 3B), while that of the br GDGTs remained comparable (Fig. 3A). The index 

decreased further in the prodelta sediments (Fig. 3C). This suggests that there is in fact an 

addition of crenarchaeol, most likely by insitu production in the water column by 

Thaumarchaeota, but we cannot completely exclude potential benthic production (cf. Lengger 

et al., 2012). Recent studies provide increasing evidence that br GDGTs can also be produced 

in coastal sediments (Peterse et al., 2009;Zhu et al., 2011). However, similar br GDGT 

concentrations (normalized to OC) were found in the Rhône River SPM and the mixed zone 

SPM to that of the Rhône prodelta surface sediment(indicated with a star in Fig. 3). This 

suggests that the in situ production of br GDGTs in the marine sediments might have no 

significant impact on the BIT index, as also observed for Svalbard fjord sediments (Peterse et 

al., 2009) and the East China Sea (Zhu et al., 2011). Our observation leads us to conclude that, 

in the present day system, br GDGTs are primarily transported from the Rhône watershed to 

the Rhône prodelta but the BIT index in prodelta sediments is strongly influenced by an 

enhanced contribution of crenarchaeol produced by nitrifying Thaumarchaeota (Könnekeet al., 

2005; Wuchter et al., 2006) thriving in the marine environment. 

 

5.2. Applicability of BIT index as an indicator of palaeoflood events  

In a study of the BIT index in the Têt River system (France), Kim et al. (2007) showed 

that the variation in concentration of riverine br GDGTs was closely related to water and 

sediment discharge from the river, with a substantially higher BIT value (0.85) than that for 

the offshore seawater (< 0.01) in the Gulf of Lions. Furthermore, br GDGT concentration and 

the BIT index in sediment trap and multicore material were much higher during the flood 

period than during non-flood periods in the Têt prodelta (Kim et al., 2009). In the Rhône 

prodelta, br GDGT concentration and the BIT index were much higher than at offshore sites 

(Kim et al., 2010). This promoted the idea that the BIT index, in conjunction with br GDGT 



  

concentration, might serve as a tool for reconstructing palaeoflood events in deltaic systems 

of the Gulf of Lions. To assess this possibility, we further investigated the evolution of br 

GDGT and crenarchaeol concentration in the Rhône prodelta over the last 400 yr and 

evaluated the consequences for the BIT index, by analysing the 7.71 m RHS-KS57 piston 

core obtained in 79 m deep water (Fig. 2). 

Fanget et al. (2013) reconstructed paleoenvironmental changes based on ostracod and 

benthic foraminiferal assemblages in the core. They identified four intervals recording 

changes in river influence under natural and man-induced shifts in Rhône distributaries and 

corresponding to deltaic lobes: Bras de Fer, Grand Rhône, Pégoulier,and Roustan (Fig. 4).The 

Bras de Fer interval (771-590 cm, up to 1711 AD) is characterized by quite stable 

environmental conditions, low hydrodynamic energy and dominant marine benthic 

microfossil species. The south-westward direction of the Rhône plume (Estournel et al., 1997, 

Naudin and Cauwet, 1997) probably caused reduced river influence at the core site at that 

time. During the “Grand Rhône” interval (590-360 cm, 1711-1855 AD), ostracod assemblages 

were dominated by shallow water species (Loxoconcha spp.) which are found in marginal 

marine environments (delta and estuarine) characterized by changing salinity and sediment 

flux. Following an important flood in 1711 AD, the Bras de Fer channel shifted towards the 

east and so was similar to the present day position of the Grand Rhône River. Between 1711 

AD and 1852 AD, the seaward termination of the Grand Rhône River was divided into three 

distributaries - the Piémanson, Roustan, and Pégoulier channels (Fig. 2). By that time, the 

Rhône River mouth was located upstream of Port Saint Louis, i.e. > 6 km inland from the 

modern position, resulting in a moderate river influence at the core site.The “Pégoulier” 

interval (360-280 cm, 1855-1892 AD) is comparable with the Bras de Fer interval in terms of 

micro-faunal content. It corresponds to the period of artificial closure of the Piémanson and 

