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THE ROTHE METHOD FOR VARIATIONAL-HEMIVARIATIONAL

INEQUALITIES WITH APPLICATIONS TO CONTACT MECHANICS∗

KRZYSZTOF BARTOSZ† AND MIRCEA SOFONEA‡

Abstract. We consider a new class of first order evolutio nary variational-hemivariational in-equalities
for which we prove an existence and uniqueness res ult. The proof is based on a time-discretization
method, also known as the Rothe method. It cons ists of considering a discrete version of each
inequality in the class, proving its unique solvability, an d recovering the solution of the con-tinuous
problem as the time step converges to zero. Then we introduce a quasi-static frictionless problem for
Kelvin–Voigt viscoelastic materials in which the con tact is modeled with a nonmonotone normal
compliance condition and a unilateral constraint. We prove the variational formulation of the problem
cast in the abstract setting of variational-hemivariati onal inequalities, with a convenient choice of
spaces and operators. Further, we apply our abstract result in order to prove the unique weak
solvability of the problem.

Key words. variational-hemivariational inequality, Clarke subdifferential, Rothe method, exis-
tence and uniqueness, viscoelastic material, frictionless contact, normal compliance, unilateral con-
straint, weak solution

1. Introduction. Variational and hemivariational inequalities play an impor-
tant role in the study of both the qualitative and numerical analysis of various prob-
lems arising in mechanics, physics, and the engineering sciences. Basic references in
the field include [2, 7, 8, 11, 12, 23, 25, 28, 30, 31]. Started in the early 1960s, the
theory of variational inequalities uses as its main ingredients the arguments of mono-
tonicity and convexity, including properties of the subdifferential of a convex function.
In contrast, the theory of hemivariational inequalities is based on properties of the
subdifferential in the sense of Clarke, defined for locally Lipschitz functions which
may be nonconvex. The numerical analysis of variational inequalities is a broadly
developed field, as illustrated in [14, 15, 20] and the references therein. In contrast,
there are still very few publications devoted to numerical methods for hemivariational
inequalities and, in particular, to evolutionary hemivariational inequalities. The ba-
sic reference in the field is the book [19]. The Rothe method represents one of the
few discretization methods used in the analysis of variational and hemivariational
inequalities. It was considered in [21], for instance, in the study of parabolic hemi-
variational inequalities. The results obtained there were generalized in [22], where
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a θ-discretization scheme was considered. The Rothe method was also considered
in [6], in the study of parabolic variational-hemivariational inequality. References
concerning the numerical treatment of hemivariational inequalities arising in contact
mechanics include [3, 4, 5].

Variational-hemivariational inequalities represent a special class of inequalities,
in which both convex and nonconvex functions are involved. Interest in their study
is motivated by various problems in mechanics, as shown in [28, 29]. Recent results
in their study have been obtained in [16, 26, 33]. The inequalities studied in [16] are
elliptic. There, an existence and uniqueness result was proved through arguments of
surjectivity for pseudomonotone operators and the Banach fixed point. The analy-
sis of a class of history-dependent variational-hemivariational inequalities, including
their unique solvability, was provided in [26]. There, the proof was based on argu-
ments on pseudomonotone operators, again, combined with a fixed point result for
nonlinear operators defined on the space of continuous functions. The analysis of
the quasi-variational inequalities introduced in [26] was continued in [33], where a
continuous dependence result was proved, numerical schemes to solve the inequalities
were obtained, and error estimates were derived. The history-dependent variational-
hemivariational inequalities considered in [16, 26, 33] were formulated in the particular
case of Sobolev spaces associated to a bounded domain Ω ⊂ Rd and to specific oper-
ators like the trace operator, for instance.

The aim of this paper is to study a new class of evolutionary variational-hemivaria-
tional inequalities with applications to contact mechanics. With respect to our pre-
vious works [26, 33] this paper has some traits of novelty that we describe in what
follows. First, in contrast with the inequalities considered in [26, 33], the inequali-
ties we study in this current paper are introduced in the context of abstract reflexive
Banach spaces. Second, they are evolutionary; i.e., they involve the derivative of the
unknown function. In addition, their unique weak solvability is obtained by using
arguments different from those in [26], based on the Rothe method. And, finally, we
apply these results to a new model of contact for Kelvin–Voigt viscoelastic materials.

The rest of the paper is organized as follows. In section 2 we review some prelim-
inary material on nonlinear analysis. In section 3 we introduce the class of evolution-
ary variational-hemivariational inequalities to be studied, list the assumptions on the
data, and state our main existence and uniqueness result, Theorem 3.1. The proof
of the theorem is presented in section 5. It is based on the Rothe method that we
describe in section 4. Next, in section 6, we introduce a frictionless contact problem
in which the material’s behavior is modeled with the Kelvin–Voigt viscoelastic con-
stitutive law and the contact conditions are with normal compliance and unilateral
constraints. We list the assumptions on the data and derive the weak formulation of
the problem, which is in the form of a variational-hemivariational inequality for the
displacement field. Finally, we apply our abstract result to prove the unique weak
solvability of the viscoelastic contact problem.

2. Notation and preliminaries. In this section we briefly present the notation
and some preliminary material to be used later in this paper. More details on the
material presented below can be found in the books [10, 11, 25, 28, 35].

First, we make precise that all linear spaces used in this paper are assumed to be
real. Unless it is stated otherwise, in this section we denote by X a normed space with
the norm ‖ · ‖X , we denote by X∗ its topological dual, and 〈·, ·〉X∗×X will represent

the duality pairing of X and X∗. The symbol 2X
∗

is used to represent the set of
all subsets of X∗. We start with the definition of the subdifferential in the sense of
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Clarke.

Definition 2.1. Let ϕ : X → R be a locally Lipschitz function. The Clarke
generalized directional derivative of ϕ at the point x ∈ X in the direction v ∈ X is
defined by

ϕ0(x; v) = lim sup
y→x,λ↓0

ϕ(y + λv)− ϕ(y)

λ
.

The Clarke subdifferential of ϕ at x is a subset of X∗ given by

∂Clϕ(x) = { ζ ∈ X∗ : ϕ0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X }.

For a convex function we also recall the definition of its subdifferential in the
sense of convex analysis.

Definition 2.2. Let Φ : X → R∪{+∞} be a convex functional. Then the convex
subdifferential of Φ at x ∈ X is a subset of X∗ given by

∂ConvΦ(x) = { ξ ∈ X∗ : Φ(x+ v)− Φ(x) ≥ 〈ξ, v〉X∗×X for all v ∈ X }.

Now we pass to the definition of pseudomonotonicity, for both single valued and
multivalued operators.

Definition 2.3. A single valued operator A : X → X∗ is called pseudomonotone
if for any sequence {vn}∞n=1 ⊂ X, vn → v weakly in X and

lim sup
n→∞

〈Avn, vn − v〉X∗×X ≤ 0

imply that 〈Av, v − y〉X∗×X ≤ lim infn→∞ 〈Avn, vn − y〉X∗×X for every y ∈ X.

Definition 2.4. A multivalued operator A : X → 2X
∗

is called pseudomonotone
if the following conditions hold:

(1) A has values which are nonempty, weakly compact, and convex.
(2) A is upper semicontinuous (usc, for short) from every finite dimensional sub-

space of X into X∗ endowed with the weak topology.
(3) For any sequence {vn}∞n=1 ⊂ X and any v∗n ∈ A(vn), vn → v weakly in X

and lim supn→∞ 〈v∗n, vn − v〉X∗×X ≤ 0 imply that for any y ∈ X there exists
u(y) ∈ A(v) such that 〈u(y), v − y〉X∗×X ≤ lim infn→∞ 〈v∗n, vn − y〉X∗×X .

The next proposition provides the pseudomonotonicity of a multivalued opera-
tor corresponding to a superposition of the Clarke subdifferential with a compact
operator. For its proof we refer the reader to the proof of Proposition 5.6 in [17].

