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No complexity–stability relationship
in empirical ecosystems
Claire Jacquet1,2,3, Charlotte Moritz4,5, Lyne Morissette6, Pierre Legagneux1,2, François Massol7,

Philippe Archambault4,8 & Dominique Gravel1,2,9

Understanding the mechanisms responsible for stability and persistence of ecosystems is one

of the greatest challenges in ecology. Robert May showed that, contrary to intuition, complex

randomly built ecosystems are less likely to be stable than simpler ones. Few attempts have

been tried to test May’s prediction empirically, and we still ignore what is the actual

complexity–stability relationship in natural ecosystems. Here we perform a stability analysis

of 116 quantitative food webs sampled worldwide. We find that classic descriptors of

complexity (species richness, connectance and interaction strength) are not associated with

stability in empirical food webs. Further analysis reveals that a correlation between the effects

of predators on prey and those of prey on predators, combined with a high frequency of weak

interactions, stabilize food web dynamics relative to the random expectation. We conclude

that empirical food webs have several non-random properties contributing to the absence of a

complexity–stability relationship.
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Montréal, Quebec, Canada H3A 1B1. 3 UMR MARBEC, Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France. 4 Institut des
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T
he complexity–stability debate1, initiated more than
40 years ago, stems from two apparently conflicting
observations. On the one hand, complex ecosystems are

ubiquitous in nature, as illustrated by diverse tropical forests,
coral reefs or intertidal communities. These observations
have inspired ecologists to hypothesize that complexity could
stabilize ecosystems2,3. On the other hand, theory states
that complex random systems are less likely to recover from
small perturbations than simpler ones4–6. This prediction was
put forth by Robert May7, who studied the relationship between
complexity and stability in random ecosystems. Ecosystem
complexity was defined as s

ffiffiffiffiffiffi
SC
p

where S is species richness,
C is connectance (the probability that any two species will interact
with each other) and s is the s.d. of interaction strength. May7

predicted that a system could be stable only if the criterion
s
ffiffiffiffiffiffi
SC
p

o�d was satisfied, where �d expresses the magnitude of
intraspecific competition.

May7 analysed the local stability of randomly generated
community matrices. A community matrix is obtained from
the linearization around a feasible equilibrium of a system of
equations describing the dynamics of the community. The entries
of a community matrix quantify the impact of a change in
abundance of one species on the dynamics of another species. The
real part of the dominant eigenvalue of the community matrix
indicates the rate at which a system returns to equilibrium
(if negative) or moves away from it (if positive) after small
perturbations. It does not guarantee stability following large
perturbations (global stability), or that the perturbation will not
first amplify before vanishing (reactivity)8,9.

The stability of a random community matrix can be predicted
thanks to the generalization of the circular law10. This theory
states that the distribution of the eigenvalues of a S� S matrix,
whose coefficients are independently sampled from a distribution
of mean 0 and variance 1, converges to the uniform distribution
in the unit circle in the complex plane, as S-N. The centre of
the circle � �d corresponds to the mean of intraspecific interaction
terms �d40

� �
, provided that the variance in intraspecific

interaction terms is not too large11. The radius R is related to
interspecific interactions and is equal to s

ffiffiffiffiffiffi
SC
p

in random
ecosystems, that is May’s complexity measure. Thus, local
stability is determined by the combination of two components;
one can increase the stability of a system by (i) moving the centre

of the circle to more negative values along the real axis by
increasing intraspecific competition or (ii) decreasing the radius
of the circle by reducing the complexity of the system (Fig. 1c).

Tang et al12. proposed that another quantity critically affects
the stability of more realistic ecosystems, such as predator–prey
communities, namely the correlation between coefficients across
the diagonal of the community matrix r. They subsequently
found that the stability criterion for large and random
community matrices is s

ffiffiffiffiffiffi
SC
p

1þ rð Þ�Eo�d where E is the
mean of the elements of the community matrix (including zeros).
In other words, the correlation between pairs of interactions
decreases stability if positive (r40) but increases stability if
negative (ro0) with respect to May’s case12.

Here we attempt to solve the complexity–stability paradox with
a local stability analysis of 116 quantitative food webs sampled
worldwide from marine, freshwater and terrestrial habitats. This is
the largest data set ever used to test May’s prediction empirically.
The complexity–stability relationship has been previously studied
with direct observations of energy flows between species, but on a
small number of food webs (from one to seven)13–15. Recently,
Neutel and Thorne16 reported an absence of complexity–stability
relationship in 21 soil food webs, while James et al17. found a weak
positive relationship based on 21 food webs from terrestrial and
marine habitats. These studies, however, used heterogeneous
methodologies, shared several networks, and in several cases,
interaction strengths were derived from assumptions rather than
from direct observations18,19.

