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Abstract. The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled f CO2 (fugacity of car-
bon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT
has 14.7 million f CO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an
additional 4.6 million f CO2 values relative to version 2 and extends the record from 2011 to 2014. Version
3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately
1.2 million surface water f CO2 values per year for the years 2006 to 2012. Quality and documentation of
the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative
sensors and platforms. The accuracy of surface water f CO2 has been defined for all data set QC flags. Auto-
mated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of
the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the
SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data
upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-
profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon diox-
ide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and
ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribu-
tion of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science
Data) “living data” publication documents the methods and data sets used for the assembly of this new version
of the SOCAT data collection and compares these with those used for earlier versions of the data collection
(Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis
product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here:
doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.

Data coverage and parameter measured

Repository references:

Individual data set files and synthesis product:
doi:10.1594/PANGAEA.849770

Gridded products:
doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

Available at http://www.socat.info/

Coverage: 79◦ S to 90◦ N, 180◦W to 180◦ E

Location name: Global Oceans and Coastal Seas

Date/time start: 21 October 1957

Date/time end: 4 October 2014

1 Introduction

The oceans represent a vast reservoir for carbon, mainly in
the form of dissolved inorganic carbon (DIC), made up of the
species bicarbonate, carbonate and dissolved carbon diox-
ide (CO2). This carbon reservoir is in contact with the much

smaller reservoir of CO2 in the atmosphere via air–sea gas
exchange.

Emissions of CO2 by human activity, such as fossil fuel
burning, cement manufacturing and changes in land use,
are rapidly increasing the atmospheric concentration of this
long-lived greenhouse gas. The oceans are taking up about
26 % of the global CO2 emissions with ocean uptake esti-
mated at 2.6± 0.5 Pg C yr−1 for the time period 2005 to 2014
(Le Quéré et al., 2015b). This ocean carbon sink slows down
the rate of climate change caused by human activity. Ocean
carbon uptake changes ocean carbonate chemistry, notably
by reducing ocean pH and the carbonate ion concentration,
a process known as ocean acidification and sometimes re-
ferred to as “the other CO2 problem” (Turley, 2005; Hen-
derson, 2006; Doney et al., 2009a). These changes in ocean
chemistry are expected to affect key physiological processes
of marine organisms, such as calcification, growth, develop-
ment and survival (Kroeker et al., 2013). Ocean acidification
is likely to have far-reaching impacts on marine organisms
and marine biodiversity, with the effects expected to first be
felt in the polar oceans (Orr et al., 2005).

The annual change in marine carbonate chemistry result-
ing from net ocean carbon uptake is small in comparison to
its natural variation. A mean annual increase of 1.5 µatm has
been estimated in surface ocean f CO2 (fugacity of CO2) for
the period from 1970 to 2007 (Takahashi et al., 2009), which
is superimposed on large seasonal variation, here defined as

www.earth-syst-sci-data.net/8/383/2016/ Earth Syst. Sci. Data, 8, 383–413, 2016
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the difference between winter and summer values, of, for
example, 120 µatm in the seasonally ice covered Southern
Ocean and 160 µatm in Georgia Basin (E. M. Jones et al.,
2015). The annual increase also occurs against a background
of large spatial variation of, for example, 140 µatm in differ-
ent regions of the Southern Ocean in spring (Bakker et al.,
2008; E. M. Jones et al., 2015). Similarly, seasonal variation
of 0.04 in surface pH in the subtropical North Atlantic Ocean
(González-Dávila et al., 2007) is 20 times the mean annual
decrease in surface ocean pH at a rate of −0.002 yr−1 (Feely
et al., 2009; Lauvset et al., 2015).