Proposition 2.5. Let X and U be two reflexive Banach spaces, let ι : X → U be
a linear, continuous, and compact operator, and denote by ι∗ : U∗ → X∗ the adjoint
operator of ι. Let J : U → R be a locally Lipschitz functional, and assume that its
Clarke subdifferential satisfies

‖ξ‖U∗ ≤ c (1 + ‖v‖U ) for all ξ ∈ ∂J(v)

with c > 0. Then the multivalued operator M : X → 2X
∗

defined by

M(v) = ι∗∂J(ιv) for all v ∈ X

is pseudomonotone.

3



Note that, in the statement of Proposition 2.5, U∗ represents the dual of U and
‖ · ‖U and ‖ · ‖U∗ denote the norms on the spaces U and U∗, respectively.

We now recall a result providing pseudomonotonicity of the sum of two pseu-
domonotone operators, which corresponds to Proposition 1.3.68 in [11].

Proposition 2.6. Assume that X is a reflexive Banach space and A1, A2 : X →
2X

∗

are pseudomonotone operators. Then A1 + A2 : X → 2X
∗

is a pseudomonotone
operator.

The next proposition deals with an existence result for an abstract elliptic inclu-
sion and corresponds to Theorem 2.2 in [24].

Proposition 2.7. Let X be a real reflexive Banach space, let F : D(F ) ⊂ X →
2X

∗

be a maximal monotone operator, let G : D(G) = X → 2X
∗

be a multivalued
pseudomonotone operator, and let L ∈ X∗. Assume that there exist u0 ∈ X and
R ≥ ‖u0‖X such that D(F ) ∩BR(0X) = ∅ and

〈ξ + η − L, u− u0〉X∗×X > 0(2.1)

for all u ∈ D(F ) with ‖u‖X = R and all ξ ∈ F (u), η ∈ G(u). Then there exists at
least an element u ∈ D(F ) such that

F (u) +G(u) ∋ L.(2.2)

Note that in the statement of Proposition 2.7 we denote by D(F ) and D(G)
the effective domains of the operators F and G, respectively, 0X represents the zero
element of X , and BR(0X) represents the ball of radius R and center 0X .

We now introduce some spaces of vector functions defined on the interval [0, T ]
where T > 0. Let π denote a finite partition of the interval (0, T ) by a family of
disjoint subintervals σi = (ai, bi) such that [0, T ] = ∪n

i=1σ̄i. Let F denote the family
of all such partitions. Then for 1 ≤ q < ∞ we define the seminorm of a function
x : [0, T ] → X by equality

‖x‖qBV q(0,T ;X) = sup
π∈F

{

∑

σi∈π

‖x(bi)− x(ai)‖qX
}

and the space

BV q(0, T ;X) = { x : [0, T ] → X ; ‖x‖BV q(0;T ;X) < ∞}.

Assume now that 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and X , Z are Banach spaces such that
X ⊂ Z with continuous embedding. Denote

Mp,q(0, T ;X,Z) = Lp(0, T ;X)∩BV q(0, T ;Z).

Then it is well known that Mp,q(0, T ;X,Z) is also a Banach space with the norm
‖ · ‖Lp(0,T ;X) + ‖ · ‖BV q(0,T ;Z).

We end this section with the following compactness result obtained in [21].

Proposition 2.8. Let 1 ≤ p, q < ∞. Let X1 ⊂ X2 ⊂ X3 be real Banach spaces
such that X1 is reflexive, the embedding X1 ⊂ X2 is compact, and the embedding
X2 ⊂ X3 is continuous. Then the embedding Mp,q(0, T ;X1;X3) ⊂ Lp(0, T ;X2) is
compact.

We shall use Proposition 2.8 in section 6 of this paper.
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3. An existence and uniqueness result. In this section, we present the
variational-hemivariational inequality in which we are interested, list the assumptions
on the data, and state our main existence and uniqueness result, Theorem 3.1.

Let V be a strictly convex, reflexive separable Banach space, and let V ∗ denote
its dual. We denote by 〈·, ·〉V ∗×V and ‖ · ‖V the duality pairing between V and V ∗

and the norm on V , respectively. Let ι : V → U , where U is a reflexive Banach space,
and let 〈·, ·〉U∗×U and ‖ · ‖U denote the duality pairing between U and U∗ and the
norm on U , respectively. We also use the notation L(V, V ∗) for the space of linear
continuous operators from V to V ∗, and we denote by ‖ · ‖L(V,V ∗) the norm in space
L(V, V ∗). Analogously, we introduce the space L(V, U) and the corresponding norm
‖ · ‖L(V,U). For T > 0 we use the classical notation for the Lebesgue and Sobolev
spaces of function defined on the interval [0, T ] with values in a normed space. In
addition, we introduce the notation

V = L2(0, T ;V ), V∗ = L2(0, T ;V ∗),

U = L2(0, T ;U), U = L2(0, T ;U∗),

W = { u ∈ V | u′ ∈ V∗ },
where u′ represents the time derivative of u understood in the sense of distributions.
Moreover, we use the symbols 〈·, ·〉V∗×V and 〈·, ·〉U∗×U to denote the duality pairing
between V and V∗, U and U∗, respectively. In addition, C(0;T ;V ) will represent the
space of continuous functions defined on [0, T ] with values in V , endowed with its
usual norm.

Let A,B : V → V ∗ be given operators, let J : U → R, Φ : V → R ∪ {+∞} be
given functionals, and let f : [0, T ] → V ∗ be a given function. With these data we
consider the following problem.

Problem P . Find u ∈ W such that u(0) = u0 and

∫ T

0

〈Au′(t) +Bu(t) + ι∗ξ(t)− f(t), v(t)− u(t)〉V ∗×V dt(3.1)

+

∫ T

0

(

Φ(v(t)) − Φ(u(t))
)

dt ≥ 0 for all v ∈ V

with

(3.2) ξ(t) ∈ ∂ClJ(ιu(t)) for a.e. t ∈ (0, T ).

In the study of Problem P we consider the following assumptions on the data:
H(A). The operator A : V → V ∗ is linear, bounded, coercive, and symmetric,

i.e., the following hold:
(i) A ∈ L(V, V ∗).
(ii) 〈Av, v〉V ∗×V ≥ α‖v‖2V for all v ∈ V with α > 0.
(iii) 〈Av,w〉V ∗×V = 〈Aw, v〉V ∗×V for all v, w ∈ V .
H(B). The operator B : V → V ∗ is linear, bounded, and coercive, i.e., the

following hold:
(i) B ∈ L(V, V ∗).
(ii) 〈Bv, v〉V ∗×V ≥ β‖v‖2V for all v ∈ V with β > 0.
H(J). The functional J : U → R is such that the following hold:
(i) J is locally Lipschitz.
(ii) ∂ClJ satisfies the growth condition ‖ξ‖U∗ ≤ c (1 + ‖u‖U) for all u ∈ U and

all ξ ∈ ∂ClJ(u) with c > 0.
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(iii) There exists m > 0 such that

〈ξ − η, u− v〉U∗×U ≥ −m‖u− v‖2U

for all u, v ∈ U, ξ ∈ ∂ClJ(u), η ∈ ∂ClJ(v).
H(Φ). The functional Φ : V → R ∪ {+∞} is convex, proper, and lower semicon-

tinuous.
H(ι). The operator ι : V → U is linear, continuous, and compact. Moreover, the

associated Nemytskii operator ῑ : M2,2(0, T ;V, V ∗) → U defined by (ῑv)(t) = ι(v(t))
for all t ∈ [0, T ] is also compact.

H(0). f ∈ H1(0, T ;V ∗), u0 ∈ dom(Φ), and the following compatibility condition
holds: there exist ξ0 ∈ ∂ClJ(ιu0) and η0 ∈ ∂ConvΦ(u0) such that

Bu0 + ι∗ξ0 + η0 − f(0) ∈ V.

