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An Evolutionary Boundary Value Problem

Aissa Benseghir and Mircea Sofonea

Abstract. We consider a nonlinear initial boundary value problem in
a two-dimensional rectangle. We derive variational formulation of the
problem which is in the form of an evolutionary variational inequality
in a product Hilbert space. Then, we establish the existence of a unique
weak solution to the problem and prove the continuous dependence of
the solution with respect to some parameters. Finally, we consider a
second variational formulation of the problem, the so-called dual varia-
tional formulation, which is in a form of a history-dependent inequality
associated with a time-dependent convex set. We study the link between
the two variational formulations and establish existence, uniqueness, and
equivalence results.

Mathematics Subject Classification. 35A01, 35Q74, 35R03, 47J20, 49J40.

Keywords. Nonlinear boundary value problem, evolutionary inequality,
weak solution, convergence results, dual variational formulation.

1. Introduction

Our aim in this paper is to provide the variational analysis of an initial
boundary value problem using arguments of evolutionary variational inequal-
ities and history-dependent operators. The theory of variational inequalities
started in early 60, based on the arguments of monotonicity and convex-
ity. Classical references in the mathematical and numerical analysis of vari-
ational inequalities are [1,2,4,5,11,13,14], for instance. Various applications
in Mechanics and, more specifically, in Contact Mechanics could be found
in the books [3,6,10–12,16–18,21] and in the special issue [15]. Evolutionary
variational inequalities are inequalities which involve the time derivative of
the solution and, therefore, they require an initial condition. Existence and
uniqueness results for such inequalities can be found in the books [6,9,19,21],
for instance. Recently, there is an interest in the study of a special class of in-
equalities, the so-called history-dependent variational inequalities. There are
inequalities in which various functions or operators depend on the history of
the solution. Their study is motivated by important application in problems
involving constitutive laws for materials with memory, total slip, or total slip
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rate friction laws. Existence, uniqueness, and regularity uniqueness results
for such kind of inequalities can be found in [20–22], for instance.

The problem we are interested in this paper leads, in a primal varia-
tional formulation, to an evolutionary variational inequality. In contrast, its
dual variational formulation is in a form of a history-dependent variational
inequality. To introduce this problem, let L, h, and T be given positive con-
stants and denote Ω = (0, L)×(−h, h). Everywhere below we use the notation
(x, y) for a generic point in Ω, and the subscripts x and y represent the partial
derivative with respect to these variables. In addition, we denote by t ∈ [0, T ]
the time variable and the dot above will represent the derivative with respect
to t. The problem under consideration is the following.

Problem. P. Find the functions u = u(x, y, t) : [0, L] × [−h, h] × [0, T ] → R

and w = (x, t) : [0, L] × [0, T ] → R, such that

λu̇xx + Euxx + μu̇yy + Guyy + qB = 0 (1.1)

for all (x, y) ∈ Ω, t ∈ [0, T ],

μẇxx + Gwxx + (λ − μ)u̇xy + (E − G)uxy + fB = 0 (1.2)

for all (x, y) ∈ Ω, t ∈ [0, T ],

u(0, y, t) = w(0, t) = 0 for all y ∈ [−h, h], t ∈ [0, T ], (1.3)

λu̇x(L, y, t) + Eux(L, y, t) = 0 (1.4)

for all y ∈ [−h, h], t ∈ [0, T ],

μ(u̇y(L, y, t) + ẇx(L, y, t)) + G(uy(L, y, t) + wx(L, y, t)) = 0 (1.5)

for all y ∈ [−h, h], t ∈ [0, T ].

μ(u̇y(x, h, t) + ẇx(x, t)) + G(uy(x, h, t) + wx(x, t)) = qN (x, t) (1.6)

for all x ∈ [0, L], t ∈ [0, T ],

(λ − 2μ)u̇x(x, h, t) + (E − 2G)ux(x, h, t) = fN (x, t) (1.7)

for all x ∈ [0, L], t ∈ [0, T ].

|(λ − 2μ)(u̇x(x,−h, t) + (E − 2G)(ux(x,−h, t)| ≤ g, (1.8)

−(λ − 2μ)(u̇x(x,−h, t) − (E − 2G)(ux(x,−h, t) = g
ẇ(x, t)

|ẇ(x, t)|

if ẇ(x, t) �= 0, for all x ∈ [0, L], t ∈ [0, T ],

μ(u̇(x,−h, t) + ẇ(x, t)) + G(uy(x,−h, t) + wx(x, t)) = 0 (1.9)

for all x ∈ [0, L], t ∈ [0, T ],

u(x, y, 0) = u0(x, y), w(x, 0) = w0(x), (1.10)

for all x ∈ [0, L], y ∈ [−h, h].

Problem P describes the equilibrium of a viscoelastic plate submitted to
the action of body forces and tractions and to nonlinear contact conditions
on part of its boundary. Here, Ω represents the cross section of the plate,
u is the horizontal displacement, and w is the vertical displacement. The
constants λ and μ are positive viscosity coefficients, and E and G are positive
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elastic coefficients. A brief description of equations and boundary condition 

in Problem P, including their mechanical significance, is as follows.