The studied food webs were all compiled on the same standard
methodology to satisfy the Ecopath modelling framework20.
Ecopath is a trophic model, the most widely used tool for
ecosystem-based fisheries management, and has also been used to
characterize unexploited terrestrial ecosystems21. It relies on a
system of linear equations established with the aim of balancing
the inflows and the outflows of each compartment20,22. A large
amount of information is included in Ecopath models, such as
diet composition, biomass, production and consumption rates of
each species, providing an accurate representation of feeding
interactions within food webs. Ecopath models provide a unique
opportunity to build realistic community matrices with empirical
data derived from a standardized protocol. The level of resolution
of marine Ecopath models is, however, heterogeneous through
food web compartments, with detailed compartments for
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Figure 1 | Method summary. (a) Equivalence between Ecopath and Lotka–Volterra models: simplified diagram of trophic flows between one consumer

C and one resource R parameterized with Ecopath model (in blue) and Lotka–Volterra model (in green). B is biomass (t km� 2), (P/B)c and (Q/B)c are the

production/biomass and consumption/biomass ratios of C respectively (per year), DCcr is the proportion of resource R in the diet of consumer C, erc

expresses the efficiency of a consumer to convert resource energy into biomass with erc¼ P=Bð Þc
Q=Bð Þc

. (b) Community matrix construction: derivation of

community matrix elements for the simplified food web presented in diagram A, and an example of community matrix structure observed in real food webs.

(c) Measure of stability: the eigenvalues of a large community matrix are uniformly distributed on a circle on the complex plane (axes cross at the origin).

On the real axis, the dominant eigenvalue Re(lmax)¼ R� �d, where the centre of the circle �d is equal to the mean of intraspecific interaction terms �d40
� �

,

and the radius R is related to interspecific interaction terms (that is, off-diagonal elements of the community matrix) and is equal to s
ffiffiffiffiffiffi
SC
p

in random

matrices. For predator-prey communities, the eigenvalues are uniformly distributed on an ellipse with a horizontal half axis R¼ 1þrð Þs
ffiffiffiffiffiffi
SC
p

(ref. 11).
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collected fishes and more aggregated compartments for plankton
and invertebrates.

We translated parameters of the Ecopath models into
interaction coefficients of the Lotka–Volterra interaction model
following the same approach as De Ruiter et al13. Interaction
coefficients from all pairwise interactions of a food web
make the interaction matrix A¼ [aij]. Because of the
equilibrium assumption of Ecopath models, a community
matrix C can be constructed for each food web by multiplying
the interaction matrix A with species biomass (Fig. 1b).

We measured food web stability using the real part of the
dominant eigenvalue of the community matrix C to be directly
comparable to May’s approach. The diagonal elements of the
community matrices were set to 0 to focus on the effect of
interspecific interactions on stability. Note that Re(lmax) will
be positive, since R40 (Fig. 1c). This method is comparable
to other studies that calculated stability by assessing the level
of intraspecific interaction needed for all eigenvalues in a
community matrix to have negative real parts14,16,19.

We show that complexity is not related to stability in empirical
ecosystems. We find that the intrinsic energetic organization of
food webs creates a high frequency of weak interactions and a
correlation between pairs of interactions. These non-random
properties are highly stabilizing and contribute to the absence of a
complexity–stability relationship.

Results
Complexity–stability relationship in empirical ecosystems. We
first investigated the relationship between stability and classic

descriptors of ecosystem complexity23, that is, species richness
S, connectance C and s.d. of interaction strengths s. We observed
no relationship between food web stability and species richness,
neither with connectance nor with s.d. of interaction strength
(Fig. 2). Further analyses revealed that this result was robust to
the variability of sampling intensity among the 116 food webs and
to uncertainty related to Ecopath parameter estimates (Methods
section, Supplementary Figs 1,2 and 3). We neither found
significant complexity–stability relationship using the stability
criterion derived by Tang et al12. that integrates correlation
between pairs of interactions and mean of interaction strengths
(Supplementary Fig. 4). The absence of a complexity–stability
relationship in empirical food webs demonstrates that the
random matrices studied by May7 to derive stability criteria
deviate significantly from empirical systems. As May7 stated in
the re-edition of his book, his theory provides the baseline against
which we should compare empirical systems and find the
non-random features stabilizing them. We therefore
investigated further the mechanisms preventing the negative
relationship between complexity and stability to occur.

Correlation between complexity parameters. May’s stability
criterion s

ffiffiffiffiffiffi
SC
p

o�d indirectly predicts that for complex systems
to persist, interaction strength should be weaker in species-rich
and highly connected systems7,24. In other words, complex
ecosystems could persist in nature provided that S, C and s are
not independent. In the same way, the inequality derived by
Tang et al.12, s

ffiffiffiffiffiffi
SC
p

1þrð Þ�Eo�d, predicts that r and s
ffiffiffiffiffiffi
SC
p

should be correlated in feasible ecosystems. We therefore
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Figure 2 | Food web stability related to complexity parameters in 116 food webs. (a) Number of species S (linear regression: P¼0.97, R2o10� 5),

(b) Connectance C¼ (L/S2) where L is the number of links (P¼0.98, R2o10�6), (c) Standard deviation of interaction strengths s (P¼0.1, R2¼0.02),