Roustan channels in 1855 AD. Consequently, the water and sediment discharges were 



  

funnelled into a single mouth, the Pégoulier channel, located at the easternmost part of the 

modern delta. Sediment flux was thus focussed to the east of the prodelta, contributing to the 

building of the Pégoulier outlet. The “Roustan” interval (0-280 cm, 1892 AD to present) 

shows a strong decrease of marine ostracods and a concomitant increase in the deltaic 

assemblage (Fig. 4D-E). In addition, freshwater ostracods (i.e. Candona sp. and Ilyocypris sp.) 

appear at discrete levels, generally correlating with ostracods typical of the littoral areas (i.e. 

Leptocythere sp., Pterigocythereis sp.). Ostracod fauna indicate a significant increase in the 

Rhône River influence at the core site. According to our age model, the gradual increase in 

the river influence indicates a more proximal source and reflects the present situation, with 

the Rhône River flowing into the Gulf of Lions through the Roustan channel since 1892 AD, 

where our core was located (Fig. 2).  

In general, the summed br GDGT concentration and the BIT index were significantly 

lower in the sediments than in the river SPM, while the crenarchaeol concentration was much 

higher (Fig. 3). For the entire piston core dataset, crenarchaeol concentration and 

accumulation rate correlated significantly with (Fig. 5A) those of the summed br GDGTs (R2 

0.29, p < 0.001 and R2 0.59, p < 0.001, respectively). Correlation between the concentration of 

crenarchaeol and br GDGTs has been reported for various marine settings (e.g. Yamamoto et 

al., 2008; Zhu et al., 2011; Fietz et al., 2012) but not for accumulation rate. With respect to 

the four separate sedimentary phases, significant correlation between crenarchaeol and br 

GDGTs for both the concentration and accumulation rate occurred only during the Grand 

Rhône (1711-1855 AD) and Roustan (1892 AD-present) phases (Table 2), when the Grand 

Rhône and Roustan channels were located right at the front of the core site (Fig. 2). During 

these periods, the crenarchaeol concentration was similar to that of SPM in the mixing zone 

(Fig. 3). Various studies have found that marine Thaumarchaeota are nitrifiers and their 

abundance is dependent on primary productivity, since organic N is converted upon decay of 



  

algal biomass to NH4
+ (e.g. Wuchter et al., 2006; SinningheDamsté et al., 2009). Hence, 

enhanced riverine nutrient delivery to the continental margin may stimulate primary 

productivity and thus, indirectly, increase Thaumarchaeotal abundance and crenarchaeol 

production, resulting in a decrease in the BIT index. This probably explains the co-variation 

of br GDGT concentration and crenarchaeol concentration, as well as of br GDGT and 

crenarchaeol accumulation rate in our records (Fig. 5A).  

During all phases (Table 2), the (negative) correlation for both concentration and 

accumulation rate of crenarchaeol with the BIT index (Fig. 5B) was much stronger and more 

significant than the (positive) correlation of br GDGT concentration and accumulation rate 

with the BITindex (Fig. 5C). The correlation between crenarchaeol and BIT index was 

highest during the Bras de Fer phase (reflected in the lower section of the core - 771-590 cm, 

up to 1711 AD), when the Rhône River flowed into the Gulf of Lions through the Bras de Fer 

channel (located more to the west; Fig. 2), so the river influence was lowest at the core site 

(Fig. 5; Table 2).The variation in crenarchaeol concentration (3-45 μg/g OC) was substantially 

greater than that in br GDGT abundance (2–14 μg/g OC; Fig. 4).Remarkably, despite the 

overall low br GDGTaccumulation rate values  (< 0.1 μg/cm2/yr), only during this Bras de Fer 

phase was the correlation between the br GDGTaccumulation rate and BIT index significant 

(Table 2). Nevertheless, it appears that, during this phase the BIT index was more strongly 

governed by crenarchaeol production in the marine environment than by the input of br 

GDGTs from the Rhône River. Accordingly, these results support the proposition that the 

riverine br GDGTs are not always the first order factor controlling the BIT index in marine 

sediments but the variation in marine-derived crenarchaeol abundance is (cf. Castañeda et al., 

2010; Fietz et al., 2011a,b, 2012; Wu et al., 2013). However, it does not explain why BIT 

values are higher along the coast than those offshore in the Gulf of Lions (Kim et al., 2010), 

as well as in the vicinity of large rivers (e.g. Hopmans et al., 2004). At certain locations, br 



  

GDGTs transported from the rivers might more strongly influence the BIT index than marine-

derived crenarchaeol, although we cannot rule out an additional contribution of br GDGTs 

from the coastal erosion. 