First, Eqs. (1.1) and (1.2) represent the equilibrium equation in which 

the functions qB = qB(x, y, t) : Ω × [0, T ] → R and fB = fB(x, y, t) : Ω × 

[0, T ] → R are the horizontal and vertical components of the body forces. 
Condition (1.3) shows that the plate is fixed on the boundary x = 0, and  

conditions (1.4) and (1.5) show that the boundary x = L is free of tractions. 
Next, conditions (1.6) and (1.7) represent the traction conditions. Here, the 

functions qN = qN (x, t) : [0, L] × [0, T ] → R and fN = fN (x, t) : [0, L] × 

[0, T ] → R denote the horizontal and vertical components of the traction 

forces which act on the top y = h of the plate. Condition (1.8) represents 

the multivalued contact condition on the bottom x = −h in which g ≥ 0 is  

given. Condition (1.9) represents the frictionless condition, and finally, (1.10) 

represents the initial condition, in which the functions u0 and w0 are the 

initial horizontal and vertical displacement, respectively.
The rest of paper is structured as follows. In Sect. 2, we list the as-

sumptions on the data and derive the variational formulation of problem P. 
In Sect. 3, we state and prove our main result, Theorem 3.1, which states the 

unique weak solvability of the problem. The proof is based on arguments of 
evolutionary variational inequalities. In Sect. 4, we state and prove a conver-
gence result, Theorem 4.1. It states the continuous dependence of the solution 

with respect to the data. Finally, in Sect. 5, we introduce the dual variational 
formulation of Problem P for which we prove an equivalence result, Theorem 

5.2.

2. Variational Formulation

We start with some notation and preliminaries. Given a real Hilbert space 

Y , we denote by 〈·, ·〉Y its inner product and by ‖ · ‖Y the associate norm,
i.e., ‖y‖2

Y = 〈u, u〉Y for all y ∈ Y . For a normed space Y , we denote by
C([0, T ];Y ) the space of the continuous functions defined on [0, T ] with values
to Y , equipped with the canonic norm. Moreover, ‖·‖L(Y,Z) denotes the norm
in the space of linear continuous operators on Y with values on the normed
space Z.

Everywhere below we use the standard notation for Lebesgue and
Sobolev spaces. In addition, recalling that Ω = (0, L) × (−h, h), we intro-
duce the spaces

V = {u ∈ H1(Ω) : u(0, ·) = 0}, W = {w ∈ H1(0, L) : w(0) = 0}. (2.1)

Note that equalities u(0, ·) = 0 and w(0) = 0 in the definitions of the spaces
V and W are understood in the sense of traces. The spaces V and W are real
Hilbert spaces with the canonical inner products defined by

〈u, ψ〉V =

∫∫

Ω

(uψ + uxψx + uyψy) dxdy ∀u, ψ ∈ V, (2.2)

〈w,ϕ〉W =

∫ L

0

(wϕ + wxϕx) dx ∀w,ϕ ∈ W. (2.3)
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We also consider the product space X = V ×W equipped with the canonical
inner product given by

〈u,v〉X = 〈u, ψ〉V + 〈w,ϕ〉W ∀u = (u,w), v = (ψ,ϕ) ∈ X. (2.4)

On the data of Problem P, we make the following hypothesis:

λ > 0, E > 0, μ > 0, G > 0. (2.5)

fB ∈ C([0, T ];L2(Ω)), qB ∈ C([0, T ];L2(Ω)). (2.6)

fN ∈ C([0, T ];L2(0, L)), qN ∈ C([0, T ];L2(0, L)). (2.7)

g ≥ 0. (2.8)

u0 ∈ V, w0 ∈ W. (2.9)

Under these assumptions, we define the operators A,B : X → X, functional
j : X → R, and function f : [0, T ] → X by equalities

〈Au,v〉X = λ

∫∫

Ω

uxψx dxdy + μ

∫∫

Ω

(uy + wx)(ψy + ϕx) dxdy, (2.10)

〈Bu,v〉X = E

∫∫

Ω

uxψx dxdy + G

∫∫

Ω

(uy + wx)(ψy + ϕx) dxdy, (2.11)

j(v) = g

∫ L

0

|ϕ|dx, (2.12)

〈f(t),v〉X

=

∫∫

Ω

qB(t)ψ dxdy +

∫∫

Ω

fB(t)ϕdxdy +

∫ L

0

qN (t)ψ dx +

∫ L

0

fN (t)ϕdx,

(2.13)

for all u = (u,w), v = (ψ,ϕ) ∈ X, t ∈ [0, T ]. We also consider the initial
data u0 ∈ X given by

u0 = (u0, v0). (2.14)

Note that the definitions above we do not specify the dependence of various
functions on the variables x and y.

The variational formulation of Problems P follows from a tedious cal-
culus, based on the standard arguments. For this reason, we skip the details
and we restrict ourselves to describe the main steps of this calculus. We pro-
ceed formally. Thus, we assume in what follows that u = (u(x, y, t), w(x, t))
represents a regular solution to the problem P, v = (ψ(x, y), ϕ(x)) is an ar-
bitrary element of X and t ∈ [0, T ] is fixed. Then, multiplying (1.1) by ψ − u̇,
integrating the result over Ω, and using the boundary conditions (1.3) and
(1.4) and definition (2.1) of the space V , we deduce that

λ

∫∫

Ω

u̇x(x, y, t)(ψx(x, y) − u̇x(x, y, t)) dxdy (2.15)

+μ

∫∫

Ω

u̇y(x, y, t)(ψy(x, y) − u̇y(x, y, t)) dxdy

+E

∫∫

Ω

ux(x, y, t)(ψx(x, y) − u̇x(x, y, t)) dxdy
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+G

∫∫

Ω

uy(x, y, t)(ψy(x, y) − u̇y(x, y, t)) dxdy

=

∫ L

0

(Guy(x, h, t) + μu̇y(x, h, t))(ψ(x, h) − u̇(x, h, t)) dx

−

∫ L

0

(Guy(x,−h, t) + μu̇y(x,−h, t))(ψ(x,−h) − u̇(x,−h, t)) dx

+

∫∫

Ω

qB(t)(ψ(x, t) − u̇(x, y, t))dxdy.