(d) May’s complexity measure s
ffiffiffiffiffiffi
SC
p

(P¼0.02, R2¼0.04). Stability is measured as Re(lmax) for marine (blue), freshwater (green) and terrestrial

ecosystems (orange). Food webs with eigenvalues close to zero are the most stable. All quantities are dimensionless.
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hypothesized that, contrary to randomly built ecosystems,
parameters describing complexity are not independent in
nature. We found that the s.d. of interaction strength s across
the 116 food webs was negatively correlated to the product of
species richness and connectance

ffiffiffiffiffiffi
SC
p

(Fig. 3a) and contrary to
expectations, we observed a slightly positive correlation between
r and s

ffiffiffiffiffiffi
SC
p

(Fig. 3b). The correlation between s and
ffiffiffiffiffiffi
SC
p

decreased the overall complexity and confirmed the existence of
feasibility constraints on communities. However, we still observed
higher values of s than predicted by May’s stability criterion and
this observation did not explain the absence of complexity–
stability relationship in empirical systems.

Non-random properties of empirical community matrices.
Random matrix theory supposes that interaction coefficients are
independent and identically distributed in the community matrix.

However, many studies on the complexity-stability relationship
suggest that real ecosystems have non-random structural
properties promoting their stability despite their complexity23.
We focused on four non-random properties observed in our
empirical community matrices, and then investigated their
contribution to stability with randomization tests.

(i) Pyramidal structure of interaction strength13,17,18: we found
that interaction strength was related to trophic level, the
occurrence of strong interactions being more likely at low
trophic levels. Species biomass distribution affected the mean and
variance of row i, since cji¼ aij�Bj. Consequently, rows had
different means and variance, a feature we call row structure. We
hypothesized that food webs without this row structure are less
stable than real food webs. (ii) Interaction strength
topology14,15,18: trophic structure determines the position and
the direction of interaction strength (that is, ‘who eats whom’),
and creates a non-random topology of interaction strengths. We
hypothesized that food webs with a random topological structure
are less stable than real food webs. (iii) Correlation between pairs
of predator-prey interactions12,25,26: we found a correlation
between pairs of interaction strengths cij and cji in community
matrices, since cji¼ (� cij� eij�Bj)/Bi (Fig. 1b). We therefore
hypothesized that food webs with an empirical topological
structure, but with a null correlation between pairs of
interaction strengths, are less stable than real food webs.
(iv) Interaction strength frequency distribution: in agreement
with previous studies13,27–29, we observed a leptokurtic
distribution of interaction strengths (high proportion of weak
interactions). Consequently, we hypothesized that food webs with
a highly peaked and long tailed distribution of interaction
strengths are more stable than flatter distributions, such as the
normal distribution.

Randomization tests. We performed eight randomization tests to
remove one or several properties of natural food webs and
computed stability of the permuted community matrices
(called H1–H8 at Table 1, see Methods section for details). We
used this method to determine whether these properties had a
significant effect on the distribution of eigenvalues across the 116
food webs, and their impact on the complexity–stability
relationship. Randomization tests removed some non-random
features of empirically built community matrices, generating
matrices more similar to the ones expected under the random
matrix theory, in which elements are drawn from a standardized
distribution.

The distribution of eigenvalues of the permuted food webs was
compared to stability of the original food webs. We found that
each of the four structural properties enhanced food web stability
(Fig. 4a). The removal of the empirical distribution of interaction
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Figure 3 | Correlation between complexity parameters in real food webs.

(a) s is the s.d. of interaction strengths, S the number of species and C the

connectance. The product
ffiffiffiffiffiffi
SC
p

was negatively correlated to s (Spearman’s

rank correlation (Po10� 13, r¼ �0.64). (b) r¼ corr cij; cjið Þ is the

correlation between pairwise interactions. The product s
ffiffiffiffiffiffi
SC
p

was positively

correlated to r (P¼0.02, r¼0.22).

Table 1 | Properties conserved by each randomization test (indicated by a �).

Hypothesis Row structure Topology Pairwise correlation Frequency distribution

H1 � � � �
H2 � � � �
H3 � � � �
H4 � � � �
H5 � � � �
H6 � � � �
H7 � � � �
H8 � � � �

The column ‘row structure’ specifies whether the pyramidal structure of interaction strength is conserved or not in randomization tests H1–H8. Similarly, ‘topology’ corresponds to interaction strength
topology (‘who eats whom’), ‘pairwise correlation’ corresponds to the correlation between pairs of predator–prey interactions and ‘frequency distribution’ corresponds to the leptokurtic distribution of
interaction strengths (high proportion of weak interactions).
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strengths (with many weak interactions, H4) had the strongest
impact on stability, followed by the removal of correlation
between pairs of interactions (H3). Note that in all the
randomization tests, the pyramidal structure of interaction
strength was removed. Stability decreased when only this
property was removed, keeping empirical topology, pairwise
correlation and interaction strength distribution (H1). The
randomization of interaction strength topology (H2) was also
destabilizing, but to a very lesser extent compared with others
non-random properties (Fig. 4a).

