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52 Avenue Paul Alduy, Perpignan Cedex

aej@univ-perp.fr

Résumé

This work concerns the analysis of a class of linear dynamical sys-
tems. We study the possibility of comparing input operators, with res-
pect to the output one, and we give characterization results. Various
situations are examined, applications and illustrative examples are pre-
sented.
Under convenient hypothesis, we also show how to find the optimal
control ensuring the compensation of a disturbance in the finite time
or asymptotic cases. The relationship with the notions of controllabi-
lity, stability and stabilizability is examined. Here also, applications and
examples illustrating different results and situations are given.

Keywords : Dynamical systems, observation, control, domination, reme-
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1 Introduction and problem statement

In this work, we consider a class of finite dimension dynamical systems descri-
bed by a linear state equation as follows :

(S)

{
ż(t) = Az(t) + B1u1(t) + B2u2(t) ; 0 < t < T
z(0) = z0 ∈ Rn (1)

where A ∈ Mn(R), B1 ∈ Mn,p(R), B2 ∈ Mn,m(R), u1 ∈ L2(0, T ;Rp) and
u2 ∈ L2(0, T ;Rm).

The system (S) is augmented by the output equation :

y(t) = Cz(t) ; 0 < t < T (2)

where C ∈ Mq,n(R). The state of system (S) at time t, is given by :

z(t) = eAtz0 + H1(t)u1 + H2(t)u2 (3)

where for t ∈]0, T ], H1(t) and H2(t) are the operators defined by

H1(t) : L2(0, t;Rp) −→ Rn

u1 −→
∫ t

0

eA(t−s)B1u1(s)ds

(4)

and

H2(t) : L2(0, t;Rm) −→ Rn

u2 −→
∫ t

0

eA(t−s)B2u2(s)ds

(5)

For i = 1, 2, we note Hi = Hi(T ). Then

y(T ) = CeAT z0 + CH1u1 + CH2u2 (6)

The system (S) is excited by two input terms B1u1 and B2u2 where one, the
second for example, is considered as an intentional or accidental disturbance.
The other term B1u1 is introduced in order to compensate [1,2] at the final
time T , the effect of the disturbance by bringing back the observation to the
normal situation which is CeAT z0. That is to say : for any u2 ∈ L2(0, T ;Rm),
there exists a control u1 ∈ L2(0, T ;Rp) such that :

CeA(T )z0 +

∫ T

0

CeA(T−s)B1u1(s)ds +

∫ T

0

CeA(T−s)B2u2(s)ds = CeA(T )z0
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or equivalently

CH1u1 + CH2u2 = 0

This leads to the notion of domination which consists to study the possi-
bility of comparing the input operators B1 and B2, with respect to the output
one C.

The domination notion is introduced and studied separately for controlled
and observed distributed systems [3]. In this paper, we examine the problem
of domination in connection with the compensation one.

First, we consider the finite time case. We define and we characterize the no-
tion of domination. Sufficient conditions, applications and illustrative examples
are also given. The minimum energy problem [7,8] is examined using Hilbert
Uniqueness Method, such a problem can be studied as a general optimal control
one. The obtained results are extended to the asymptotic case and various
situations are examined. The relationship with the notions of stability and
stabilizability [4,5,6] are equally studied.

2 Finite time C-domination

2.1 Definitions and characterizations

We define hereafter the notion of C-domination.

Definition 2.1
We say that B1 dominates B2 on [0, T ] with respect to C (or B1 C-dominates
B2 on [0, T ]), if for any u2 ∈ L2(0, T ;Rm), there exists a control u1 ∈ L2(0, T ;Rp)
such that :

CH1u1 + CH2u2 = 0

In this case, and for C and T fixed, one can note B2 ≤ B1

We have the following characterization result.