Assume now that x ∈ [0, L] is fixed. We integrate Eq. (1.2) with respect
to y on [−h, h] and deduce that

2hμ ẇxx(x, t) + 2hGwxx(x, t)

+(λ − μ)

∫ h

−h

u̇xy(x, y, t) dy + (E − G)

∫ h

−h

uxy(x, y, t) dy

+

∫ h

−h

fB(t)dy = 0. (2.16)

Then, using the boundary conditions (1.7), (1.8), and notation

σ(x,−h, t) = (λ − 2μ)u̇x(x,−h, t) + (E − 2G)ux(x,−h, t), (2.17)

after some elementary calculus, we find that

(λ − μ)

∫ h

−h

u̇xy(x, y, t) dy + (E − G)

∫ h

−h

uxy(x, y, t) dy (2.18)

= fN (x, t) − σ(x,−h, t) + μ(u̇x(x, h, t) − u̇x(x,−h, t))

+G(ux(x, h, t) − ux(x,−h, t)).

Next, we substract equalities (2.18) and (2.16) to deduce that

−2hGwxx(x, t) − 2hμ ẇxx(x, t) (2.19)

= fN (x, t) − σ(x,−h, t) + μ(u̇x(x, h, t) − u̇x(x,−h, t))

+G(ux(x, h, t) − ux(x,−h, t)) +

∫ h

−h

fB(t) dy.

To proceed, we multiply equality (2.19) with ϕ − ẇ, and then, we integrate
the result on [0, L] and perform integration by parts to obtain that

G

∫∫

Ω

wx(x, t)(ϕx(x, t) − ẇx(x, t)) dxdy (2.20)

+μ

∫∫

Ω

ẇx(x, t)(ϕx(x, t) − ẇx(x, t)) dxdy,

=

∫ L

0

−σ(x,−h, t)(ϕ(x, t) − ẇ(x, t)) dx

+μ

∫ L

0

(u̇x(x, h, t) − u̇x(x,−h, t))(ϕ(x, t) − ẇ(x, t)) dx

+G

∫ L

0

ux(x, h, t) − ux(x,−h, t))(ϕ(x, t) − ẇ(x, t)) dx
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+ 2hGwx(L, t)(ϕ(L, t) − ẇ(L, t)) + 2hμ ẇx(L, t)(ϕ(L, t) − ẇ(L, t))

+

∫ L

0

fN (ϕ(x, t) − ẇ(x, t)) dx +

∫∫

Ω

fB(ϕ(x, t) − ẇ(x, t)) dxdy.

We now add equalities (2.15) and (2.20) and use integration by parts
and the boundary conditions (1.6) and (1.9) to obtain

E

∫∫

Ω

ux(x, y, t)(ψx(x, y) − u̇x(x, y, t)) dxdy

+G

∫∫

Ω

uy(x, y, t)(ψy(x, y) − u̇y(x, y, t)) dxdy

+λ

∫∫

Ω

u̇x(x, y, t)(ψx(x, y) − u̇x(x, y, t)) dxdy

+μ

∫∫

Ω

u̇y(x, y, t)(ψy(x, y) − u̇y(x, y, t)) dxdy

+G

∫∫

Ω

wx(x, t)(ϕx(x) − ẇx(x, t)) dxdy

+μ

∫∫

Ω

ẇx(x, t)(ϕx(x, t) − ẇx(x, t)) dxdy

+G

∫∫

Ω

wy(x, t)(ϕx(x) − ẇx(x, t)) dxdy

+μ

∫∫

Ω

ẇy(x, t)(ϕx(x, t) − ẇx(x, t)) dxdy,

=

∫∫

Ω

qB(t)(ψ(x, t) − u̇(x, y, t)) dxdy +

∫ L

0

fN (ϕ(x, t) − ẇ(x, t)) dx

+

∫∫

Ω

fB(ϕ(x, t) − ẇ(x, t))dxdy −

∫ L

0

σ(x,−h, t)(ϕ(x, t) − ẇ(x, t)) dx

+

∫ L

0

qN (x, t)(ψ(x, t) − u̇(x, h, t) dx−μ

∫ L

0

ẇx(x, t)(ψ(x, t) − u̇(x, h, t) dx

−G

∫ L

0

wx(x, t)(ψ(x, t) − u̇(x, h, t) dx

+μ

∫ L

0

ẇx(x, t)(ψ(x, t) − u̇(x,−h, t) dx

+G

∫ L

0

wx(x, t)(ψ(x, t) − u̇(x,−h, t) dx. (2.21)

In addition, note that

−μ

∫ L

0

ẇx(x, t)(ψ(x, t) − u̇(x, h, t) dx (2.22)

+μ

∫ L

0

ẇx(x, t)(ψ(x, t) − u̇(x,−h, t) dx

= −μ

∫∫

Ω

ẇx(x, t)(ψy(x, t) − u̇y(x, y, t)) dxdy
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and

−G

∫ L

0

wx(x, t)(ψ(x, t) − u̇(x, h, t) dx (2.23)

+G

∫ L

0

wx(x, t)(ψ(x, t) − u̇(x,−h, t) dx

= −G

∫∫

Ω

wx(x, t)(ψy(x, t) − u̇y(x, y, t)) dxdy.