Randomization tests resulted in some cases in a negative
complexity–stability relationship, although weaker than one
should expect from the random matrix theory. Even if
randomized matrices conserved the same S, C and s2 as original
ones (and thus their correlation, presented in Fig. 3a), we found a
negative complexity–stability relationship when we normalized
interaction strength distribution (H4, linear regression:
Po10� 16, R2¼ 0.64) and removed correlation between pairs of
interactions (H3, linear regression: P¼ 10� 7, R2¼ 0.2, Fig. 4c).
The removal of the pyramidal structure of interaction strengths
and the topology found in empirical ecosystems did not affect the

relationship between complexity and stability (linear regressions,
H1: P¼ 0.38, R2¼ 0.002, H2: P¼ 0.2, R2¼ 0.006, Fig. 4c).

All food web properties contributed to stability, but clearly, the
leptokurtic distribution of interaction strength had the strongest
impact on the complexity–stability relationship. We found a
significant negative relationship between stability and complexity
when we removed this property (H4, Fig. 4c). Conversely,
when we only kept the empirical distribution of interaction
strengths (H5), the slope of the complexity–stability relationship
was significantly flatter than in the random case (H8). Topology
of interaction strengths (H7) or pairwise correlation (H6) alone
did not significantly affect the complexity–stability relationship
(Fig. 4d).

We conclude that May’s stability criterion does not apply to
empirical ecosystems because of their structure, which has several
stabilizing non-random properties. First, the high frequency of
weak interactions balanced the destabilizing effect of complexity
(H4). Interestingly, we observed a strong positive correlation
between the kurtosis k (index of the peakedness of the interaction
strength distribution) and species richness in real food webs
(Supplementary Fig. 5). Thus the probability of having many
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Figure 4 | Complexity–stability relationship in empirical and permuted food webs. Frequency distributions of eigenvalues of real and permuted food

webs : (a) permutation tests H1 to H4, (b) permutation tests H5 to H8. Eigenvalues are on a logarithmic scale and dimensionless. Permutation tests were

carried out 1,000 times for each food web. Eigenvalue distributions were smoothed using a kernel density estimate of 0.28. (c) Stability of real and

permuted food webs related to complexity (permutation tests H1–H4). Stability is measured as Re(lmax) and s
ffiffiffiffiffiffi
SC
p

corresponds to complexity. Statistics of

the linear regression between complexity and stability: real food webs (slope¼0.005, P¼0.02, R2¼0.04), H1: random row structure (slope¼0.003,

P¼0.38, R2¼0.002), H2: random topology (slope¼0.006, P¼0.2, R2¼0.006), H3: random pairwise correlation (slope¼0.06, P¼ 10� 7, R2¼0.2), H4:

random interaction strength distribution (slope¼0.24, Po10� 16, R2¼0.65). (d) Stability of permuted food webs related to complexity (permutation tests

H5–H8). Statistics of the linear regression between complexity and stability: H5: empirical distribution of interaction strengths only (slope¼0.06,

P¼ 10� 9, R2¼0.25). H6: pairwise correlation only (slope¼0.3, Po10� 16, R2¼0.63). H7: topology only (slope¼0.32, Po10� 16, R2¼0.6). H8: random

food webs (slope¼0.33, Po10� 16, R2¼0.66).
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weak interactions increased with species richness. The negative
correlation between pairs of interaction strengths cij and cji is
also a strong stabilizing property of empirical community
matrices (H3). Finally, the non-random topology of interaction
strengths (H2) was also stabilizing, as suggested by previous
studies13,14,16,18.

Discussion
The relevance of local stability analysis to study real ecosystems
may be questioned. More general and realistic definitions of
stability have been introduced during the complexity–stability
debate, such as persistence, variability, resilience or resistance30.
Indeed, local stability analysis only tests the impact of small
perturbations on ecological dynamics, and may not apply to large
and/or cumulative perturbations typical of most empirical
studies. It neither considers the covariance among species and
thus the stability of the aggregated properties of the community31.
However, it allows the use of analytically tractable community
matrices, and thus the investigation of May’s complexity–stability
relationship on real ecosystems.

Our study yields new insight on the complexity–stability
debate. Random matrix theory cannot predict the stability of real
ecosystems because interaction strengths are not independent
and identically distributed in empirically derived community
matrices. Trophic structure creates a negative correlation between
pairs of interactions and a non-random distribution of interaction
strengths, with many weak interactions and few strong ones at the
bottom of the food webs. The likely explanation for the strong
effect of the leptokurtic distribution of interaction strengths is the
size of the community matrices we investigated. Random matrix
theory is performed in the limit of infinitely large matrices and all
distributions are expected to converge in systems of several
hundreds of species11. The community matrices we investigated
had between 6 and 54 species. A detailed investigation of some
community matrices revealed that small modules (two to five
species) were often responsible for extreme eigenvalues. These
modules could drive strong negative or positive feedbacks16 and
thus dominate the dynamics of the entire system. Random matrix
theory could provide a sufficient approximation for large
ecosystems, but needs to be refined for smaller and realistic
food webs such as the ones we investigated.