H(s). Inequality β > m holds, where β and m represent the constants introduced
in assumptions H(B) and H(J)(iii), respectively.

Note that here and below we use the notation dom(Φ) for the effective domain
of the function Φ. Also, we recall that condition H(j)(iii) represents the so-called
relaxed monotonicity condition, intensively used in the study of various classes of
hemivariational inequalities, as shown in [25] and the references therein.

The main result of this paper that we state here and prove in section 5 is the
following.

Theorem 3.1. Assume that H(A), H(B), H(J), H(Φ), H(ι), H(0), and H(s)
hold. Then Problem P has a unique solution u ∈ H1(0, T ;V ).

We end this section with the remark that Problem P is constructed by using
the convex function Φ and the nonconvex function J . In addition, it involves the
derivative of the solution. For this reason, we refer to Problem P as an evolutionary
variational-hemivariational inequality.

4. The Rothe problem. In this section we consider an approximate problem
based on time discretization of Problem P . For this discrete problem, also known as
the Rothe problem, we prove a result of solvability and we derive error estimates for
the solution. To this end, let N ∈ N be fixed and let τ = T

N represent the time step.
We consider a piecewise constant approximation of f given by

fτ (t) = fk
τ :=

1

τ

∫ kτ

(k−1)τ

f(s) ds for t ∈ ((k − 1)τ, kτ ] , for k = 1, . . . , N.(4.1)

Then, using Lemma 3.3 from [9], we know that

fτ → f strongly in V∗ as τ → 0.(4.2)

We now formulate the following Rothe problem.

Problem Pτ . Find a sequence {uk
τ}Nk=0 ⊂ V such that u0

τ = u0 and

〈

1

τ
A(uk

τ − uk−1
τ ), v − uk

τ

〉

V ∗×V

+
〈

Buk
τ , v − uk

τ

〉

V ∗×V
+
〈

ξkτ , ι(v − uk
τ )
〉

U∗×U
(4.3)

+ Φ(v)− Φ(uk
τ ) ≥

〈

fk
τ , v − uk

τ

〉

V ∗×V
for all v ∈ V
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with

ξkτ ∈ ∂ClJ(ιu
k
τ )(4.4)

for k = 1, . . . , N .

We have the following existence result.

Lemma 4.1. Assume that H(A), H(B), H(J), H(Φ), and H(0) hold. Then there
exists τ1 > 0 such that Problem Pτ has at least one solution for all τ ∈ (0, τ1).

Proof. First we observe that Problem Pτ can be formulated in the following equiv-
alent way: given uk−1

τ ∈ V with k = 1, . . . , N − 1, find uk
τ ∈ V such that

1

τ
Auk−1

τ + fk
τ ∈ ∂ConvΦ(u

k
τ ) +

1

τ
Auk

τ +Buk
τ + ι∗∂ClJ(ιu

k
τ ).(4.5)

In order to establish the solvability of (4.5) we apply Proposition 2.7 with F (u) =
∂ConvΦ(u) and G(u) = 1

τ Au + Bu+ ι∗∂ClJ(ιu). To this end we observe that F is a
maximal monotone operator, since it represents the subdifferential of the function Φ
which is proper, convex, and lower semicontinuous. Moreover, since the operators 1

τA

and B are linear and monotone, they are pseudomonotone. Then, from Propositions
2.5 and 2.6, it follows that G is a pseudomonotone operator.

Let u0 be the element used as the initial condition in Problem Pτ . Let u, ξ, η be
such that u ∈ D(F ), ξ ∈ F (u), η ∈ G(u). We will show that, taking L = 1

τAu
k−1
τ +fk

τ ,
the inequality (2.1) holds for all u such that ‖u‖V = R, where R ≥ ‖u0‖V . We have

η =
1

τ
Au+Bu+ ι∗w with w ∈ ∂ClJ(ιu).(4.6)

Our aim in what follows is to show that if ‖u‖V is large enough, then the following
inequality holds:

〈

1

τ
Au +Bu+ ι∗w + ξ, u− u0

〉

V ∗×V

>

〈

1

τ
Auk−1

τ + fk
τ , u− u0

〉

V ∗×V

.(4.7)

To this end we note that, using our Definition 2.2 and Lemma 2.5 in [27], there exist
k1, k2 > 0 such that

〈ξ, u− u0〉V ∗×V ≥ Φ(u)− Φ(u0) ≥ −k1‖u‖V − k2 − Φ(u0) for all u ∈ V.(4.8)

Next, from H(A), H(B), H(J), (4.8), and the inequality ab ≤ εa2 + 1
4ε b

2, valid for
a, b, ε > 0, we have

〈

1

τ
Au+Bu+ ι∗w + ξ, u− u0

〉

V ∗×V

≥
(

1

τ
α+ β − c‖ι‖2L(V,U) − 3ε

)

‖u‖2V(4.9)

− 1

4ε
c2‖ι‖2L(V,U) −

1

4ε

(

1

τ
‖A‖L(V,V ∗) + ‖B‖L(V,V ∗) + c ‖ι‖L(V,U)

)2

‖u0‖2V

− c ‖ι‖L(V,U)‖u0‖V − k21
4ε

− k2 − Φ(u0).

On the other hand, we have
〈

1

τ
Auk−1

τ + fk
τ , u− u0

〉

V ∗×V

(4.10)

≤ ε‖u‖2V +

(

1

4ε
+

1

2

)∥

∥

∥

∥

1

τ
Auk−1

τ + fk
τ

∥

∥

∥

∥

2

V ∗

+
1

2
‖u0‖2V .
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Let us denote δ(τ) = 1
τ α + β − c‖ι‖2L(V,U) and observe that if β ≥ c‖ι‖2L(V,U),

then δ(τ) > 0 for all τ > 0. Otherwise, if β < c‖ι‖2L(V,U), we have δ(τ) > 0 for all

τ < τ1 := α(c‖ι‖2L(V,U) − β)−1. In both cases we see that for ε = 1
8 δ(τ), the value

δ(τ) − 4ε is positive. Thus, there exists R1 > 0 such that
(

1

τ
α+ β − c‖ι‖2L(V,U) − 4ε

)

‖u‖2V(4.11)

>

[

1

4ε

(

1

τ
‖A‖L(V,V ∗) + ‖B‖L(V,V ∗) + c‖ι‖L(V,U)

)2

+
1

2

]

‖u0‖2V

+ c ‖ι‖L(V,U)‖u0‖V +
k21
4ε

+ k2 +Φ(u0) +
1

4ε
c2‖ι‖2L(V,U)

+

(

1

4ε
+

1

2

)∥

∥

∥

∥

1

τ
Auk−1

τ + fk
τ

∥

∥

∥

∥

2

V ∗

+
1

2
‖u0‖2V

for all u ∈ V such that ‖u‖V ≥ R1. From (4.9)–(4.11) we conclude that (4.7) holds
for all u ∈ V satisfying ‖u‖V ≥ R1. Next, by H(0), we have ∂ConvΦ(u0) = ∅, so
u0 ∈ D(F ), and therefore D(F )∩B‖u0‖V

(0X) = ∅. We now remark that the constant
R = max{R1, ‖u0‖V } satisfies the assumptions of Proposition 2.7. We conclude from
here that problem (4.5) has a solution, which completes the proof.

We now derive an appropriate estimate for the solution of the Rothe problem.

Lemma 4.2. Assume that H(A), H(B), H(J), H(Φ), H(0), and H(s) hold. Let
the sequence {uk

τ}Nk=0 be a solution of Problem Pτ , obtained in Lemma 4.1. Then
there exist τ2 > 0 and some positive constants c1, c2, c3, c4 independent on τ such
that

max
k=1,...,N

‖uk
τ‖V ≤ c1,(4.12)

N
∑

k=1

‖uk
τ − uk−1

τ ‖2V ≤ c2,(4.13)

max
k=1...N

∥

∥

∥

∥

uk
τ − uk−1

τ

τ

∥

∥

∥

∥

V

≤ c3,(4.14)

τ

N
∑

k=1

∥

∥

∥

∥

uk
τ − uk−1

τ

τ

∥

∥

∥

∥

2

V

≤ c4(4.15)

for all τ ∈ (0, τ2).