Substituting (2.22) and (2.23) in (2.21) and using the definitions (2.10),
(2.11), and (2.13), we obtain

〈Au̇(t),v − u̇(t)〉X + 〈Bu(t),v − u̇(t)〉X (2.24)

+

∫ L

0

σ(x,−h, t)(ϕ(x, t) − ẇ(x, t)) dx

= 〈f(t),v − u̇(t)〉X for all v ∈ X, t ∈ [0, T ].

Finally, using the boundary condition (1.8) and notation (2.17), it is
easy to check that

σ(x,−h, t)(ϕ(x, t) − ẇ(x, t)) dx ≤ g|ϕ(x, t)| − g|ẇ(x, t)| ∀x ∈ [0, L].

We integrate this inequality on [0, L] and use notation (2.12) to deduce that
∫ L

0

σ(x,−h, t)(ϕ(x, t) − ẇ(x, t)) dx ≤ j(v) − j(u̇(t)). (2.25)

We now combine equality (2.24) with inequality (2.25) and then use
the initial condition (1.10) and notation (2.14). As a result, we obtain the
variational formulation of problem P.

Problem. PV . Find a function u : [0, T ] → X, such that

〈Au̇(t),v − u̇(t)〉X + 〈Bu(t),v − u̇(t)〉X + j(v) − j(u̇(t)) (2.26)

≥ 〈f(t),v − u̇(t)〉X for all v ∈ X, t ∈ [0, T ],

u(0) = u0. (2.27)

Note that Problem PV represents an evolutionary variational inequality.
Its unique solvability will presented in the next section. Here, we restrict
ourselves to mention that the solution of this inequality will be called a
weak solution to Problem P. We also mention that in Sect. 5, we provide a
second variational formulation of Problem P, the so-called dual variational
formulation, which, in fact, is equivalent with Problem PV .

3. Existence and Uniqueness

Our existence and uniqueness result in the study of Problem PV is the fol-
lowing.

Theorem 3.1. Assume (2.5)–(2.9). Then, Problem PV has a unique solution

with regularity u ∈ C1([0, T ];X).
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The proof is carried out in several steps. The first one consists to in-
vestigate the properties of the operators A and B and, with this concern, we
have the following results.

Lemma 3.2. Assume that (2.5) holds. Then, the operator A is linear, sym-

metric continuous, and coercive, i.e., it satisfies

〈Av,v〉X ≥ mA‖v‖2
X for all v ∈ X, with mA > 0. (3.1)

Lemma 3.3. Assume that (2.5) holds. Then, the operator B is linear, sym-

metric, and coercive, i.e., it satisfies

〈Bv,v〉X ≥ mB‖u‖2
X for all v ∈ X, with mB > 0. (3.2)

The proof of Lemmas 3.2 and 3.3 are identical and are based on the stan-
dard arguments. Nevertheless, for the convenience of the reader, we present,
for instance, the proof of Lemma 3.2.

Proof. The linearity and symmetry of the operator A are obvious. Moreover,
an elementary computation shows that

〈Av,v〉X ≤ (λ + 2μ) ‖u‖X‖v‖X ∀u, v ∈ X, (3.3)

which implies that A is continuous. Inequality (3.1) is a direct consequence
of the two-dimensional version of Korn’s inequality. Indeed, consider an ar-
bitrary element v = (ψ(x, y), ϕ(x)) ∈ X. Then, the small strain tensor asso-
ciated with the two-dimensional displacement field v is given by

ε(v) =

(
ψx

1
2 (ψy + ϕx)

1
2 (ψy + ϕx) 0

)
.

We have

‖ε(v)‖2 = ε(v) · ε(v) = ψ2
x +

1

2
(ψy + ϕx)2 a.e. on Ω. (3.4)

Note also that the function v vanishes on the boundary x = 0 of the rectangle
Ω which is, obviously, of positive one-dimensional measure and, in addition,
since X can be identified as a subspace of H1(Ω)2, we have v ∈ H1(Ω)2.
Therefore, using Korn’s inequality, we obtain that there exists a constant
cK > 0 which depends on Ω, such that∫∫

Ω

‖ε(v)‖2 dxdy ≥ cK ‖v‖2
H1(Ω)2 . (3.5)

We now combine (3.4) and (3.5) to deduce that
∫∫

Ω

(
ψ2

x +
1

2
(ψy + ϕx)2

)
dxdy ≥ cK

∫∫

Ω

(
ψ2 + ψ2

x + ψ2
y + ϕ2 + ϕ2

x

)
dxdy,

and then, using (2.2)–(2.4), we obtain that
∫∫

Ω

(
ψ2

x +
1

2
(ψy + ϕx)2

)
dxdy ≥ c̃K‖v‖2

X , (3.6)

where c̃K depends on cK and h. On the other hand, using definition (2.10)
of the operator A and inequality (3.6), we deduce that

〈Av,v〉X ≥ min(λ, 2μ)

∫∫

Ω

(
ψ2

x +
1

2
(ψy + ϕx)2

)
dxdy. (3.7)
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We now combine (3.6), (3.7), and assumption (2.5) to see that inequality
(3.1) holds with mA = c̃K min(λ, 2μ) > 0, which concludes the proof. �

Next, we recall the following existence and uniqueness result for evolu-
tionary variational inequalities.