The study of small community matrices might require a
different theoretical framework. For instance, Neutel and Thorne16

showed that the stability of a dynamical system could be predicted
from the analysis of feedback loops. However, this approach
requires knowledge of all of the elements of the community matrix
and does not provide a statement about the expected relationship
between S, C, s and the occurrence of feedback loops. Such a
theory would be needed to make quantitative predictions about the
stability of a system with estimates of only few state variables.

Our food web dataset provided a great opportunity to study the
effect of interspecific interactions on the relationship between
complexity and stability and to demonstrate the existence of a
negative correlation between S, C and s in empirical ecosystems.
We had, however, no information about the strength of
intraspecific interactions, which is a strong stabilizing
mechanism. Our analysis thus focused on the radius of the
distribution of eigenvalues in the complex plane, ignoring the
location of the centre (Fig. 1c). It is possible that the absence of
relationship between complexity and stability results from a
positive correlation between the strength of intraspecific
interactions �d

� �
and complexity s

ffiffiffiffiffiffi
SC
p� �

. Here we hypothesized
that the food webs we studied were mainly top-down controlled,
and that the strength of intraspecific interactions was negligible
in comparison to interspecific interactions. Nonetheless, we

evaluated the sensitivity of our findings to the addition of
intraspecific interaction terms proportional to species equilibrium
biomass, since cii¼ aii�Bi. In agreement with random
matrix theory and previous studies11,14,19, the addition of
intraspecific interactions was stabilizing, but had no effect on
the correlation between complexity and stability (Methods
section, Supplementary Fig. 6). Our results emphasize that
further empirical investigations should better consider the
relationship between ecosystem complexity and density
dependence.

The analysis of empirically derived community matrices,
combined with the observation of a complexity–stability
relationship when their non-random structural properties were
removed, demonstrates that the properties captured by Ecopath
models contribute to the stability of complex food webs. Further
empirical investigations are necessary to better approach real
ecosystems and to study the stabilizing effect of the properties
ignored or poorly described in Ecopath models, such as species
age structure, energy flows from detrital pool or external inputs.

We showed that complexity is not related to stability in
empirical ecosystems, a question that has stimulated ecological
research for four decades. We found that the intrinsic energetic
organization of food webs is highly stabilizing and allows complex
ecosystems to recover from perturbations. Coexistence also
constrains the feasibility of ecosystems, imposing a non-random
structure of interactions and a correlation between S, C and s that
decreases the overall complexity24. The non-random structure of
food webs occurs from the successive addition of consumers
having an increasingly large diet, which causes a growing
frequency of weak interactions. The complexity–stability debate
has contributed to the development of productive research that
have pointed out the key role of the structural properties of real
ecosystems.

Methods
Ecopath modelling framework. We compiled 116 Ecopath food web models from
published studies (Supplementary Table 1). Ecopath provides a quantitative
overview of how species interact in a food web. Species sharing the same prey and
predators and having similar physiological characteristics are aggregated in trophic
species. The dynamics of each species i is described by the difference between
biomass production and biomass losses due to harvesting, predation or other
unspecified sources. It can be expressed as:

dBi

dt
¼ Bi� P=Bð Þi �Yi �

X
j

Bj� Q=Bð Þj�DCji

h i
�M0i�Bi ð1Þ

where Bi (t km� 2) and (P/B)i (per year) are biomass and production/biomass ratio
of species i, respectively, Yi (t km� 2 per year) corresponds to fishery yields, (Q/B)j

(per year) is consumption/biomass ratio of predator j and DCji is the proportion of
species i in the diet of predator j. Other mortality sources, M0i (per year), can be
expressed as (1�EEi)� (P/B)i, where EEi is called the ecotrophic efficiency of i,
corresponding to the fraction of the production that is used in the food web.
The Ecopath model assumes mass-balance, meaning that all species biomass are at
equilibrium (dBi/dt¼ 0).

Input parameters (that is, biomass, production/biomass and consumption/
biomass ratios, fishery yields, and diet composition) can have different origins: field
sampling (for example, trawl survey), derived from similar Ecopath models, or
known empirical relationships. Ecopath with Ecosim software includes routines
that estimate missing parameters based on the mass-balance hypothesis and the
generalized inverse method for a system of n linear equations and m unknowns
(see Christensen et al.22, p. 12–15). In general, the biomasses, production/biomass
and consumption/biomass ratios are entered for all groups to estimate ecotrophic
efficiency, which is difficult to measure in the field32. The Ecoranger module, also
included in Ecopath with Ecosim software, can be used to explore the effect of
uncertainty in input data on estimated parameters. This module calculates
probability distributions of output parameters based on the confidence intervals of
input parameters specified by the users32. Full details of the Ecopath modelling
approach and the Ecopath with Ecosim software can be obtained from
www.ecopath.org.