Seasonal and spatial variation in surface water f CO2 and
pH tend to be larger in coastal waters than in the open ocean,
as a result of relatively strong tidal forces, large temper-
ature changes, freshwater and other terrestrial inputs, and
strong primary production in coastal waters (e.g. Simpson
and Sharples, 2012). This is illustrated by an f CO2 decrease
of 250 µatm from winter to summer at a coastal site near
Antarctica (Legge et al., 2015) and spatial variation of up to
200 µatm within the North Sea (Thomas et al., 2004; Omar
et al., 2010). Arctic coastal and shelf seas equally have large
spatial (> 500 µatm within the region in summer), seasonal
(300 µatm) and year-to-year variation (100 µatm) in surface
water f CO2 (Fransson et al., 2006, 2009). Surface water
f CO2 may range from less than 200 to 800 µatm (or even
1200 µatm) over short time (days) and space scales (less than
10 nm) in the upwelling system of the US west coast (Hales
et al., 2005, 2012; Harris et al., 2013, supplemental figure.)

The annual changes in surface ocean f CO2 and pH ex-
hibit spatial and temporal variation. Basin-specific rates in
the f CO2 increase vary from 1.2 to 2.1 µatm yr−1 for the
years 1970 to 2007 (Takahashi et al., 2009), with higher
rates of 2.3 to 3.3 µatm yr−1 at different mooring sites in the
equatorial Pacific Ocean for the more recent period of 1997
to 2011 (Sutton et al., 2014a). The annual pH decreases at
rates of −0.0013 yr−1 in the South Pacific Ocean (for 1998
to 2012) to −0.0026 yr−1 in the Irminger Sea (for 1982 to
2006) (Bates et al., 2014), while annual pH changes vary
from −0.0018 to −0.0026 yr−1 for moorings in the equato-
rial Pacific Ocean for 1997 to 2011 (Sutton et al., 2014a).
Here it is worth noting that such rates of change vary with
the start date and period used for the calculation as a result
of interannual to decadal variability (McKinley et al., 2011).

Modelling has long been a primary tool for quantification
of the ocean carbon sink (e.g. Le Quéré et al., 2014) and
ocean acidification (Orr et al., 2005). The availability of large
surface ocean CO2 data synthesis products, such as the Lam-
ont Doherty Earth Observatory (LDEO) surface ocean pCO2
(partial pressure of CO2) database (Takahashi et al., 2009,
2014) and the Surface Ocean CO2 Atlas (SOCAT) (Pfeil et
al., 2013; Sabine et al., 2013; Bakker et al., 2014; this study),
now enables data-based estimates of the ocean carbon sink,
as well as direct model-to-data comparison for surface ocean
f CO2 and ocean carbon sink estimates (Le Quéré et al.,
2014, 2015a, b; Séférian et al., 2014; Turi et al., 2014). A

challenge for data-based estimates of the ocean carbon sink
is the gap-filling required for times and locations without sur-
face ocean f CO2 data. Different techniques and assumptions
are applied for doing this; however, the resulting estimates
of the ocean carbon sink differ considerably between the
methods, especially in data-sparse regions, such as the South
Pacific Ocean (Rödenbeck et al., 2015). Recent data-based
studies highlight large year-to-year, decadal and longer-term
variation in surface ocean f CO2 with consequent variation
in the global ocean CO2 sink (Fay and McKinley, 2013; Fay
et al., 2014; Landschützer et al., 2014, 2015; Rödenbeck et
al., 2014, 2015). Several model-to-data comparison studies
suggest that models underestimate the spatial and temporal
variation in surface ocean f CO2 and the ocean carbon sink
(Séférian et al., 2014; Turi et al., 2014; Rödenbeck et al.,
2015). Such results could only be achieved because of the
huge progress that has been made in data collection efforts
like SOCAT.

The Global Carbon Budget provides an annual estimate of
the carbon sinks and sources for the atmosphere (Le Quéré
et al., 2014, 2015a, b). The land carbon sink is determined as
a residual of the other terms in the budget, namely the atmo-
spheric and ocean components and land-use change. Thus,
quantification of the ocean carbon sink is critical to resolv-
ing the Global Carbon Budget. Ocean carbon sink estimates
based on the LDEO and SOCAT synthesis products have
been included in recent versions of the Global Carbon Bud-
get (Sect. 7.3) (Le Quéré et al., 2014, 2015a, b).