Lemma 3.4. Let X be a real Hilbert space, A : X → X a strongly monotone

Lipschitz continuous operator, B : X → X a Lipschitz continuous operator,

and j : X → X a convex lower semicontinuous function. Then, given f ∈
C([0, T ];X) and u0 ∈ X, there exists a unique function u ∈ C1([0, T ];X),
such that u(0) = u0 and

〈Au̇(t),v − u̇(t)〉X + 〈Bu(t),v − u̇(t)〉X + j(v) − j(u̇(t)) (3.8)

≥ 〈f(t),v − u̇(t)〉X for all v ∈ X, t ∈ [0, T ].

Lemma 3.4 is a particular case of Theorem 11.3 in [9], Corollary 7 in
[22], and Theorems in [7,8]. Moreover, it corresponds to Corollary 3.12 in [21].
Nevertheless, for the convenience of the reader, we provide below a sketch of
the proof, and for further details, we send the reader to the above-mentioned
works.

Proof. The proof is established in several steps as follows.

(i) In the first step, let η ∈ C([0, T ];X) be given and consider the interme-
diate problem of finding a function wη : [0, T ] → X, such that for all
t ∈ [0, T ], the inequality below holds:

〈Awη(t),v − wη(t)〉X + 〈η(t),v − wη(t)〉X (3.9)

+ j(v) − j(wη(t)) ≥ 〈f(t),v − wη(t)〉X ∀v ∈ X.

We prove that this intermediate problem has a unique solution wη ∈
C([0, T ];X).

Indeed, using Proposition 31 in [2], it follows from that there exists
a unique element wη(t) that solves (3.9), for each t ∈ [0, T ]. To show
that wη : [0, T ] → K is continuous, consider t1, t2 ∈ [0, T ], and for
the sake of simplicity in writing, denote wη(ti) = wi, η(ti) = ηi, and
f(ti) = f i for i = 1, 2. We write (3.9) with t = t1 and v = w2, then
with t = t2 and v = w1. Adding the resulting inequalities and using the
properties of the operators A and B, we see that

‖w1 − w2‖X ≤ c
(
‖η1 − η2‖X + ‖f1 − f2‖X

)
. (3.10)

Here and below c represent a positive constant, whose value could
change from line to line. We deduce from (3.10) that t �→ wη(t) :
[0, T ] → X is a continuous function which proves the existence of the
solution. The uniqueness follows from the unique solvability of inequal-
ity (3.9) at each t ∈ [0, T ].
(ii) In the second step, we consider the operator Λ : C([0, T ];X) →
C([0, T ];X) defined by equality

Λη = B

∫ t

0

wη(s) ds + u0 ∀η ∈ C([0, T ];X), t ∈ [0, T ], (3.11)
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and prove that it has a unique fixed point. Indeed, let η1, η2 ∈ C([0, T ];
X), and denote by wi the solution of the variational inequality (3.9) for
η = ηi, i.e., wi = wηi

, i = 1, 2. Let t ∈ [0, T ]. Then, an argument
similar to that in the proof of (3.10) shows that

‖w1(t) − w2(t)‖X ≤ c ‖η1(t) − η2(t)‖X . (3.12)

We now use definition (3.11) and the properties of the operator B to
see that

‖Λη1(t) − Λη2(t)‖X ≤ c

∫ t

0

‖η1(s) − η2(s)‖X ds.

This inequality shows that, for m large enough, a power Λ∗ of Λ is a
contraction on the Banach space C([0, T ];X) which concludes this step
of the proof.
(iii) Denote by w

∗ ∈ C([0, T ];X), the solution of inequality (3.10) for
η = η∗ and let u

∗ be the function defined by

u
∗(t) =

∫ t

0

w
∗(s) ds + u0 ∀ t ∈ [0, T ]. (3.13)

Then, it is easy to see that u
∗ ∈ C1([0, T ];X). Moreover, since η∗ = Bu

∗

and u̇
∗ = w

∗, we deduce from (3.9) that u
∗ satisfies (3.8). This proves

the existence part of Lemma 3.4. The uniqueness part follows from the
uniqueness of the fixed point of the operator Λ or, alternatively, using
the Gronwall argument. �

We are now in a position to provide the proof of Theorem 3.1.

Proof. Using assumption (2.8), it is easy to see that the functional j is a
continuous seminorm on the space X. Therefore, it follows that j is a convex
lower semicontinuous function on X. In addition, assumptions (2.6) and (2.7)
and definition (2.13) imply that f ∈ C([0, T ];X). Moreover, assumption (2.9)
shows that the initial data has the regularity u0 ∈ V . Finally, Lemma 3.2
shows that A : X → X is a strongly monotone Lipschitz continuous operator,
and Lemma 3.3 implies that B : X → X is Lipschitz continuous operator.
Theorem 3.1 is now a direct consequence of Lemma 3.4. �

4. A Continuous Dependence Result

In this section, we study the dependence of the solution with respect to
the parameters E, G, and g. To this end, we assume that (2.5)–(2.9) hold
and we consider some positive constants Eρ, Gρ, and gρ which represent a
perturbation of E, G, and g, respectively. Here, ρ denotes a positive parameter
which will converge to zero. We define the operator Bρ and the function jρ

by equalities

〈Bρu,v〉X = Eρ

∫∫

Ω

uxψx dxdy + Gρ

∫∫

Ω

(uy + wx)(ψy + ϕx) dxdy, (4.1)

jρ(v) = gρ

∫ L

0

|ϕ(x)|dx, (4.2)
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for all u = (u,w), v = (ψ,ϕ) ∈ X. Then, we consider the following variational
problem.