Parameterization of Lotka–Volterra interaction coefficients. We used the
method from De Ruiter et al13. to derive the community matrices from Ecopath
models (Fig. 1a): assuming direct dependence of feeding rates on predator
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population density, we calculated the per capita effect of predator j on the growth
rate of prey i as aij¼ � ((Q/B)j�DCji)/Bi. Effects of prey on their predator are
defined as predator growth resulting from this predation. Consequently, effect of
the prey i on the predator j is related to effect of the predator on the prey according
to: aji¼ � eij� aij, where B is biomass, DCji is the proportion of species i in the diet
of predator j, eij is the efficiency with which j converts food into biomass, from

feeding on i: eij¼
P=Bð Þj
Q=Bð Þj

and (P/B)j and (Q/B)j are predator production/biomass

and consumption/biomass ratios respectively. We obtained the following
Lotka–Volterra interaction equation:

dBi

dt
¼ Bi bi þ

XS

j¼1
aij�Bj
� �

� aii�Bi

� �
ð2Þ

where bi is the intrinsic growth rate (that is, the intrinsic rate of increase for
autotrophs, and natural mortality and losses for heterotrophs), Bi and Bj are,
respectively, biomass of species i and j, interaction strength aij corresponds to the
per capita effect of species j on the growth rate of species i and aii represents the per
capita self limitation of species i. Assuming mass-balance, we obtain the following
expression for intrinsic growth rate: bi¼�

PS
j¼1 aij�Bj
� �

þ aii�Bi:

Correlation between pairs of interactions. Pairwise correlation was calculated

using the formula from Tang et al.12: r¼corr cij; cji
� �

¼ E cij cjið Þ� E cijð Þ2

V where E(cij) is
the mean of the off-diagonal elements cij of the community matrix, their variance is
V and E(cijcji) is the mean of the products of the pairs cijcji.

Randomization tests. Reported dominant eigenvalues of randomized food webs
corresponded to the mean of 1,000 replicates. All permutation tests conserved
S, C and s. To randomize the pyramidal structure of interaction strengths (H1), we
swapped pairs of predator-prey interactions (the pair � cij/þ cji was replaced by
the pair � ckl/þ clk). This permutation only changed row structure (mean and
variance) and did not change topology, frequency distribution of interaction
strengths nor correlation between pairs of interactions. To randomize interaction
strength topology (H2), we swapped the element of the community matrix cij with
the element cji. This permutation only removed food web topology and did not
change the frequency distribution of interaction strengths or pairwise correlation.
To remove correlation between pairs of predator-prey interactions (H3), we
permuted off-diagonal elements of the community matrix, keeping the topological
structure and the frequency distribution of interaction strengths. Positive and
negative terms were permuted separately to keep identical averages of positive and
negative interactions. For randomization of interaction strength distribution (H4),
we created a random community matrix in which off-diagonal elements were
picked from a bivariate normal distribution N2(m, S) where the mean vector m is
composed of the mean of positive (mþ ) and the mean of negative (m� ) terms, and
S is the covariance matrix between positive and negative terms of the original
community matrix. Original pairs of positive/negative terms were replaced by
positive/negative terms from the bivariate normal distribution. For large random
community matrices, the correlation between pairwise interactions is expected to
be identical to the original community matrix. Randomization test H5 only kept
frequency distribution of interaction strengths. This test is a combination of
permutation H2, that randomizes the topology of interaction strengths, and
permutation H3, that removes pairwise correlation. Randomization test H6 only
kept pairwise correlation; this test is a combination of permutation H2 and
randomization H4, that creates a random community matrix in which off-diagonal
elements are picked from a bivariate normal distribution. Randomization test H7
only kept the topology of interaction strengths, which is a combination of tests H3
and H4. Randomization test H8 created community matrices in which elements
were identically and independently distributed, that is food webs with a random
topology, a normal distribution of interaction strengths and no correlation between
pairs of interactions. This test corresponds to test H2, that randomizes the topology
of the community matrix, combined to a randomization that creates a community
matrix in which positive and negative off-diagonal elements are picked from a
normal distribution N(mþ ,s2

þ ) and N(m� ,s2
� ), where mþ and m� are the mean

and s2
þ and s2

� the variance of positive/negative elements of the original
community matrix.

Parameter uncertainty. We investigated the impact of parameter uncertainty on
our findings. In the section ‘Interspecific interaction terms of the community
matrix’, we evaluated the sensitivity of our results to variability in interspecific
interaction terms. The parameters used to build empirical community
matrices come from Ecopath data and each of them bears some uncertainty22.
Consequently, we tested whether the introduction of variability in input parameters
could bias the complexity–stability relationship.