Proof. We take v0 ∈ dom(Φ) as the test function in (4.3) and obtain
〈

1

τ
A
(

uk
τ − uk−1

τ

)

, uk
τ

〉

V ∗×V

+ 〈Buk
τ , u

k
τ 〉V ∗×V + 〈ξkτ , ιuk

τ 〉U∗×U +Φ(uk
τ )(4.16)

≤
〈

1

τ
A
(

uk
τ − uk−1

τ

)

, v0

〉

V ∗×V

+ 〈Buk
τ , v0〉V ∗×V

+ 〈ξkτ , ιv0〉U∗×U +Φ(v0) + 〈fk
τ , u

k
τ − v0〉V ∗×V

with ξkτ ∈ ∂ClJ(ιu
k
τ ) and k = 1, . . . , N .
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From H(A) we obtain

〈A(u − v), u〉V ∗×V =
1

2
〈Au, u〉V ∗×V − 1

2
〈Av, v〉V ∗×V(4.17)

+
1

2
〈A(u − v), (u− v)〉V ∗×V for all u, v ∈ V.

Then, using this identity, assumptions H(B), H(J), and Lemma 2.5 in [27], we
obtain

〈

1

τ
A
(

uk
τ − uk−1

τ

)

, uk
τ

〉

V ∗×V

+ 〈Buk
τ , u

k
τ 〉V ∗×V + 〈ξkτ , ιuk

τ 〉U∗×U +Φ(uk
τ )(4.18)

≥ 1

2τ

〈

Auk
τ , u

k
τ

〉

V ∗×V
− 1

2τ

〈

Auk−1
τ , uk−1

τ

〉

V ∗×V

+
1

2τ

〈

A
(

uk
τ − uk−1

τ

)

, uk
τ − uk−1

τ

〉

V ∗×V
+
(

β − c‖ι‖2L(V,U) − 2ε
)

‖uk
τ‖2V

− 1

4ε

(

c2‖ι‖L(V,U) + k1
)

− k2,

where k1, k2 are positive constants which do not depend on τ . Moreover, we have the
estimate

〈

1

τ
A
(

uk
τ − uk−1

τ

)

, v0

〉

V ∗×V

+ 〈Buk
τ , v0〉V ∗×V + 〈ξkτ , ιv0〉U∗×U +Φ(v0)(4.19)

+ 〈fk
τ , u

k
τ − v0〉V ∗×V ≤

〈

1

τ
A
(

uk
τ − uk−1

τ

)

, v0

〉

V ∗×V

+ 3ε‖uk
τ‖2V

+
1

4ε

(

‖B‖2L(V,V ∗)‖v0‖2V + c2‖ι‖4L(V,U)‖v0‖2V
)

+

(

1

4ε
+

1

2

)

‖fk
τ ‖2V ∗ +Φ(v0) +

1

2
‖v0‖2V .

Next, we combine (4.16)–(4.19) to find that

1

2

〈

Auk
τ , u

k
τ

〉

V ∗×V
+

1

2

〈

A
(

uk
τ − uk−1

τ

)

, uk
τ − uk−1

τ

〉

V ∗×V
+ τβ‖uk

τ‖2V(4.20)

≤
〈

A
(

uk
τ − uk−1

τ

)

, v0
〉

V ∗×V
+

1

2

〈

Auk−1
τ , uk−1

τ

〉

V ∗×V

+ τ
(

c‖ι‖2L(V,U) + 5ε
)

‖uk
τ‖2V +

(

1

4ε
+

1

2

)

τ‖fk
τ ‖2V ∗

+ τ
1

4ε

(

‖B‖2L(V,V ∗)‖v0‖2V + c2‖ι‖4L(V,U)‖v0‖2V + c2‖ι‖L(V,U) + k1

)

+ τ

(

Φ(v0) +
1

2
‖v0‖2V + k2

)

.
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We now introduce the notation

C1(ε) =

(

1

4ε
+

1

2

)

,

C2(ε) =
1

4ε

(

‖B‖2L(V,V ∗)‖v0‖2V + c2‖ι‖4L(V,U)‖v0‖2V + c2‖ι‖L(V,U) + k1

)

+Φ(v0) +
1

2
‖v0‖2V + k2,

write (4.20) for k = 1, . . . , n ≤ N , add the resulting inequalities, and use assumption
H(A) to obtain

1

2
α‖un

τ ‖2V +
1

2
α

n
∑

k=1

‖uk
τ − uk−1

τ ‖2V + τ

n
∑

k=1

β‖uk
τ‖2V ≤ ǫ‖un

τ ‖2V +
1

4ǫ
‖A‖2L(V,V ∗)‖v0‖2V

+
1

2
‖A‖L(V,V ∗)‖u0

τ‖2V + τ

n
∑

k=1

(

c‖ι‖2L(V,U) + 5ε
)

‖uk
τ‖2V + C1(ε)‖fτ‖2V∗ + TC2(ε).

This inequality implies that

(

1

2
α− τc‖ι‖2L(V,U) − ǫ− 5τε

)

‖un
τ ‖2V ≤ τ

n−1
∑

k=1

(

c‖ι‖2L(V,U) + 5ε
)

‖uk
τ‖2V(4.21)

+
1

4ǫ
‖A‖2L(V,V ∗)‖v0‖2V +

1

2
‖A‖L(V,V ∗)‖u0

τ‖2V + C1(ε)‖fτ‖2V∗ + TC2(ε).

Let τ2 = α(2c‖ι‖2L(V,U))
−1, and assume that τ < τ2. Then there exist ǫ, ε > 0

such that 1
2 α− τc‖ι‖2L(V,U) − ǫ− 5τε > 0. On the other hand, (4.2) implies that the

sequence {fτ} is bounded in V∗ as τ → 0. Therefore, we are in a position to apply
the discrete Gronwall lemma, i.e., Lemma 7.25 in [18]. As a result, from (4.21) we
obtain (4.12). Moreover, (4.13) follows from (4.12) and (4.21).

We now proceed with the proof of inequalities (4.14) and (4.15). To this end we
take ξ0 ∈ ∂ClJ(u0), η0 ∈ ∂ConvΦ(u0) and define u−1

τ = u0+ τ(Bu0+ ι∗ξ0+η0−f(0)).
Moreover, for k = 0, . . . , N , we denote δuk

τ = 1
τ (u

k
τ − uk−1

τ ). Then it follows that

δu0
τ = f(0)−Bu0 − ι∗ξ0 − η0.(4.22)

Taking v = uk
τ in (4.3) we obtain

τ
〈

Aδuk
τ , δu

k
τ

〉

V ∗×V
+ τ
〈

Buk
τ , δu

k
τ

〉

V ∗×V
+ τ
〈

ξkτ , ιδu
k
τ

〉

U∗×U

+Φ(uk
τ )− Φ(uk−1

τ ) ≤ τ
〈

fk
τ , δu

k
τ

〉

V ∗×V

with
ξkτ ∈ ∂ClJ(u

k
τ ).

Moreover, replacing k with k − 1 in (4.3) and taking v = uk
τ yields

− τ
〈

Aδuk−1
τ , δuk

τ

〉

V ∗×V
− τ
〈

Buk−1
τ , δuk

τ

〉

V ∗×V

− τ
〈

ξk−1
τ , ιδuk

τ

〉

U∗×U
+Φ(uk−1

τ )− Φ(uk
τ ) ≤ τ

〈

fk−1
τ , δuk

τ

〉

V ∗×V

with
ξk−1
τ ∈ ∂ClJ(u

k−1
τ ).
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We now add the last two inequalities and use (4.17), H(B), H(J)(iii) to obtain

1

2

〈

Aδuk
τ , δu

k
τ

〉

V ∗×V
+

1

2

〈

A
(

δuk
τ − δuk−1

τ

)

, δuk
τ − δuk−1

τ

〉

V ∗×V
(4.23)

+ τ(β −m− ε)‖δuk
τ‖2V ≤ 1

2

〈

Aδuk−1
τ , δuk−1

τ

〉

V ∗×V
+

1

4ε

1

τ
‖fk

τ − fk−1
τ ‖2V ∗ .