Proposition 2.2 The following properties are equivalent :

i) B1 dominates B2 on [0, T ] with respect to C.

ii) Im(CH2) ⊂ Im(CH1).

iii) Ker(H∗
1C

∗) ⊂ Ker(H∗
2C

∗).
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iv) ∃γ > 0 such that for any θ ∈ Rq, we have

‖ B∗
2e

A∗(T−.)C∗θ‖L2(0,T ;Rm) ≤ γ ‖B∗
1e

A∗(T−.)C∗θ‖L2(0,T ;Rp) (7)

Proof : Derive from the definition, the fact that

Ker(H∗
i C∗) = Ker(B∗

i e
A∗(T−.)C∗), for i = 1, 2

and also the following well known result.

Lemma 2.3
Let X , Y and Z be Banach reflexive spaces, P ∈ L(X, Z) and Q ∈ L(Y, Z).
We have

Im(P ) ⊂ Im(Q)

if and only if

∃γ > 0 such that for any z∗ ∈ Z ′, we have ‖P ∗z∗‖X′ ≤ γ ‖Q∗z∗‖Y ′

Concerning the relationship with the controllability notion, we have the
following result.

Proposition 2.4

i) If the system

(S1)

{
ż(t) = Az(t) + B1u1(t) ; 0 < t < T
z(0) = z0 ∈ Rn (8)

is controllable on [0, T ], then B1 dominates any operator B2 on [0, T ], with
respect1 to C.

ii) The converse is not true.

Proof :

i) Obviously, (S1) is controllable on [0, T ] ⇐⇒ ImH1 = Rn,
then

Im (CH1) = Im(C)

and hence

1In fact, this is true for any output operator C.
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Im (CH2) ⊂ Im (CH1)

Consequently B1 dominates B2 on [0, T ], with respect to C.

ii) Counter example : We consider the case where n = 2, p = q = 1 and

A =

(
1 0
0 1

)
; B2 =

(
1 0
0 2

)
; B1 =

(
1
0

)
; C =

(
1 0

)

we have

B∗
2e

A∗(T−s)C∗θ = e(T−s)

(
1
0

)
θ =

(
e(T−s)θ

0

)

and

B∗
1e

A∗(T−s)C∗θ =
(

1 0
) (

e(T−s)θ
0

)
= e(T−s)θ

then

‖ B∗
2e

A∗(T−.)C∗θ‖L2(0,T ;R2) = ‖B∗
1e

A∗(T−.)C∗θ‖L2(0,T ;R)

The inequality (7) is then true for γ = 1. Hence B1 C-dominates B2, but

rank
(

B1 AB1

)
= rank

(
1 1
0 0

)
= 1 < 2

Consequently (S1) is not controllable on [0, T ]. ¤
We give hereafter a sufficient condition ensuring such a domination.

Proposition 2.5 If

rank
(

CB1 CAB1 ... CAn−1B1

)
= q (9)

then B1 C-dominates any operator B2 on [0, T ].

Proof : Using Caylay-Hamilton theorem, we have

rank
(

CB1 CAB1 ... CAn−1B1

)
= q

⇐⇒




B∗
1C

∗

B∗
1A

∗C∗
...

B∗
1(A

∗)n−1C∗




(np,q)

y = 0 ; ∀y ∈ Rq =⇒ y = 0

⇐⇒ Ker(H1)
∗C∗ = {0}
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Hence, if Ker [(H1)
∗C∗] = {0}, then Ker [(H1)

∗C∗] ⊂ Ker [(H2)
∗C∗]

and then, B1 dominates B2 on [0, T ] with respect to C . ¤

Remark 2.6

i) One can have

rank
(

CB1 CAB1 ... CAn−1B1

)
= q

even if the system (S1) is not controllable on [0, T ].

ii) B1 may dominates another operator B2, with respect to C on [0, T ],
without having

rank
(

CB1 CAB1 ... CAn−1B1

)
= q

This is illustrated in the following example.