The above highlights the need for long-term sustained, ac-
curate observations over the entire surface ocean and syn-
thesis of the marine carbonate chemistry measurements for
quantification of trends in the ocean carbon sink and ocean
acidification. This has been eloquently expressed for in situ
observations of the climate system by Carl Wunsch and col-
leagues (Wunsch et al., 2013):

No substitute exists for adequate observations.
[. . . ] Models will evolve and improve, but, without
data, will be untestable, and observations not taken
today are lost forever. [. . . ] Today’s climate mod-
els will likely prove of little interest in 100 years.
But adequately sampled, carefully calibrated, qual-
ity controlled, and archived data for key elements
of the climate system will be useful indefinitely.

In 2007, the international marine carbon community de-
cided to create a quality-controlled, publicly available syn-
thesis product of surface ocean CO2 for the global oceans
and coastal seas (IOCCP, 2007; Doney et al., 2009b). The
Surface Ocean CO2 Atlas provides regular updates of (1) a
synthesis product of surface ocean f CO2 measurements and
(2) a gridded product of surface ocean f CO2 values (without
interpolation to grid cells with no measurements).

Both SOCAT data products cover the global oceans and
coastal seas. Version 1 of SOCAT was made available in
2011 (Pfeil et al., 2013; Sabine et al., 2013), followed by
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the release of version 2 in 2013 (Bakker et al., 2014) and of
version 3 in 2015 (this study). The Surface Ocean CO2 Atlas
(http://www.socat.info/) provides a key synthesis data set of
surface ocean f CO2 for global and regional scientific studies
of the ocean carbon sink and ocean acidification.

The SOCAT data collection only contains original surface
water CO2 data, as reported by the data originator, as input
values. Thus, the SOCAT data collection does not contain
CO2 values processed by secondary data sources. The SO-
CAT data products only contain surface water f CO2 values
from xCO2 (mole fraction), pCO2 or f CO2 measurements
(Pfeil et al., 2013). SOCAT does not include surface water
f CO2 calculated from the other seawater carbonate system
parameters, such as pH, dissolved inorganic carbon or total
alkalinity. Almost all f CO2 values in SOCAT have been col-
lected on ships by determination of the CO2 concentration
in the headspace of an equilibrator with a continuous seawa-
ter flow (Pfeil et al., 2013; Bakker et al., 2014). Shipboard
systems for equilibrators generally use gas chromatography
or infrared detection to determine the CO2 concentration in
headspace air (Pierrot et al., 2009). SOCAT versions 2 and
3 also have data sets from fixed moorings and drifting buoys
with measurements made by an equilibrator system with in-
frared detection or by a membrane spectrophotometer. The
SOCAT data collection includes a small number of histori-
cal, discrete surface water f CO2 measurements.

Two large surface ocean CO2 data synthesis products, the
LDEO and SOCAT synthesis products, are now available
(Takahashi et al., 2009, 2014; Pfeil et al., 2013; Sabine et
al., 2013; Bakker et al., 2014; this study). While there is
substantial overlap in the data sets they contain, the LDEO
and SOCAT synthesis products are independent and differ
in their data treatment and quality control. There is no in-
tention to merge the LDEO and SOCAT synthesis products,
which from a SOCAT perspective would not meet its aim
of full documentation and coherence of data treatment and
quality control. That said, the SOCAT data managers regu-
larly check which data sets are in the LDEO data product,
but are not (yet) included in SOCAT, and invite the data
providers to submit their original data sets to SOCAT. In
reverse, SOCAT expects data providers to make their orig-
inal data sets public as part of the submission to SOCAT
or upon publication of the SOCAT version of which these
data sets are part (Sect. 6.1). The frequent SOCAT releases
therefore increase the data availability in general, including
for the LDEO data product. Overall, both data products rein-
force each other. Furthermore, the existence of the two data
products with slightly different time lines enables the use of
independent data from the LDEO data set (i.e. data not (yet)
included in SOCAT) in testing interpolation methods built
using SOCAT (Landschützer et al., 2015) and vice versa.