We now write (4.23) for k = 1, . . . , n ≤ N ; then we add the resulting inequalities to
obtain

1

2
α ‖δun

τ ‖2V +

n
∑

k=1

τ(β −m− ε)‖δuk
τ‖2V ≤ 1

4ε
‖f ′‖2V∗(4.24)

+ 2 ‖A‖L(V,V ∗)

(

‖f(0)‖2 + ‖B‖2L(V,V ∗)‖u0‖2V + ‖ι‖2L(V,U)‖ξ0‖2V + ‖η0‖2V
)

.

Estimates (4.14) and (4.15) are now a direct consequence of (4.24) and assumption
H(s).

5. Proof of Theorem 3.1. In this section we provide the proof of Theorem
3.1 and, to this end, we use the estimates obtained in section 4 in the study of the
Rothe problem. Below we consider various sequences indexed by τ > 0 for which we
investigate their boundedness and convergence as τ → 0. We start by considering
the piecewise linear and piecewise constant interpolant functions uτ : [0, T ] → V and
ūτ : [0, T ] → V , respectively, defined by

ūτ (t) =

{

uk
τ , t ∈ ((k − 1)τ, kτ ] , k = 1, . . . , N,

u0
τ , t = 0,

(5.1)

and

uτ (t) = uk
τ +

(

t

τ
− k

)

(uk
τ − uk−1

τ ), t ∈ ((k − 1)τ, kτ ] , k = 1, . . . , N.(5.2)

Here the sequence {uk
τ}Nk=0 is a solution of Problem Pτ , obtained under the assump-

tions of Lemma 4.1. In addition, we consider the piecewise constant interpolant
ξ̄τ : (0, T ] → U∗ given by

ξ̄τ (t) = ξkτ , t ∈ ((k − 1)τ, kτ ] , k = 1, . . . , N,(5.3)

where the sequence {ξkτ }Nk=0 satisfies (4.4). Then we note that (4.3) can be written,
equivalently, as

〈Au′
τ (t) +Būτ (t)− fτ (t), v(t)− ūτ (t)〉V ∗×V + 〈ξ̄τ (t), ῑ(v(t) − ūτ (t))〉U∗×U(5.4)

+ Φ(v(t)) − Φ(ūτ (t)) ≥ 0 for all v ∈ V a.e. t ∈ (0, T ).

We now define the Nemytskii operators A,B : V → V∗ as (Aw)(t) = A(w(t)) and
(Bw)(t) = B(w(t)) for all w ∈ V and all t ∈ [0, T ]. Thus, from (5.4) we get

〈Au′
τ + Būτ − fτ , v − ūτ 〉V∗×V +

〈

ξ̄τ , ῑ(v − ūτ )
〉

U∗×U
(5.5)

+

∫ T

0

Φ(v(t)) − Φ(ūτ (t)) dt ≥ 0 for all v ∈ V ,

where, recall, ῑ is the Nemytskii operator introduced in assumption H(ι). Let τ2 be
the constant obtained in the proof of Lemma 4.2. We have the following result.

11



Lemma 5.1. Assume that H(A), H(B), H(J), H(Φ), H(0), and H(s) hold. Then,
for all τ ∈ (0, τ2), the functions defined by (5.1)–(5.3) satisfy

‖ūτ‖L∞(0,T ;V ) ≤ d1,(5.6)

‖ūτ‖M2,2(0,T ;V,V ∗) ≤ d2,(5.7)

‖uτ‖C(0,T ;V ) ≤ d3,(5.8)

‖u′
τ‖V ≤ d4,(5.9)

‖ξ̄τ‖U∗ ≤ d5(5.10)

with some positive constants di, 1 ≤ i ≤ 5, not dependent on τ .

Proof. Since the assumptions of Lemma 4.2 are satisfied, the estimates (4.12)–
(4.14) hold for all τ ∈ (0, τ2). The estimates (5.6) and (5.8) follow directly from (4.12).
Next, we use (5.6) to see that the sequence {ūτ} remains bounded in V . Therefore,
in order to establish (5.7), it is enough to estimate ‖ūτ‖BV 2(0,T ;V ∗). To this end we
consider a division 0 = a0 < a1 < · · · < an = T , where ai ∈ ((mi − 1)τ,miτ ] is such
that ūτ (ai) = umi

τ with m0 = 0, mn = N , and mi+1 > mi for i = 1, . . . , N − 1. Then

‖ūτ‖2BV 2(0,T ;V ∗) =
n
∑

i=1

‖umi

τ − umi−1

τ ‖2V ∗(5.11)

≤
n
∑

i=1

⎛

⎝(mi −mi−1)

mi
∑

k=mi−1+1

‖uk
τ − uk−1

τ ‖2V ∗

⎞

⎠

≤
(

n
∑

i=1

(mi −mi−1)

)

⎛

⎝

n
∑

i=1

mi
∑

k=mi−1+1

‖uk
τ − uk−1

τ ‖2V ∗

⎞

⎠

= N

N
∑

k=1

‖uk
τ − uk−1

τ ‖2V ∗ = Tτ

N
∑

k=1

∥

∥

∥

∥

uk
τ − uk−1

τ

τ

∥

∥

∥

∥

2

V ∗

≤ CTτ

N
∑

k=1

∥

∥

∥

∥

uk
τ − uk−1

τ

τ

∥

∥

∥

∥

2

V

.

We now combine (4.15) and (5.11) to see that ‖ūτ‖2BV 2(0,T ;V ∗) is bounded, and we

conclude from here that (5.7) holds.
For the proof of (5.9) we observe that

‖u′
τ‖2V = τ

N
∑

k=1

∥

∥

∥

∥

uk
τ − uk−1

τ

τ

∥

∥

∥

∥

2

V

,

and then we use (4.15). Finally, for the proof of (5.10) we note that

‖ξ̄τ‖2U∗ =
N
∑

k=1

τ‖ξkτ ‖2U∗ ≤ τ

N
∑

k=1

c2(1+‖ιuk
τ‖U )2 ≤ 2Tc2+2c2τ‖ι‖2L(V,U)

N
∑

k=1

‖uk
τ‖2V ≤ d5.

This completes the proof of the lemma.

We now have all the ingredients to provide the proof of Theorem 3.1.
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Proof. First, it follows from Lemma 4.1 that, for τ > 0 small enough, there exists
a solution of Problem Pτ . We consider such a solution, and we use it to construct
the functions uτ , ūτ , and ξ̄τ defined by (5.1)–(5.3). We claim that there exists u ∈ V
such that, passing to a subsequence again indexed by τ , the following convergences
hold:

ūτ → u weakly in V ,(5.12)

ῑūτ → ῑu strongly in U ,(5.13)

ξ̄τ → ξ weakly in U∗,(5.14)

uτ → u weakly in V ,(5.15)

u′
τ → u′ weakly in V .(5.16)

Indeed, it follows from Lemma 4.2, that, for τ > 0 small enough, the estimates
(5.6)–(5.10) hold. The convergence (5.12) to an element u ∈ V follows from the es-
timate (5.6), the continuous embedding L∞(0, T ;V ) ⊂ V , and the reflexivity of the
space V . On the other hand, the estimate (5.7) combined with assumption H(ι) im-
plies (5.13). The convergence (5.14) follows from the bound (5.10) and the reflexivity
of the space U∗. To prove (5.15) we recall that (5.9) implies that the sequence {uτ} is
bounded in V , and therefore we can assume that there exists u1 ∈ V such that uτ → u1

weakly in V as τ → 0. Thus, from (5.12) it follows that ūτ −uτ → u−u1 weakly in V
as τ → 0. We also note that

‖ūτ − uτ‖2V =

N
∑

k=1

∫ kτ

(k−1)τ

(kτ − t)
2

∥

∥

∥

∥

uk
τ − uk−1

τ

τ

∥

∥

∥

∥

2

V

dt =
τ2

3
‖u′

τ‖2V ,

and therefore, from the bound (5.9) of {u′
τ}, we deduce that u = u1. We conclude

from the above that (5.15) holds. The same bound (5.9) implies the convergence
(5.16).