Importantly, we also observed that variation in crenarchaeol and thus in BIT index was 

strongly influenced by Rhône River channel shifts. During the “Grand Rhône” and “Roustan” 

river-dominated phases, the BIT index was more strongly governed by variation in riverine br 

GDGTs than during “Bras de Fer” and “Pégoulier” marine-dominated phases. When the 

Rhône River mouth was located right at the front of the core site during the Roustan phase 

(Fig. 2), the accumulation rate of both br GDGTs and crenarchaeol was much higher than 

during other phases (Fig. 4). Interestingly, during the Roustan phase, the BIT index was well 

in phase, within the age uncertainty, with the historical palaeoflood record (> 4.0 m at Arles; 

i.e. when the river level was > 5.25 m above mean sea level; Pichard, 1995; Fig. 6). As 

proposed for the Yellow River-dominated Bohai Sea (Wu et al., 2013), highly turbid river 

flow might play a key role in the BIT index when the river mouth shifted closer to the core 

site. Highly turbid river flow carries more SPM to the marine sites and thus reduces water 

transparency, providing unfavourable conditions for primary production (Turner et al., 1990). 

As a result, fewer Thaumarchaeota might be produced and so less crenarchaeol might 

accumulate in marine sediments, whilst the input of riverine br GDGTs increases, amplifying 

the magnitude of the BIT index. 

 

6. Conclusions 

Our study indicates that br GDGTs were transported primarily from the Rhône 

watershed to the Rhôneprodelta and that the contribution of marine produced br GDGTs was 

minor. However, the BIT index showed a stronger correlation with crenarchaeol concentration 

than with br GDGT concentration, indicating that the BIT index for Rhône prodelta sediments 



  

was influenced primarily by variation in marine crenarchaeol production rather than by the 

delivery of riverine br GDGTs. This complicates the application of the BIT index as an 

indicator for the input of continental OC and thus as a palaeoflood proxy. Furthermore, it was 

observed that the shifts in the Rhône distributaries controlled the distribution of allochthonous 

and autochthonous br GDGTs and crenarchaeol at the core site. When the continental material 

was delivered by the Rhône River more directly to the core site (Roustan phase), the BIT 

index strongly mimicked the historical palaeoflood record. This shows the potential of the 

BIT index for tracing palaeoflood events and thus for providing palaeoflood records on longer 

geological timescales beyond the instrumental period, assuming that no major change affected 

the course of the river channel. Our study also highlights the idea that variation in the delivery 

route of continental OC by rivers to core sites should be taken into account for the use of the 

BIT index as a palaeoflood proxy. 
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Figure captions 

 

Fig. 1. Structure of br GDGTs (I-III) and crenarchaeol (IV). 

 

Fig. 2. Map showing sampling locations of SPM along the Rhône River (RW1, RW2, RW3 

and RW4) and multicore Dyneco 23B and piston core RHS-KS57 from the Rhône prodelta 

(NW Mediterranean). 

 

Fig. 3. Box plot of (A) summed br GDGTs (μg/g OC), (B) crenarchaeol(μg/g OC) and (C) BIT 

index from SPM collected in October 2010 and piston core RHS-KS57 collected in 

September 2008. Core top sediment data from multicore Dyneco 23B are indicated with a red 

star. Letters indicate statistically significant groups of data (p < 0.05). 