In the section ‘Intraspecific interaction terms of the community matrix’, we
evaluated the robustness of our results to the addition of density dependence.
Because Ecopath models depict exclusively trophic interactions between species, we
had no empirical information about the strength of intraspecific interactions and
we decided not to model density dependence in the Lotka–Volterra model. Our
method is comparable to other studies that calculated stability by assessing the level
of intraspecific interaction needed for all eigenvalues in a community matrix to

have negative real parts (diagonal dominance)6,16,19. These studies assumed that all
diagonal elements cii of the community matrix are the same. However, to obtain
the community matrix, the interaction matrix A is multiplied by species biomass,
which means that diagonal elements are non-constant: cii¼ aii�Bi. We therefore
evaluated the robustness of our results to the addition of diagonal elements
structured by species biomass.

Finally, in the section ‘Food web resolution’, we assessed the impact of food web
resolution level on the complexity–stability relationship. Ecopath model is mainly
used for ecosystem-based fisheries management and the level of resolution of
several food webs is not homogeneous through all ecological compartments.
Harvested fishes are generally resolved at the species level, while species at the
bottom of the food web, such as plankton and invertebrates, are highly aggregated.
We therefore analysed the complexity–stability relationship on a subset of the best
resolved Ecopath food webs.

Overall, we found the same qualitative results than our main study. We
conclude that our findings are robust to (i) input parameter uncertainty,
(ii) addition of non-zero diagonal elements in community matrices and (iii)
differences in food web resolution level.

Interspecific interaction terms of the community matrix. We ran sensitivity
analyses to determine how uncertainties in parameter estimates could affect the
results of the study. For each input parameter, we tested if uncertainty biases
(that is, overestimates or underestimates) food web stability and the variables
determining complexity, and if our findings are qualitatively affected by this bias.

We used the following parameters from Ecopath data to determine the
interspecific terms of a community matrix: (i) biomass B, (ii) consumption/biomass
ratio (Q/B), (iii) production/biomass ratio (P/B) and (iv) diet composition DC.
Uncertainty in these parameters could influence our results through the dominant
eigenvalue Re(lmax), through the standard deviation of interaction strength s
(related to May’s complexity criterion s

ffiffiffiffiffiffi
SC
p

), or through the pairwise correlation
r (related to Tang’s complexity criterion s

ffiffiffiffiffiffi
SC
p

1þrð Þ� E).
We used a resampling procedure to evaluate the sensitivity of our results to

parameter uncertainty. For each of the 116 Ecopath models, we proceeded as
follows: we resampled each parameter, B, (Q/B) and (P/B), 1,000 times from a
normal distribution N(m,s) with m¼Xi, s¼Xi/10 (corresponding to a CV¼ 10%)
and Xi is the reported value of parameter X for species i. We chose a CV of 10%
because higher values could lead to negative P/B. We built a matrix of diet
composition in which predators have no prey preferences (that is, they are
opportunistic feeders, attacking prey in proportion to their availability). The
proportion of prey i in the diet of predator j corresponds to the ratio between
biomass of i and total biomass of all j’s prey species.

(i) Biomass: for each of the 116 Ecopath models, 1,000 community matrices
were built from the resampled values of B. Diet composition, production/biomass
and consumption/biomass ratios were kept constant and corresponded to the
values reported in Ecopath data.

(ii) Consumption/biomass ratio: for each of the 116 Ecopath models, 1,000
community matrices were built from the resampled values of Q/B. Biomass, diet
composition and production/biomass ratio corresponded to the values reported in
Ecopath data.

(iii) Production/biomass ratio: for each of the 116 Ecopath models, 1,000
community matrices were built from the resampled values of P/B. Biomass, diet
composition and consumption/biomass ratio corresponded to the values reported
in Ecopath data.

(iv) Diet composition: for each of the 116 Ecopath models, a community matrix
was built using the matrix of diet composition in which predators have no prey
preferences. Biomass, production/biomass and consumption/biomass ratios
corresponded to the values reported in Ecopath data.

We calculated the dominant eigenvalue Re(lmax), the standard deviation of
interaction strengths s and the correlation between pairwise interactions r of these
community matrices and compared their values to the ones found in the original
community matrices (Supplementary Fig. 2). We found that uncertainty in the
estimation of B, P/B and Q/B had no effect on food web stability or the variables
determining complexity. The absence of diet preferences was destabilizing and also
decreased s.d. of interaction strength. However, we found that the deviation
between the original leading eigenvalues and the ones obtained after the addition of
variability in input parameters was not correlated to complexity (Supplementary
Fig. 3). The complexity–stability relationship would have been biased if, for
instance, the addition of variability in the biomass estimates would have a more
profound impact on the leading eigenvalue of highly complex webs than the one of
simpler food webs. In agreement with Barabas et al33. these results demonstrate
that our findings are robust to the addition of variability in interspecific interaction
terms of the community matrices.