Next, we show that u is a solution of Problem P . To this end we start with
passing to the limit in the initial condition. Since the embedding { v ∈ V , v′ ∈ V } ⊂
C(0, T ;V ) is continuous, from (5.15) and (5.16) it follows that uτ → u weakly in
C(0, T ;V ) as τ → 0. In particular we have

uτ (t) → u(t) weakly in V ′ as τ → 0 for all t ∈ [0, T ].(5.17)

Hence, since uτ (0) = u0 for all τ > 0, we get u(0) = u0. Now we pass to the limit in
(5.5) as τ → 0. For v ∈ V we calculate

〈Au′
τ , v − ūτ 〉V∗×V = 〈Au′

τ , v〉V∗×V − 〈Au′
τ , uτ 〉V∗×V + 〈Au′

τ , uτ − ūτ 〉V∗×V .(5.18)

Since A is linear and continuous, it is also weakly continuous. So from (5.16) we have
Au′

τ → Auτ weakly in V∗, i.e.,

lim
τ→0

〈Au′
τ , v〉V∗×V = 〈Au′, v〉V∗×V .(5.19)

Moreover, we have

lim sup
τ→0

(

−〈Au′
τ , uτ 〉V∗×V

)

(5.20)

= lim sup
τ→0

(

1

2
〈Auτ (0), uτ (0)〉V ∗×V − 1

2
〈Auτ (T ), uτ (T )〉V ∗×V

)

=
1

2
〈Au(0), u(0)〉V ∗×V − lim inf

τ→0

1

2
〈Auτ (T ), uτ (T )〉V ∗×V .
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It is easy to observe that the functional V ∋ v → 〈Av, v〉V ∗×V is continuous and
convex and, therefore, that it is weakly lower semicontinuous. Thus, (5.17) yields

〈Au(T ), u(T )〉V ∗×V ≤ lim inf
τ→0

〈Auτ (T ), uτ(T )〉V ∗×V

and, combining this inequality with (5.20), we obtain

lim sup
τ→0

(

−〈Au′
τ , uτ 〉V∗×V

)

(5.21)

≤ 1

2
〈Au(0), u(0)〉V ∗×V − 1

2
〈Au(T ), u(T )〉V ∗×V = −〈Au′, u〉V∗×V .

Next, an elementary calculus shows that

〈Au′
τ , uτ − ūτ 〉V∗×V =

N
∑

k=1

∫ τk

τ(k−1)

〈Au′
τ (t), uτ (t)− ūτ (t)〉V ∗×V dt

=

N
∑

k=1

∫ τk

τ(k−1)

〈

A
1

τ

(

uk
τ − uk−1

τ

)

,

(

t

τ
− k

)

(

uk
τ − uk−1

τ

)

〉

V ∗×V

dt

=

N
∑

k=1

1

τ

〈

A
(

uk
τ − uk−1

τ

)

, uk
τ − uk−1

τ

〉

V ∗×V

∫ τk

τ(k−1)

(

t

τ
− k

)

dt

= −
N
∑

k=1

1

2

〈

A
(

uk
τ − uk−1

τ

)

, uk
τ − uk−1

τ

〉

V ∗×V
≤ 0.

Combining this inequality with (5.18), (5.19), and (5.21) we obtain that

lim sup
τ→0

〈Au′
τ , v − ūτ 〉V∗×V ≤ 〈Au′, v − u〉V∗×V .(5.22)

We now estimate

lim sup
τ→0

〈Būτ , v − ūτ 〉V∗×V ≤ lim sup
τ→0

〈Būτ , v〉V∗×V − lim inf
τ→0

〈Būτ , ūτ 〉V∗×V .(5.23)

Since the operator B is linear and continuous, it is also weakly continuous. So from
(5.16) we have Bu′

τ → Buτ weakly in V∗, i.e.,

lim sup
τ→0

〈Būτ , v〉V∗×V = lim
τ→0

〈Būτ , v〉V∗×V = 〈Bu, v〉V∗×V .(5.24)

Using now a lower semicontinuity argument, it follows that

lim inf
τ→0

〈Būτ , ūτ 〉V∗×V ≥ 〈Bu, u〉V∗×V

and, combining this inequality with (5.23) and (5.24), we obtain that

lim sup
τ→0

〈Būτ , v − ūτ 〉V∗×V ≤ 〈Bu, v − u〉V∗×V .(5.25)

Moreover, from (4.2) and (5.12) we have

(5.26) 〈fτ , v − ūτ 〉V∗×V → 〈f, v − u〉V∗×V as τ → 0
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and, using (5.13) and (5.14), we see that

(5.27) 〈ξ̄τ , ῑ(v − ūτ )〉U∗×U → 〈ξ, ῑ(v − u)〉U∗×U as τ → 0.

Finally, we define the functional Ψ : V → R ∪ {+∞} by

Ψ(v) =

∫ T

0

Φ(v(t)) dt for all v ∈ V .

We show in what follows that Ψ is lower semicontinuous. Indeed, let un → u strongly
in V . By Lemma 2.5 in [27] there exist k1, k2 ∈ R such that for v ∈ V we have
Φ(v) ≥ k1‖v‖V + k2, which implies that

(5.28)

∫ T

0

Φ(un(t)) dt ≥ k2T + k1

∫ T

0

‖un(t)‖V dt ≥ k2T − |k1|
√
T‖un‖V ≥ k0,

where k0 is a positive constant which does not depend on n.
Consider now a convergent subsequence of Ψ(un), i.e., Ψ(un) → M as n → ∞.

Then, for a subsequence, we have unk
(t) → u(t) strongly in V for a.e. t ∈ (0, T ). From

the lower semicontinuity of Φ we have

Φ(u(t)) ≤ lim inf
n→∞

Φ(unk
(t)) a.e. t ∈ (0, T ).

Inequality (5.28) allows us to use the Fatou lemma. As a result we obtain

∫ T

0

Φ(u(t)) dt ≤
∫ T

0

lim inf
nk→∞

Φ(unk
(t)) dt ≤ lim inf

nk→∞

∫ T

0

Φ(unk
(t)) dt = M,

which shows that Ψ is a lower semicontinuous function. Moreover, since Φ is convex,
then so is Ψ, and, as a consequence, it is weakly sequentially lower semicontinuous.
From (5.12) we have Ψ(u) ≤ lim infτ→0 Ψ(ūτ ), and

(5.29) lim sup
τ→0

∫ T

0

(Φ(v(t)) − Φ(ūτ (t)))dt ≤
∫ T

0

(Φ(v(t)) − Φ(u(t)))dt.

We now use (5.22), (5.25)–(5.27), (5.29), and inequality (5.5) to see that (u, ξ)
satisfies (3.1). Moreover, since ξ̄τ (t) ∈ ∂ClJ(ῑūτ (t)) for a.e. t ∈ (0, T ), from (5.13),
(5.14), and the convergence theorem of Aubin and Cellina (see [1], for instance) we
have

η(t) ∈ ∂ClJ(ῑu(t)) for a.e. t ∈ (0, T ).

We deduce from the above that u is a solution of Problem P . The regularity
u ∈ H1(0, T ;V ) follows from (5.15)–(5.16), which concludes the existence part of the
theorem.