Problem. Pρ
V . Find a function uρ : [0, T ] → X, such that

〈Au̇ρ(t),v − u̇ρ(t)〉X + 〈(Bρuρ)(t),v − u̇ρ(t)〉X (4.3)

+ jρ(v) − jρ(u̇ρ(t)) ≥ 〈f(t),v − u̇ρ(t))〉X for all v ∈ X, t ∈ [0, T ].

uρ(0) = u0. (4.4)

Using Theorem 3.1, it follows that Problem PV has a unique solution
u ∈ C1(0, T ;X), and, in addition, Problem Pρ

V has a unique solution uρ ∈
C1([0, T ];X). Our main result in this section is the following.

Theorem 4.1. Assume (2.5)–(2.9) and, moreover, assume that

Eρ → E, Gρ → G, gρ → g as ρ → 0. (4.5)

Then, the solution uρ of problem Pρ
V converges to the solution u of the prob-

lem PV that is

uρ −→ u in C1([0, T ];X) as ρ → 0. (4.6)

Proof. Let ρ > 0 and let t ∈ [0, T ] be given. We use inequalities (2.26) and
(4.3) to deduce that

〈Au̇(t), u̇ρ(t) − u̇(t)〉X + 〈Bu(t),uρ(t) − u̇(t)〉X

+ j(u̇ρ(t)) − j(u̇(t)) ≥ 〈f(t), u̇ρ(t) − u̇(t))〉X ,

〈Au̇ρ(t), u̇(t) − u̇ρ(t)〉X + 〈Bρuρ(t), u̇(t) − u̇ρ(t)〉X

+ jρ(u̇(t)) − jρ(u̇ρ(t)) ≥ 〈f(t), u̇(t) − u̇ρ(t))〉X .

We now add these inequalities and use property (3.1) of the operator A to
obtain that

mA‖u̇ρ(t) − u̇(t)‖2
X ≤ 〈Bρuρ(t) − Bu(t), u̇(t) − u̇ρ(t)〉X (4.7)

+ jρ(u̇(t)) − jρ(u̇ρ(t)) + j(u̇ρ(t)) − j(u̇(t)).

Next, we use definitions (4.2) and (2.12) to see that

jρ(u̇(t)) − jρ(u̇ρ(t)) + j(u̇ρ(t)) − j(u̇(t)) (4.8)

≤ c |gρ − g| ‖u̇ρ(t) − u̇(t)‖X ,

where, here and below, c represents a constant which does not depend on ρ

and whose value may change from line to line. We now combine inequalities
(4.7) and (4.8) to find that

mA‖u̇ρ(t) − u̇(t)‖X ≤ ‖Bρuρ(t) − Bu(t)‖X + c |gρ − g|. (4.9)

On the other hand, using definitions (2.11) and (4.1), it is easy to see that

‖Bρuρ(t) − Bu(t)‖X ≤ (Eρ + Gρ)‖uρ(t) − u(t)‖X (4.10)

+ (|Eρ − E| + |Gρ − G|)‖u(t)‖X .
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It follows now from assumption (4.5) that Eρ + Gρ ≤ c and, therefore, in-
equalities (4.9) and (4.10) imply

‖u̇ρ(t) − u̇(t)‖X ≤ c ‖uρ(t) − u(t)‖X (4.11)

+ (|Eρ − E| + |Gρ − G|) max
r∈[0,T ]

‖u(r)‖X + c |gρ − g|.

Next, we use the initial conditions (2.27) and (4.3) to see that

‖uρ(t) − u(t)‖X ≤

∫ t

0

‖u̇ρ(s) − u̇(s)‖X ds, (4.12)

and then, we substitute this inequality in (4.11) and use Gronwall’s lemma
to obtain that

‖u̇ρ(t) − u̇(t)‖X (4.13)

≤ c (|Eρ − E| + |Gρ − G|) max
r∈[0,T ]

‖u(r)‖X + |gρ − g|).

The convergence (4.6) follows now from inequalities (4.12) and (4.13) and
assumption (4.5). �

5. Dual Variational Formulation

In this section, we introduce and study a second variational formulation of
Problem P, the so-called dual variational formulation. It is obtained by op-
erating the change of variable σ = Au̇ + Bu in Problem PV . Dual varia-
tional formulations of boundary problems originate in Contact Mechanics,
as explained in [9,18,19]. The main idea is to introduce a new variational
formulation expressed in terms of the stress field, equivalent with the primal
variational formulation which, in turn, is expressed in terms of displacement.

Everywhere below we assume that (2.5)–(2.9) hold and we denote by
A−1 the inverse of the operator A, whose existence is guaranteed by Lemma
3.2. Note also that Lemmas 3.2 and 3.3 imply that the operators A−1 and
B linear continuous operators, and we shall use this results in various places
below. We start with the following result.

Lemma 5.1. Then, there exists an operator R : C([0, T ];X) −→ C([0, T ], X),
such that, for any functions σ ∈ C([0, T ];X) and u ∈ C1([0, T ];X) with

u(0) = u0, the following equivalence holds:

σ(t) = Au̇(t) + Bu(t) ∀ t ∈ [0, T ] (5.1)

if and only if

u̇(t) = A−1σ(t) + Rσ(t) ∀ t ∈ [0, T ]. (5.2)

Note that in (5.2), we use the short-hand notation Rσ(t) instead of
(Rσ)(t). We shall use this notation in many places below when no confusion
arises.