SOCAT version 3 was made public during the SOCAT
and SOCOM (Surface Ocean pCO2 Mapping Intercompar-
ison) Event on 7 September 2015 (SOCAT and SOCOM,
2015). The event was part of the Surface Ocean Lower At-

Surface water fCO2 (µatm) 
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Figure 1. Global distribution of (a) all and (b) newly added surface
water f CO2 values (µatm) and (c) the timing of the newly added
data sets in SOCAT version 3 with data set flags of A to E. Version
3 has data sets from 1957 to 2014.

mosphere Study (SOLAS) Open Science Conference in Kiel,
Germany. This manuscript documents SOCAT version 3,
while highlighting the key differences with respect to ver-
sion 2 (Sect. 2). The SOCAT Fair Data Use Statement is pre-
sented in Sect. 3. This is followed by a description of data
upload, quality control (Sect. 4) and the data products avail-
able for version 3 (Sect. 5). We also look forward towards
ongoing developments affecting future SOCAT versions, no-
tably automated data upload, inclusion of additional param-
eters and annual releases (Sect. 6). The article ends with an
assessment of the impact and scientific applications of SO-
CAT to date (Sect. 7) and concluding remarks (Sect. 8). This
publication will be updated regularly using the format of the
ESSD (Earth System Science Data) “living data” to docu-
ment the SOCAT versions and significant changes in the data
collection, data upload, quality control and data products.
This is the first version of the SOCAT “living data” and is
closely associated with earlier ESSD publications describing
SOCAT versions 1 (Pfeil et al., 2013; Sabine et al., 2013) and
2 (Bakker et al., 2014).

2 Characteristics of SOCAT version 3 and key
differences to version 2

Version 3 of the Surface Ocean CO2 Atlas includes 14.7 mil-
lion surface water f CO2 values over the time period 1957
to 2014 for the oceans and coastal seas around the world
(Figs. 1 and 2; Table 1). The f CO2 values are from 3646
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Table 1. Key differences between SOCAT versions 2 and 3. See text and Table 2 for further detail and an explanation of cross-overs and
standard operating procedures (SOPs). Calculation of “recommended f CO2” (f CO2rec) is explained in Sect. 4.2.

Version 2 Version 3

Description Bakker et al. (2014) This study.

Fair Data Use Statement Data policy on web pages. Renamed to Fair Data Use Statement. Phrased more strongly
and given more prominence on the SOCAT web sites.

Data coverage 1968 to 2011, 10.1 million surface water f CO2 val-
ues, 2660 data sets with a WOCE flag of 2.

1957 to 2014, 14.7 million surface water f CO2 values from
3646 data sets (3640 with a WOCE flag of 2 and 6 with a flag
of 3).

Time stamp The time stamp includes seconds for all data sets.
When equal time stamps occurred, evenly distributed
artificial seconds were added to time stamps.

Artificial seconds were added for concurrent entries. A
WOCE flag of 4 was given to duplicate times in data sets
with less than 50 equal time stamps (Table 7).

Upload Dashboard Not available. Single platform for data upload, f CO2rec calculation and au-
tomated data checks.

Data upload Bulk data upload on quality control system. All data sets in versions 1, 2 and 3 were uploaded on the
Upload Dashboard.

Calculation of f CO2rec In Matlab, prior to bulk data upload. On the Upload Dashboard with Ferret scripts for all data in
versions 1, 2 and 3.

Automated data checks Not available. Automated checks after calculation of f CO2rec for all new
and updated data sets. WOCE flags of 4 were assigned in
specific cases (Table 7).

Quality Control Editor As in version 1. After automated checks. Upgraded search options and graph-
ical interface. Data set QC flag needs to match QC criteria
(tick boxes).

Data set
QC flags in data products

Flags of A–D. Flags of A–E. Revised data set QC criteria (Table 2) applied
to all new and updated data sets.

Flag A Needs a cross-over (an acceptable comparison with
other data).

Needs a high-quality cross-over.

Flags A, B Accuracy equilibrator pressure≤ 0.5 hPa. Six other
SOP criteria apply.

Accuracy equilibrator pressure≤ 2 hPa. Six other SOP crite-
ria apply.

Flag C Did not follow approved methods or SOP criteria Did or did not follow approved methods or SOP criteria.