Example 2.7

i) We consider the case where n = 2, p = q = 1 and

A =

(
1 0
0 1

)
; B1 =

(
1
1

)
; C =

(
1 0

)

The controllability matrix is given by

(
B1 AB1

)
=

(
1 1
1 1

)

its rank is then 1 < 2. Consequently, the corresponding system is not
controllable on [0, T ]. On the other hand

(
CB1 CAB1

)
=

(
1 1

)

Its rank is 1 = q, then B1 dominates any operator B2 on [0, T ] with respect
to C .

ii) Now, for m = n = 2, p = 1, q = 2 and

A =

(
1 0
0 1

)
; B2 =

(
1 0
0 1

)
; B1 =

(
1
1

)
; C =

(
1 1
1 1

)
; θ =

(
θ1

θ2

)

we have
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eA∗(T−.s)C∗θ = e(T−s)

(
1 0
0 1

)(
1 1
1 1

)(
θ1

θ2

)

= e(T−s)

(
θ1 + θ2

θ1 + θ2

)

and B∗
1e

A∗(T−s)C∗θ = e(T−s)2(θ1 + θ2), then

‖ B∗
1e

A∗(T−.)C∗θ‖2
L2(0,T ;R) = 4

∫ T

0

e2(T−s)(θ1 + θ2)
2ds

On the other hand

‖ B∗
2e

A∗(T−.)C∗θ‖2
L2(0,T ;R2) =

∫ T

0

e2(T−s) ‖
(

θ1 + θ2

θ1 + θ2

)
‖2 ds

= 2

∫ T

0

e2(T−s)(θ1 + θ2)
2ds

hence

‖ B∗
2e

A∗(T−.)C∗θ‖L2(0,T ;R2) ≤ ‖ B∗
1e

A∗(T−.)C∗θ‖L2(0,T ;R)

Consequently, B1 C-dominates B2 on [0, T ], even if

rank
(

CB1 CAB1

)
= rank

(
2 2
2 2

)
= 1 6= 2

¤
In the following result, we give a necessary and sufficient condition for such

a domination.

Proposition 2.8

B1 C-dominates B2 on [0, T ], if and only if

Im
(

CB2 CAB2 ... CAn−1B2

) ⊂ Im
(

CB1 CAB1 ... CAn−1B1

)

Proof : Using proposition 2.2, B1 C-dominates B2 on [0, T ], if and only if

Ker(H∗
1C

∗) ⊂ Ker(H∗
2C

∗)

Using Caylay-Hamilton theorem, we deduce that for i = 1, 2
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y ∈ Ker[(Hi)
∗C∗] ⇐⇒




B∗
i C

∗

B∗
i A

∗C∗
...

B∗
i (A

∗)n−1C∗




(np,q)

y = 0

hence

Ker




B∗
i C

∗

B∗
i A

∗C∗
...

B∗
i (A

∗)n−1C∗


 = Ker(H∗

i C∗)

Consequently, B1 C-dominates B2 on [0, T ], if and only if

Im
(

CB2 CAB2 ... CAn−1B2

) ⊂ Im
(

CB1 CAB1 ... CAn−1B1

)

¤

Remark 2.9

1. This necessary and sufficient condition is not depending on the time pa-
rameter T .

2. In the particular case where B2 is invertible, B1 C-dominates B2 on [0, T ]
if and only if

rank
(

CB1 CAB1 ... CAn−1B1

)
= rank

(
C

)

2.2 Minimum energy problem

In this part, we assume that B1 C-dominates B2 on [0, T ], then for any
v ∈ L2(0, T ;Rm), there exists a control u ∈ L2(0, T ;Rp) such that

CH1u + CH2v = 0 (10)

For v ∈ L2(0, T ;Rm), we examine the existence and the uniqueness of the
optimal control u ∈ L2(0, T ;Rp) satisfying (10), i.e. ensuring the compensation
of the opposing term B2v.