Proof. Let σ ∈ C([0, T ];X) and define the operator Λσ : C([0, T ];X) −→
C([0, T ];X) by equality

12



(Λσθ)(t) = −A−1B

(∫ t

0

(θ(s) + A−1σ(s))ds + u0

)

∀θ ∈ C([0, T ], X), t ∈ [0, T ]. (5.3)

We shall prove that Λσ has a unique fixed point, denoted Rσ. To this end,
consider two functions θ1,θ2 ∈ C([0, T ];X) and let t ∈ [0, T ]. Then, using
the properties of the operators A and B, it is easy to see that

‖(Λσθ1)(t) − (Λσθ2)(t)‖X ≤ c

∫ t

0

‖θ1(s) − θ2(s))‖X ds,

where c denotes a positive constant which depends on A and B. This in-
equality shows that the operator Λσ is a history-dependent operator, and
using Theorem 3.1 in [21], we deduce that there exists a unique element
Rσ ∈ C([0, T ];X), such that

Rσ(t) = Λσ(Rσ)(t). (5.4)

We now compare equalities (5.3) and (5.4) to deduce that

(Rσ)(t) = −A−1B

(∫ t

0

(Rσ(s) + A−1σ(s))ds + u0

)
.

Assume now that (5.1) holds. Then, it is easy to see that

u̇(t) − A−1σ(t) = −A−1Bu(t),

and since u(t) =

∫ t

0

u̇(s) ds + u0, we deduce that

u̇(t) − A−1σ(t) = −A−1B

(∫ t

0

u̇(s) ds + u0

)
,

which shows that

u̇(t) − A−1σ(t) = −A−1B

(∫ t

0

(u̇(s) − A−1σ(s) + A−1σ(s)) ds + u0

)
.

(5.5)

We now combine (5.3) and (5.5) to see that u̇ − A−1σ is a fixed point for
the operator Λσ. On the other hand, recall that this operator has a unique
fixed point, denoted Rσ. Therefore, u̇(t) − A−1σ(t) = Rσ(t), which shows
that (5.2) holds. Conversely, assume that (5.2) holds. Then, since Rσ is the
unique fixed point of the operator Λσ, we have the equalities

u̇(t) − A−1σ(t) = Rσ(t) = Λσ(Rσ)(t) = Λσ(u̇(t) − A−1σ(t)).

We use now definition (5.3) to deduce that (5.5) holds. Next, since

u(t) =

∫ t

0

u̇(s) ds + u0,

equality (5.5) implies that

u̇(t) − A−1σ(t) = −A−1Bu(t).

This shows that equality (5.1) holds which concludes the proof. �
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Next, for each t ∈ [0, T ], we define the set Σ(t) ⊂ V by equality

Σ(t) = { τ ∈ V : 〈τ ,v〉X + j(v) ≥ 〈f(t),v〉X ∀v ∈ V } . (5.6)

Then, we consider the following variational problem.

Problem. PD
V . Find a function σ : [0, T ] → X, such that

σ ∈ Σ(t), 〈A−1σ(t)+Rσ(t), τ − σ(t)〉X ≥0 for all τ ∈ Σ(t), t ∈ [0, T ].

(5.7)

We refer in what follows to Problem PD
V as the dual formulation of

Problem PV . The link between the variational problems PV and PD
V is given

by the following result.

Theorem 5.2. Assume that (2.5)–(2.9) hold and let u ∈ C1([0, T ];X), σ ∈
C([0, T ];X). Consider the following statements:

(a) u is solution to problem PV .

(b) σ is solution of problem PD
V .

(c) σ = Au̇ + Bu and u(0) = u0.

Then, if two of the statements above hold, the reminder one holds, too.

Proof. The proof is based on the implications (a) and (c) =⇒ (b), (a) and
(b) =⇒ (c), (b) and (c) =⇒ (a) which will be proved in the three steps below.

(1) (a) and (c) =⇒ (b). We assume in what follows that u solution of PV ,
σ = Au̇ + Bu, u(0) = u0 and let t ∈ [0, T ] be given. Then, Lemma 5.1
implies that u̇(t) = A−1σ(t) + Rσ(t), and substituting this inequality
in (2.26), we have

〈σ(t),v − u̇(t)〉X + j(v) − j(u̇(t)) ≥ 〈f(t),v − u̇(t))〉X . (5.8)

Next, testing in (5.8) with v = 2u̇(t) and v = 0X , we successively obtain

〈σ(t), u̇(t)〉X + j(u̇(t) ≥ 〈f(t), u̇(t)〉X ,

〈σ(t), u̇(t)〉X + j(u̇(t)) ≤ 〈f(t), u̇(t)〉X ,

which imply that

〈σ(t), u̇(t)〉X + j(u̇(t)) = 〈f , u̇(t)〉X . (5.9)

We use (5.8), (5.9), and the definition (5.6), to see that

σ(t) ∈ Σ(t). (5.10)

Moreover, we note that (5.6) and (5.9) yield

〈τ − σ(t), u̇(t)〉X = 〈τ , u̇(t)〉X + j(u̇(t)) − 〈f(t), u̇(t)〉X ≥ 0 ∀ τ ∈ Σ(t),

and using equality u̇(t) = A−1σ(t) + Rσ(t), we obtain that

〈τ − σ(t), A−1σ(t) + Rσ(t)〉X ≥ 0 ∀ τ ∈ Σ(t). (5.11)