Flags C, D Accuracy f CO2rec not specified. Accuracy f CO2rec≤ 5 µatm.

Flag E Not available. Accuracy f CO2rec≤ 10 µatm, mainly for alternative sensors
and platforms with in situ calibration and full documentation.

WOCE flags for
f CO2rec

Flag of 2 (good) as a default. Manual entry of flags of
3 (questionable) and 4 (bad).

Flag of 2 as a default. Flags of 4 given during automated
data checks (Table 7). Quality control comment added dur-
ing manual entry of flags of 3 and 4.

Parameter NCEP (2012) atmospheric pressure, atmospheric CO2
mole fraction from GLOBALVIEW-CO2 (2012).

NCEP (2014) atmospheric pressure, atmospheric CO2 mole
fraction from GLOBALVIEW-CO2 (2014).

Synthesis products Data sets with flags of A–D and f CO2rec with a
WOCE flag of 2 in synthesis and gridded files and as
default elsewhere.

Data sets with flags of A–E made public (Table 8). Data sets
with flags of A–D and f CO2rec with a WOCE flag of 2 in
synthesis and gridded files. Data sets with a flag of E and
f CO2rec with a flag of 2 in a separate synthesis file. Contents
of files downloadable from the Data Set Viewer have been
streamlined (Table 9).

Gridded products Missing grid cells in cruise-weighted gridded prod-
ucts (versions 1 and 2). A gridded product of means
per climatological month is available.

Correction of data-set-weighted gridded products (version 3).
No gridded product of means per climatological month.

Data Set Viewer and
Gridded Data Viewer

On different software platforms. On a single software platform with a powerful graphical in-
terface, following the move of the Data Set Viewer.

Terminology Terms in version 1: cruises, ships, Cruise Data Viewer,
Table of Cruises, cruise-weighted means.

New terms to accommodate sensors and platforms: data
sets, platforms, Data Set Viewer, Table of Datasets, data-set-
weighted means.
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Figure 2. (a) Number of surface water f CO2 values per year and
(b) the base 10 logarithm of this number per year for 1957 to 2014
in SOCAT versions 1, 2 and 3 (after Bakker et al., 2014).

data sets, collected on ships (3504 cruises), moorings (123)
and drifters (19). The 3646 data sets include 3640 data sets
with a WOCE (World Ocean Circulation Experiment) flag of
2 (good), available in all data products, as well as six data
sets with a WOCE flag of 3 (questionable), only available in
some data products, if selected. Version 3 is an update of ver-
sion 2 with an additional 4.6 million f CO2 values from 986
data sets. Version 3 takes the start of the data record back-
wards from 1968 to 1957 by adding four historic cruises. It
also extends the data collection forward by adding 1.8 mil-
lion f CO2 values for 2012 and 2013, as well as a small num-
ber of values from 2014 (Fig. 2). Version 3 also increases
the number of f CO2 values for many years between 1989
and 2011. It adds 50 % more f CO2 values for 2008 to 2010,
while doubling the available data for 2011. The year 2006
has the largest number of f CO2 values, closely followed by
2009 and 2011.

New in version 3 is an accuracy criterion for all surface
ocean f CO2 values, described by data set quality control
(QC) flags of A to E, for accuracies of 2 (A, B), 5 (C, D)
and 10 µatm (E) (Table 2) (Sect. 4.4) (Wanninkhof et al.,
2013b; Olsen et al., 2015). Flag A now also requires a high-
quality cross-over with another data set. The introduction of
a lower-accuracy, data set quality control flag of E (accuracy
of f CO2 values better than 10 µatm) enables the inclusion
of calibrated f CO2 measurements made by alternative sen-
sors and on alternative platforms (Wanninkhof et al., 2013b;
Olsen et al., 2015). Version 3 has significantly more data
sets from fixed moorings (123 data sets) and drifting buoys
(19) than version 2 (28 and 3 data sets, respectively). These
measurements were made by an equilibrator system with in-
frared detection (e.g. Johengen, 2010; Sutton et al., 2014b)

or a membrane spectrophotometer (e.g. Boutin and Merlivat,
2009; Merlivat et al., 2015).