For this, we use an extension of the Hilbert Uniqueness Method. Indeed,
for θ ∈ Rq, let us note :
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‖ θ‖∗ = (

∫ T

0

‖(H1)
∗C∗θ‖2

Rpds)
1
2 = (

∫ T

0

‖B∗
1e

A∗(T−s)C∗θ‖2
Rpds)

1
2

‖ θ‖∗ is a semi-norm on Rq.

We assume that ‖ .‖∗ is a norm on Rq. If Ker [(H1)
∗C∗] = {0}, this is

equivalent to the asymptotic remediability [1,2,3] of the system (1)+(2) on
[0, T ]. The corresponding inner product is given by :

< θ, σ >∗ =

∫ T

0

< B∗
1e

A∗(T−s)C∗θ, B∗
1e

A∗(T−s)C∗σ >ds

and the operator ΛC : Rq −→ Rq defined by

ΛCθ = CH1(H1)
∗C∗θ =

∫ T

0

Ce(T−s)B1B
∗
1e

A∗(T−s)C∗θds

is symmetric and positive definite, and then invertible. We give hereafter
the expression of the optimal control ensuring the compensation of the effect
of the term B2v, at the final time T .

Proposition 2.10

For v ∈ L2(0, T ;Rm), there exists a unique θv ∈ Rq such that

ΛCθv = −CH2v

and the control

uθv(.) = B∗
1e

A∗(T−.)C∗θv

verifies

CH1uθv + CH2v = 0

Moreover, it is optimal and

‖uθv‖L2(0,T ;Rp) = ‖θv‖∗

Let us note that one can also consider a general optimal control problem
with a cost function defined on L2(0, T ;Rp) by
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J(u) = < P (CH1u + CH2v), CH1u + CH2v >

+

∫ T

0

< Q(CH1(t)tu + CH2(t)v), CH1(t)u + CH2(t)v > dt

+

∫ T

0

< Ru(t), u(t) > dt

(11)

where P , Q and R are symmetric matrixes with Q positive, P and R are
positive definite.

In the next section, we present an extension to the asymptotic case.

3 Extension to the asymptotic case

In this part, we consider a class of linear dynamical systems described by the
following state equation

(S∞1 )

{
ż(t) = Az(t) + B1u1(t) + B2u2(t) ; t > 0
z(0) = z0 ∈ Rn (12)

with A ∈ Mn(R), B1 ∈ Mn,p(R), B2 ∈ Mm,n(R), u1 ∈ L2(0, +∞;Rp) and
u2 ∈ L2(0, +∞;Rm)

The system (12) is augmented by the output equation :

y(t) = Cz(t); t > 0 (13)

with C ∈ Mq,n(R). We have

z(t) = eAtz0 + H1(t)u1 + H2(t)u2

Let

z =

(
z+

z−

)

where z+ and z− are respectively the projections of the state z on the
unstable and the stable subspaces :

E+ =
⊕

R(e)(λ)≥0

Ker(A− λIn)m(λ) (14)

and
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E− =
⊕

R(e)(λ)<0

Ker(A− λIn)m(λ) (15)

where m(λ) is the multiplicity of the eigenvalue λ. E+ and E− are invariant
with respect to the operator A. We have





(S+) ż+(t) = A+z+(t) + PBu1(t) + PBu2(t)

(S−) ż−(t) = A−z−(t) + (I − P )Bu1(t) + (I − P )Bu2(t)
(16)

P is the projection operator on the unstable part and A+, respectively A−,
is the matrix induced by A on E+, respectively E−.

In the case where we observe only the stable part, i.e. if

E+ ⊂ Ker(C)

the following operators K∞(C) and L∞(C) respectively given by

K∞(C) : L2(0, +∞;Rp) −→ Rq

u −→
∫ ∞

0

CeAtB1u(t)dt

and

L∞(C) : L2(0, +∞;Rm) −→ Rq

v −→
∫ ∞

0

CeAtB2v(t)dt

are well defined. We have the same result if the considered system is expo-
nentially stable, i.e. the matrix A is such that Re(λi) < 0 for i = 1, n ; where
λ1, ..., λn are the eigenvalues of A. But as it will be shown later, this is not
necessary.