To prove the uniqueness part we assume in what follows that u1 and u2 are two
solutions of Problem P , and we let t ∈ [0, T ]. We write inequality (3.1) for u = u1

with

v(s) =

{

u2(t) if s ∈ [0, t],

u1(t) if s ∈ [t, T ]

and for u = u2 with
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v(s) =

{

u1(t) if s ∈ [0, t],

u2(t) if s ∈ [t, T ];

then we add the resulting inequalities. In this way we obtain

∫ t

0

〈A(u′
1(s)− u′

2(s)), u1(s)− u2(s)〉V ∗×V ds(5.30)

+

∫ t

0

〈B(u1(s)− u2(s)), u1(s)− u2(s)〉V ∗×V ds

+

∫ t

0

〈ξ1(s)− ξ2(s), ιu1(s)− ιu2(s)〉U∗×U ds ≤ 0,

where ξi(s) ∈ ∂ClJ(ιui(s)) for a.e. s ∈ (0, t), i = 1, 2. Using now H(A), H(B), H(J),
and (5.30) yields

α‖u1(t)− u2(t)‖2V ≤ 〈A(u1(t)− u2(t)), u1(t)− u2(t)〉V ∗×V(5.31)

+

∫ t

0

β‖u1(s)− u2(s)‖2V ds ≤ ‖ι‖2L(V,U)

∫ t

0

m‖u1(s)− u2(s)‖2V ds

+ 〈A(u1(0)− u2(0)), u1(0)− u2(0)〉V ∗×V .

Recall also that u1(0) = u2(0) = u0, and therefore (5.31) implies that

α‖u1(t)− u2(t)‖2V ≤ ‖ι‖2L(V,U)

∫ t

0

m‖u1(s)− u2(s)‖2V ds.

We now use the Gronwall lemma to conclude that u1(t) = u2(t) for all t ∈ (0, T ),
which completes the proof.

6. A frictionless contact problem. A large number of quasi-static contact
problems with viscoelastic materials lead to evolutionary variational-hemivariational
inequalities of the form (3.1), (3.2) in which the unknown is the displacement field.
For a variety of such inequalities, Theorem 3.1 can be applied. In this section we
illustrate this point on a viscoelastic frictionless contact problem.

The physical setting is the following. A viscoelastic body occupies, in its refer-
ence configuration, a regular domain Ω ⊂ Rd (d = 2, 3) with boundary ∂Ω. The
boundary is partitioned into three disjoint measurable parts Γ1, Γ2, and Γ3 such that
the measure of Γ1, denoted by m(Γ1), is positive. The body is clamped on Γ1, and so
the displacement field vanishes there. Time-dependent surface tractions of density f2

act on Γ2, and time-dependent volume forces of density f0 act on Ω. The body is in
frictionless contact on Γ3 with an obstacle, the so-called foundation. The foundation
is made of a perfectly rigid material, covered by a layer of deformable material of
thickness g > 0. Therefore, we model the contact with a normal compliance condition
associated to a unilateral contact condition. The process is quasi-static, and the time
interval of interest is [0, T ], where T > 0. Then the mathematical model of the contact
problem (that we state here and explain below in this section) is the following.
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Problem PM. Find a displacement field u : Ω × [0, T ] → Rd and a stress field
σ : Ω× [0, T ] → Sd such that

σ = Cε(u̇) + Gε(u) in Ω× (0, T ),(6.1)

Divσ + f 0 = 0 in Ω× (0, T ),(6.2)

u = 0 on Γ1 × (0, T ),(6.3)

σν = f2 on Γ2 × (0, T ),(6.4)

σν = σ1
ν + σ2

ν ,

−σ1
ν ∈ ∂Clj(uν),

uν ≤ g, σ2
ν ≤ 0, σ2

ν(uν − g) = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

on Γ3 × (0, T ),(6.5)

στ = 0 on Γ3 × (0, T ),(6.6)

u(0) = 0 in Ω.(6.7)

Note that S
d represents the space of second order symmetric tensors on Rd or,

equivalently, the space of symmetric matrices of order d. Recall that the canonical
inner products and the corresponding norms on Rd and Sd are given by

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui), v = (vi) ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ S
d,

respectively. Here and below, the indices i, j, k, l run between 1 and d and, unless
stated otherwise, the summation convention over repeated indices is used.

In (6.1)–(6.7) we use the notation u = (ui), σ = (σij), and ε(u) = (εij(u)) for the
displacement vector, the stress tensor, and the linearized strain tensor, respectively,
and ν = (νi) for the outward unit normal at ∂Ω. Recall that εij(u) =

1
2 (ui,j + uj,i),

where an index following a comma indicates a partial derivative with respect to the
corresponding component of the spatial variable, denoted by x = (xi). Moreover, we
use the notation vν and vτ for the normal and tangential components of a vector field
v on ∂Ω, i.e., vν = v ·ν and vτ = v−vνν. In addition, σν and στ represent the normal
and tangential components of the stress field σ and are defined by σν = (σν) · ν and
στ = σν − σνν, respectively.

We now present a short description of the equations and conditions in Problem
PM in which, for simplicity, we do not indicate explicitly the dependence of the
variables on x. We refer the reader to [13, 18, 25, 32, 34] for more details on mathe-
matical models in contact mechanics, including additional explanation related to our
comments below.

First, (6.1) is the Kelvin–Voigt viscoelastic constitutive law, used in the literature
to model the behavior of real bodies like metals, rubbers, and various polymers.
Equation (6.2) represents the equation of equilibrium, and we use it since we assume
that the process is quasi-static. Next, conditions (6.3) and (6.4) are the displacement
and the traction boundary condition, respectively, while (6.6) and (6.7) represent the
frictionless condition and the initial condition, respectively.

We turn now to the contact condition (6.5) in which our interest lies and which
represents the main trait of novelty of the mechanical model we consider in this pa-
per. This condition is obtained by assuming that the normal stress on the contact
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surface, denoted by σν , has an additive decomposition in two parts, σ1
ν and σ2

ν . Part
σ1
ν describes the deformability of the obstacle, and therefore it follows a normal com-

pliance condition governed by the subdifferential of a nonconvex potential j. Part σ2
ν

describes the rigidity of the obstacle, and therefore it satisfies the Signorini unilateral
contact condition. Recall that condition (6.5) models the contact with a foundation
which is made by a rigid body covered by a layer made of elastic material, say asper-
ities. It shows that the penetration is restricted, since uν ≤ g, where g represents the
thickness of the elastic layer. Also, when there is penetration, as far as the normal
displacement does not reach the bound g, the contact is described with a nonmono-
tone normal compliance condition, since in this case −σν ∈ ∂jν(uν). Due to the
nonmonotonicity of ∂jν , the condition allows one to describe the hardening or the
softening phenomenon of the foundation. Various examples and mechanical interpre-
tation associated with the nonmonotone normal compliance condition can be found
in [25].

In the study of Problem PM we use standard notation for Lebesgue and Sobolev
spaces. For all v ∈ H1(Ω;Rd) we denote by γv the trace of v on ∂Ω and, recall,
we use the notation vν and vτ for its normal and tangential traces. In addition, we
introduce spaces V and H defined by

V = { v = (vi) ∈ H1(Ω;Rd) | γv = 0 a.e. on Γ1 },

H = { τ = (τij) ∈ L2(Ω;Rd×d) | τij = τji, 1 ≤ i, j ≤ d }.

The space H is a real Hilbert space with the canonical inner product given by

(σ, τ )H =

∫

Ω

σij(x) τij(x) dx

and the associated norm ‖ · ‖H. Since m(Γ1) > 0, it is well known that V is a real
Hilbert space with the inner product

(6.8) (u,v)V = (ε(u), ε(v))H, u,v ∈ V,

and the associated norm ‖ · ‖V . The duality pairing between V and V ∗ is denoted
by 〈·, ·〉V ∗×V . Let ε ∈ (0, 1

2 ) and Z = H1−ε(Ω;Rd). We also define the embedding

i1 : V → Z, the trace operator γ1 : Z → H
1

2
−ε(Γ3;R

d), and the embedding i3 :

H
1

2
−ε(Γ3;R

d) → L2(Γ3;R
d), and we consider the trace operator γ : V → L2(Γ3;R

d)
defined by γ = i2 ◦ γ1 ◦ i1. By the Sobolev trace theorem there exists a constant c0
depending only on the domain Ω, Γ1, and Γ3 such that

(6.9) ‖γv‖L2(Γ3;Rd) ≤ c0‖v‖V for allv ∈ V.