 

Fig. 4. Vertical profile of (A) summed br GDGTs for concentration (μg/g OC, black line) and 

accumulation rate (μg/cm2/yr, red line), (B) crenarchaeol for concentration (μg/g OC, black line) 

and accumulation rate (μg/cm2/yr, red line), (C) BIT index, (D) ostracod fresh water 

assemblage (%) and (E) ostracod full marine assemblage (%) from piston core RHS-KS57. 

Ostracod data are from Fanget et al. (2013). Filled triangles indicate age control points. 

 

Fig. 5. Cross plots (A) between crenarchaeol and summed br GDGTs, (B) between 

crenarchaeol and the BIT index and (C) between summed br-GDGTs and BIT index for both 

concentration (μg/g OC) and accumulation rate (μg/cm2/yr). Red and blue lines indicate linear 

and log relationships for whole dataset, respectively. 

 



  

Fig. 6. Detailed comparison of (A) accumulation rate of summed br-GDGTs (μg/cm2/yr), (B) 

accumulation rate of crenarchaeol (μg/cm2/yr) and C) BIT index with (D) historical flood 

records at Arles in France (Pichard, 1995) for the Roustan lobe period. Filled triangles 

indicate age control points. 
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Table 1 

SPM samples and sites along the Rhône River and information. 

 

Stations Code Location Longitude  
(E) 

Latitude 
(N) 

Sampling date 
(dd/mm/yyyy) 

River water depth 
(m) 

Sampling water depth 
(m) 

SPM 
(mg/l) 

SPM OC 
(wt. %) 

RW1 ST1-F4 Rhône River 4.64 43.77 18/05/2010 7.4 0 25.2 1.9 

RW1 ST1-F3 Rhône River 4.64 43.77 18/05/2010 7.4 4 23.0 2.6 

RW2 ST2-F7 Rhône River 4.62 43.68 19/05/2010 11 0 23.0 2.2 

RW2 ST2-F5 Rhône River 4.62 43.68 19/05/2010 11 11 23.9 2.5 

RW3 ST4-F17 Rhône River 4.74 43.49 20/05/2010 6 0 21.3 2.2 

RW3 ST4-F18 Rhône River 4.74 43.49 20/05/2010 6 6 20.2 2.0 

RW4 ST3-F15 Rhône River 4.85 43.33 20/05/2010 8 0 11.8 2.0 

RW4 ST3-F13 Mixing zone 4.85 43.33 20/05/2010 8 3 14.5 1.9 

RW4 ST3-F12 Mixing zone 4.85 43.33 20/05/2010 8 5 13.8 1.8 

RW4 ST3-F9 Mixing zone 4.85 43.33 20/05/2010 8 8 17.5 1.9 

 

 



  

Table 2 

Linear regression analysis between crenarchaeoland summed br GDGTs, crenarchaeol and 

BIT index, and summed br GDGTs and BIT index for (A) concentration (μg/g OC) and (B) 

accumulation rate (AR, μg/cm2/yr).a 

 

  
Crenarchaeol vs. 
Br GDGTs 

Crenarchaeol vs. 
BIT 

BrGDGTs vs. 
BIT 

Parameter Lobe R2 p R2 p R2 p 

A. Concentration        
 ROUSTAN 0.37 <0.001 -0.46 <0.001 0.003 0.69 
 PÉGOULIER 0.15 0.40 -0.33 0.17 0.15 0.40 
 GRAND RHÔNE  0.30 0.01 -0.26 0.02 0.15 0.09 
 BRAS DE FER -0.001 0.91 -0.72 <0.001 0.09 0.28 
 Combined 0.29 <.0001 -0.43 <.0001 0.03 0.12 
B. Accumulation 
rate 

       

 ROUSTAN 0.50 <0.001 -0.26 <0.001 0.01 0.43 
 PÉGOULIER 0.06 0.61 -0.37 0.14 0.10 0.48 
 GRAND RHÔNE  0.31 0.01 -0.21 0.04 0.19 0.05 
 BRAS DE FER 0.04 0.44 -0.64 <0.001 0.41 0.009 
 Combined 0.59 <.0001 -0.15 0.0002 0.03 0.09 

aRelationship for p < 0.05 in significance level highlighted in bold. 