We now gather (5.10) and (5.11) to see that σ is solution of Problem
PD

V , i.e., (b) holds.
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2) (a) and (b) =⇒ (c). We assume in what follows that u is a solution of
PV and σ is solution of PD

V . Denote

σ̃ = Au̇ + Bu (5.12)

and let t ∈ [0, T ]. Then, using the implications (a) and (c) =⇒ (b), it
follows that σ̃ is solution of PD

V . Since both σ and σ̃ are solution to
Problem PD

V , we have

〈A−1σ(t) + Rσ(t), σ̃(t) − σ(t)〉X ≥ 0,

〈A−1σ̃(t) + Rσ̃(t),σ(t) − σ̃(t)〉X ≥ 0,

and adding these inequalities, we obtain that

〈A−1σ̃(t) − A−1σ(t),σ(t)−, σ̃(t)〉X ≤ 〈Rσ̃(t) − Rσ(t),σ(t) − σ̃(t)〉X .

This inequality combined with the properties of A−1 yields

‖σ̃(t) − σ(t)‖X ≤ c ‖Rσ̃(t) − Rσ(t)‖X , (5.13)

where, here and below, c denotes a given positive constant, whose value
will change from line to line. On the other hand, by the definition of the
operator R, we have

Rσ̃(t) = −A−1B

(∫ t

0

(Rσ̃(t)(s) + A−1σ̃(t)(s))ds + u0

)
,

Rσ(t) = −A−1B

(∫ t

0

(Rσ(s) + A−1σ(s))ds + u0

)
.

Therefore

‖Rσ̃(t) − Rσ(t)‖X

≤ c

( ∫ t

0

‖σ̃(s) − σ(s)‖Xds +

∫ t

0

‖Rσ̃(s) − Rσ(s)‖Xds

)

and applying Gronwall’s lemma, yields

‖Rσ̃(t) − Rσ(t)‖X ≤ c

∫ t

0

‖σ̃(s) − σ(s)‖X ds. (5.14)

We now combine inequalities (5.13) and (5.14), and then, we apply
Gronwal’s lemma, again, to deduce that

σ̃(t) = σ(t). (5.15)

It follows now from (5.12) and (5.15) that σ = Au̇+ Bu and, therefore, (c)
holds.

(3) (b) and (c) =⇒ (a). We assume that σ a solution to problem PD
V and,

in addition, σ = Au̇ + Bu and u(0) = u0. Let t ∈ [0, T ]. Then, Lemma 5.1
implies that u̇(t) = A−1σ(t) + Rσ(t). We substitute this equality in (5.7)
to obtain

〈τ − σ(t), u̇(t)〉X ≥ 0 ∀ τ ∈ Σ(t). (5.16)

Let d(t) ∈ X be a subgradient of j in the point u̇(t). Then

j(v) − j(u̇(t)) ≥ 〈d(t),v − u̇(t)〉X ∀v ∈ X, (5.17)
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and taking successively v = u̇(t) and v = 0V in this inequality, we find that

〈d(t), u̇(t)〉X = j(u̇(t)). (5.18)

We now combine (5.17) and (5.18) to see that

j(v) ≥ 〈d(t),v〉X ∀v ∈ X. (5.19)

This inequality shows that f(t)−d(t) ∈ Σ(t) and, therefore, we are allowed
to test in (5.16) with τ = f(t) − d(t) . As a result, we find that

〈f(t), u̇(t)〉X ≥ 〈σ(t), u̇(t)〉X + 〈d(t), u̇(t)〉X , (5.20)

and using (5.18) yields

〈f(t), u̇(t)〉X ≥ 〈σ(t), u̇(t)〉X + j(u̇(t)). (5.21)

Note that the converse inequality also holds, since σ(t) ∈ Σ(t). Therefore,
we conclude from above that

〈σ(t), u̇(t)〉X + j(u̇(t)) = 〈f(t), u̇(t)〉X . (5.22)

Now, since σ(t) ∈ Σ(t), we have

〈σ(t),v〉X + j(v) ≥ 〈f(t),v〉X ∀v ∈,

and using (5.21), we deduce that

〈σ(t),v − u̇(t)〉X + j(v) − j(u̇(t)) ≥ 〈f(t),v − u̇(t)〉X ∀v ∈ X.

Finally, using equalities σ(t) = Au̇(t) + Bu(t) and u(0) = u0, we deduce
that u is a solution of Problem PV , which concludes the proof. �

A carefully examination of Problems PV and PD
V leads to the conclusion

that these problems have a different feature. First, Problem PV is an evolu-
tionary variational inequality, since the derivative of the unknown u appears
in its statement. Therefore, an initial condition, (2.27), is required. Moreover,
it does not involve any constraint on the solution. In contrast, Problem PD

V

is a history-dependent inequality with constraints. Indeed, this inequality is
governed by the operator R which satisfies inequality (5.14) and, therefore, is
a history-dependent operator. Moreover, the inequality is governed by the set
of constraints Σ(t), which is a time-dependent convex set. Nevertheless, de-
spite these different feature, Problems PV and PD

V are equivalent, as stated
in Theorem 5.2. Moreover, combining Theorem 5.2 with Theorem 3.1, we
deduce the unique solvability of Problem PD

V , under assumptions (2.5)–(2.9).
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