Intraspecific interaction terms of the community matrix. The diagonal elements
cii of the community matrix express the strength of density dependence, which is
highly stabilizing as it moves the dominant eigenvalue to more negative values:
Re(lmax)¼R��cii , where the radius of the unit circle R corresponds to s

ffiffiffiffiffiffi
SC
p

in
random matrices and �cii is the mean of diagonal elements (Introduction section
and Fig. 1c). Our aim was not to assess the local stability of empirical food webs but
to investigate the relationship between stability and complexity using realistic
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community matrices on a large gradient of complexity. In the main text, we
therefore set all the diagonal elements to 0 to focus on the effect of interspecific
interactions on stability. Our method is comparable to other studies that calculated
stability by assessing the level of intraspecific interaction needed for all eigenvalues
in a community matrix to have negative real parts (diagonal dominance)6,16,19.
These studies assumed that all diagonal elements cii of the community matrix are
the same. However, to obtain the community matrix, the interaction matrix A is
multiplied by species biomass and the diagonal of an empirically derived
community matrix should be structured by species biomass, as cii¼aii�Bi*. Here
we investigated how a non-constant diagonal, in which elements cii are
proportional to species biomass, affects the dominant eigenvalues reported in our
analysis. We compared the dominant eigenvalues of community matrices with
aii¼ 0 (original food webs) and aii¼ 0.01 or 0.1 (Supplementary Fig. 6). We found
that the addition of the intraspecific interaction terms was stabilizing, but had no
effect on the absence of complexity–stability relationship.

Food web resolution. Ecopath is mainly used for ecosystem-based fisheries
management. Consequently, the structure of food webs parameterized with
Ecopath is often biased, with detailed compartments for harvested fishes and more
aggregated compartments for species at the bottom of the food web (that is,
plankton and invertebrates). Food web resolution influences the estimation of
species richness, connectance and interaction strength. To assess the robustness of
our analysis, we investigated the complexity–stability relationship on a subset of the
best resolved Ecopath models. We measured the amount of aggregation of each
model, based on the criterion that groups with taxonomic name were more
resolved than groups with trophic function names. We defined four resolution
levels and qualified one level for each species with the following indices: taxonomic
species (that is, greenland turbot, index¼ 1), family/class (that is, whales, gadoids;
index¼ 0.7), trophic function (that is, small demersal fish; index¼ 0.4) and general
name (that is, benthos, fish; index¼ 0.1). Resolution indices RI of Ecopath models
correspond to the mean resolution index of species within each food web and are
listed in Supplementary Table 1. We studied the complexity–stability relationship
on a subset of the 37 best resolved models (with RIZ0.7) and found results similar
to the overall analysis (Supplementary Fig. 1).

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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NSERC through the Canadian Fisheries Research Network and the FQRNT. Financial
support was provided by the Canada Research Chair program and a NSERC Discovery
grant to D.G.

Author contributions
C.J., C.M., L.M., P.L., F.M., P.A. and D.G. designed research; C.J., C.M., P.L. and
D.G. conducted research. C.J., P.L., F.M. and D.G. contributed to the analytical tools.
C.J. and D.G. wrote the paper and C.J., C.M., L.M., P.L., F.M., P.A. and D.G. edited
the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Jacquet, C. et al. No complexity–stability relationship
in empirical ecosystems. Nat. Commun. 7:12573 doi: 10.1038/ncomms12573
(2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12573

8 NATURE COMMUNICATIONS | 7:12573 | DOI: 10.1038/ncomms12573 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Figure™1Method summary.(a) Equivalence between Ecopath and Lotka-Volterra models: simplified diagram of trophic flows between one consumer C and one resource R parameterized with Ecopath model (in blue) and Lotka-Volterra model (in green). B is biomass (t
	Results
	Complexity-stability relationship in empirical ecosystems
	Correlation between complexity parameters

	Figure™2Food web stability related to complexity parameters in 116 food webs.(a) Number of species S (linear regression: P=0.97, R2lt10-5), (b) Connectance C=(LsolS2) where L is the number of links (P=0.98, R2lt10-6), (c) Standard deviation of interaction
	Non-random properties of empirical community matrices
	Randomization tests

	Figure™3Correlation between complexity parameters in real food webs.(a) sgr is the s.d. of interaction strengths, S the number of species and C the connectance. The product  SC  was negatively correlated to sgr (SpearmanCloseCurlyQuotes rank correlation (
	Table 1 
	Figure™4Complexity-stability relationship in empirical and permuted food webs.Frequency distributions of eigenvalues of real and permuted food websnbsp: (a) permutation tests H1 to H4, (b) permutation tests H5 to H8. Eigenvalues are on a logarithmic scale
	Discussion
	Methods
	Ecopath modelling framework
	Parameterization of Lotka-Volterra interaction coefficients
	Correlation between pairs of interactions
	Randomization tests
	Parameter uncertainty
	Interspecific interaction terms of the community matrix
	Intraspecific interaction terms of the community matrix
	Food web resolution
	Data availability

	McCannK. S.The diversity-stability debateNature4052282332000MacArthurR. H.Fluctuations of animal populations and a measure of community stabilityEcology365335361955PaineR.Food web complexity and species diversityAm. Nat.10065751966LevinsR.Evolution in Cha
	We thank students from the Chair in Biogeography and Metacommunity Ecology at UQAR for helpful comments on earlier versions of the manuscript. C.J. was supported by a grant from the Ministry of Higher Education and Research of France. C.M.CloseCurlyQuotes
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