Let us denote U = L2(Γ3) and define the operators ν : L2(Γ3;R
d) → U and ι : V → U

by equalities νv = vν for all v ∈ L2(Γ3;R
d) and ι : V → U by ι = ν ◦ γ. In addition,

we consider the spaces V , U , and W defined at the beginning of section 2, with the
previous notation for V and U .

We now consider the following assumptions on the data of Problem PM.
H(C). The viscosity tensor C = (Cijkl) : Ω× Sd → Sd satisfies
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) Cijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;

(b) Cσ · τ = σ · Cτ for all σ, τ ∈ S
d a.e. in Ω;

(c) Cτ · τ ≥ α|τ |2 for all τ ∈ Sd a.e. in Ω with α > 0.

H(G). The elasticity tensor G = (Gijkl) : Ω× Sd → Sd satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) Gijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;

(b) Gσ · τ = σ · Gτ for all σ, τ ∈ S
d a.e. in Ω;

(c) Gτ · τ ≥ β|τ |2 for all τ ∈ Sd a.e. in Ω with β > 0.

H(j). The normal compliance function j : R → R satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) j is locally Lipschitz;

(b) ∂Clj satisfies the growth condition |η| ≤ c1(1 + |s|)
for all η ∈ ∂Clj(s), s ∈ R with d > 0;

(c) (η1 − η2)(s1 − s2) ≥ −c2|s1 − s2|2 for all ηi ∈ ∂Clj(si),

si ∈ R, i = 1, 2 with c2 > 0.

H(f). The densities of forces and traction satisfy

f0 ∈ H1(0, T ;L2(Ω;Rd)), f2 ∈ H1(0, T ;L2(Γ2;R
d));

f0(0) ∈ V, f2(0) = 0.

In order to derive a variational formulation of Problem PM, we define operators
A,B : V → V ∗ by equalities

〈Au,v〉V ∗×V = (Cε(u), ε(v))Q for all u, v ∈ V,(6.10)

〈Bu,v〉V ∗×V = (Gε(u), ε(v))Q for all u, v ∈ V.(6.11)

We also define the functions J : L2(Γ3) → R and f : (0, T ) → V ∗ by equalities

(6.12) J(w) =

∫

Γ3

j(w) dΓ for w ∈ L2(Γ3),

〈f(t),v〉V ∗×V =

∫

Ω

f0(t) · v dx+

∫

Γ2

f2(t) · v dΓ(6.13)

for all v ∈ V and all t ∈ [0, T ].

Finally, let Φ : V → R ∪ {+∞} be an indicator function of the set

K = {v ∈ V, vν ≤ g a.e. on Γ3},

i.e.,

Φ(v) =

{

0 if v ∈ K,

+∞ otherwise.
(6.14)
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Assume now that (u,σ) represent a regular solution of the contact problem (6.1)–
(6.7), and let v ∈ V . Then, using a standard procedure based on the Green formula
and notation (6.10), (6.11), (6.13), we deduce that

〈Au′(t) +Bu(t)− f(t),v(t)− u(t)〉V ∗×V −
∫

Γ3

σ1
ν(t)(vν (t)− uν(t)) dΓ(6.15)

=

∫

Γ3

σ2
ν(t)(vν(t)− uν(t)) dΓ a.e. t ∈ (0, T ).

On the other hand, (6.6) and notation (6.14) imply that

∫

Γ3

σ2
ν(vν(t)− uν(t)) dΓ ≥ Φ(u(t))− Φ(v(t)) a.e. t ∈ (0, T ).(6.16)

Next, we denote

(6.17) − σν(t) = ξ(t)

and use again (6.6) and notation (6.12) to deduce that

(6.18) ξ(t) ∈ ∂ClJ(ιu(t)) a.e. t ∈ (0, T ).

It follows now from (6.15)–(6.17) that

〈Au′(t) +Bu(t) + ι∗ξ(t)− f(t),v(t)− u(t)〉V ∗×V

+Φ(v(t))− Φ(u(t)) ≥ 0 a.e. t ∈ (0, T ).

We now integrate (6.19) on [0, T ] and combine the resulting inequality with inclusion
(6.18) and the initial condition (6.7) to obtain the following variational formulation
of Problem PM in term of the displacements.

Problem PM
V . Find a displacement field u ∈ W such that u(0) = 0 and,

moreover,

∫ T

0

〈Au′(t) + Bu(t) + ι∗ξ(t)− f(t),v(t)− u(t)〉V ∗×V dt

+

∫ T

0

(

Φ(v(t)) − Φ(u(t))
)

dt ≥ 0 for all v ∈ V

with

ξ(t) ∈ ∂ClJ(ιu(t)) for a.e. t ∈ (0, T )

The main result of this section states the unique solvability of Problem PM and
is formulated as follows.

Theorem 6.1. Assume that H(C), H(G), H(j), and H(f) hold and, moreover,
that

β > c2.(6.19)

Then Problem PV
M has a unique solution u ∈ H1(0, T ;V ).
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Proof. We apply Theorem 3.1. To this end we note that assumptions H(C) and
H(G) imply that the operators A and B defined by (6.10) and (6.11) satisfy the
hypotheses H(A) and H(B), respectively. Also, assumption H(j) implies that the
functional J defined by (6.12) satisfies the assumptionH(J). The functional Φ defined
by (6.14) satisfies the hypothesis H(Φ). Since u0 = 0V , we have u0 ∈ K = dom(Φ).
Moreover, it is easy to see that 0V ∈ ∂ConvΦ(u0) and, by the basic properties of the
Clarke subdifferential, that the set ∂ClJ(ιu0) is nonempty. By H(f) and (6.13) we
obtain f(0) ∈ V , and by H(C) and (6.11) we have Bu0 = 0V ∈ V . This implies that
condition H(0) is satisfied with some ξ0 ∈ ∂ClJ(ιu0) and η0 = 0V . Finally, (6.19)
implies that condition H(s) is satisfied, too.

Now we will show that the operator ι satisfies H(ι). To this end we consider a
bounded sequence {vn} ⊂ M2,2(0, T ;V, V ∗). We show that for a subsequence, still
denoted by {vn}, we have

ῑvn → u strongly in U as n → ∞(6.20)

with u ∈ U . To this end we note that, since the embedding i1 : V → Z is compact
and the embedding Z ⊂ V ∗ is continuous, from Proposition 2.8, it follows that for a
subsequence, still denoted by {un}, we have

∫ T

0

‖i1un(t)− z(t)‖2Z dt → 0 with n → ∞,(6.21)

where z ∈ L2(0, T ;Z). Let u ∈ U be given by u = (ν ◦ i2 ◦ γ1)z. We have

‖ῑvn − u‖2U =

∫ T

0

‖ιvn(t)− u(t)‖2U dx

≤ ‖ν ◦ i2 ◦ γ1‖2L(Z;U)

∫ T

0

‖i1un(t)− z(t)‖2Z dx.

We combine this inequality with (6.21) to see that (6.20) holds. We conclude from
here that condition H(ι) is satisfied. Theorem 6.1 is now a direct consequence of
Theorem 3.1.

A couple of functions (u,σ) such that u is a solution of Problem PV
M and σ is

given by (6.1) is called a weak solution to Problem PM. We conclude that under
the assumptions of Theorem 6.1 contact problem PM has a unique weak solution.
Moreover, the solution has the regularity u ∈ H1(0, T ;V ) and σ ∈ L2(0, T ;H).
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