We assume that operators K∞(C) and L∞(C) are well defined. By the
same, we say that B1 C-dominates B2 asymptotically, if for every u2 ∈ L2(0, +∞;Rm),
there exists u1 ∈ L2(0, +∞;Rp) such that :

K∞(C)u1 + L∞(C)u2 = 0

With a similar approach, it is easy to show the following characterization
result of the asymptotic domination.
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Proposition 3.1 The following properties are equivalent :

i) B1 C-dominates B2 asymptotically.

ii) Im [L∞(C)] ⊂ Im [K∞(C)]

iii) Ker [K∞(C)] ⊂ Ker [L∞(C)]

iv) ∃γ > 0 such that ∀θ ∈ Rq, we have

‖ B∗
2e

A∗.C∗θ‖L2(0,+∞;Rm) ≤ γ‖B∗
1e

A∗.C∗θ‖L2(0,+∞;Rp)

v)

Im
(

CB2 CAB2 ... CAn−1B2

) ⊂ Im
(

CB1 CAB1 ... CAn−1B1

)

Let us note that if the eigenvalues λ1, ..., λn of A are such that : Re(λi) < 0
for i = 1, n, the proposition 2.4 remain true in the asymptotic case.
One can also consider the asymptotic optimal control problem. The approach
and the results are similar.

We give hereafter illustrative examples showing particularly that the no-
tions of stability (or even the stabilizability) and also the controllability are
not necessary for considering the asymptotic domination.

Example 3.2

Let us consider the case of an unstable system with m = n = 2, p = q = 1
and

A =

(
2 0
1 −1

)
; B2 =

(
1 0
1 2

)
; B1 =

(
1
0

)
; C =

(
1 −3

)

Obviously, the system is not stable. We have

etA = Pet∆P−1

where

∆ =

(
2 0
0 −1

)
; P =

(
3 0
1 1

)

then

CetA =
(

e−t −3e−t
)
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In this case K∞(C) and L∞(C) are well defined and

(
CB1 CAB1

)
=

(
1 −1

)

and rank
(

C
)

= 1. Consequently, B1 C-dominates B2 asymptotically.

¤

Example 3.3 We consider an unstable system with m = n = 2, p = q = 1
and B2 is invertible.

i) For

A =

(
1 0
0 2

)
; B1 =

(
1
0

)
; C =

(
1 1

)
; F =

(
a b

)

we have

A + B1F =

(
1 + a b
0 2

)

(A,B1) is not stabilizable because for any F =
(

a b
)
, A + B1F is not

stable. However, B1 C-dominates B2 asymptotically.

ii) Let

A =

( −1 0
1 2

)
; B1 =

(
0
1

)
; C =

(
1 1

)

For F =
(

a b
)
, the matrix A + B1F =

( −1 0
a + 1 b + 2

)
is stable for

b < −2, then (A,B1) is stabilizable.

On the other hand, we have AB1 =

(
0
2

)
, then rank(B1 AB1) = 1 6= 2

and consequently (A,B1) is not controllable (in fact, the asymptotic control-
lability is not well defined in the considered case). But B1 C-dominates B2

asymptotically, because

rank
(

CB1 CAB1

)
= rank

(
C

)
(17)

Let us remark that in the general case, if C is an invertible matrix (for
example if C is the identity matrix), then the relation (9) (the relation (17) in
the considered example) is equivalent to the controllability rank condition. But
this hypothesis is strong and is not very useful.
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¤
Finally let us note that concerning the asymptotic minimum energy pro-

blem, and with an extension of H.U.M., it is easy to show the existence and
the uniqueness of the optimal control and also how to find it.

With convenient hypothesis, one can also consider the asymptotic version
of the cost function given by (11).

Acknowledgment : The authors wish to thank the Academy Hassan II
of Sciences and Technics for its support to the Systems Theory Network.
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