Overall, the quality of the data is comparable to that of ver-
sion 2, with a small improvement in the documentation of the
individual data sets. In version 3, 14 % of the data sets (509
data sets) received a quality control flag of A, 35 % (1260
data sets) a flag of B, 23 % (840) a flag of C and 27 % (990)
a flag of D. This compares to 17 % (454 data sets), 31 %
(834), 18 % (491) and 33 % (881), respectively, in version
2. The percentage of data sets receiving a flag of A or B is
remarkably similar between both versions (49 % in version
3, 48 % in version 2). The small reduction in the percent-
age of data sets with a flag of D (27 % in version 3, 33 %
in version 2), which implies incomplete metadata, highlights
an improvement in the documentation accompanying indi-
vidual data sets. A total of 41 data sets (1 %) received a flag
of E; most of these are sensor data, but they also include a
small number of valuable historic data sets with an accuracy
deemed better than 10 µatm.

Version 3 represents a major step towards the automation
of the SOCAT data and metadata upload and quality con-
trol in future versions. A new interface, the SOCAT Upload
Dashboard, hosts data and metadata upload, (re)calculation
of f CO2, automated data checks, data visualisation and sub-
mission to the quality control system in a single applica-
tion (Table 1). A prototype of the SOCAT Upload Dash-
board was used for data upload for version 3 (Sect. 4.1) and
(re)calculation of f CO2 (Sect. 4.2). All data sets were run
across a newly developed, automated data checker for iden-
tification of values that were out of range (Sect. 4.3). As a
result, issues identified during data upload were already cor-
rected prior to entry on the quality control system. The search
capabilities and graphical interface of the quality control sys-
tem and the associated Data Set Viewer (previously known as
the Cruise Data Viewer) were upgraded (Sects. 4.4 and 5.4).
Version 4 will see enhanced implementation of SOCAT au-
tomation by enabling data providers to upload their data us-
ing the SOCAT Upload Dashboard and submission onto the
SOCAT QC Editor (Sect. 6.1).

The publicly accessible, user-friendly and interactive Data
Set Viewer now allows selection of f CO2 values by data set,
year, month, region, data provider, vessel or platform name,
country of the vessel’s or platform’s flag, data set quality con-
trol flag, WOCE flag and SOCAT version, as well as setting
of limits on data ranges. The graphical tools of the Data Set
Viewer (access via http://www.socat.info/) for SOCAT ver-
sion 3 have been extended (Figs. 1, 3 and 4). Users can now
set fixed colour scales and create high-quality, publishable
images.

A small error was detected in the gridded data products of
SOCAT versions 1 and 2 (Sect. 5.5). In short, the data-set-
weighted f CO2 values (formerly known as cruise-weighted
f CO2 values) in these products were found to have missing
values for a small number of grid cells, as a result of an in-
consistency between the algorithms used for computing the
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Table 2. Data set quality control (QC) flags in version 3 (Wanninkhof et al., 2013b; Olsen et al., 2015). All criteria need to be met for
assigning a flag of A to E. Data sets with flags of A to E have been made public. Data sets with a flag of A to D are included in the global
synthesis and gridded products (Table 8). Changes relative to versions 1 and 2 are in bold. Flag (ID) refers to the data set quality control flag
with its numerical identifier (ID) provided between brackets. Calculation of “recommended f CO2” (f CO2rec) is explained in Sect. 4.2.

Flag (ID) Criteria for version 3

A (11) (1) Accuracy of calculated f CO2rec (at SST) is better than 2 µatm.
(2) A high-quality cross-over1,2 with another data set is available.
(3) Followed approved methods/SOP3 criteria.
(4) Metadata documentation complete.
(5) Data set QC was deemed acceptable.

B (12) (1) Accuracy of calculated f CO2rec (at SST) is better than 2 µatm.
(2) Followed approved methods/SOP criteria.
(3) Metadata documentation complete.
(4) Data set QC was deemed acceptable.

C (13) (1) Accuracy of calculated f CO2rec (at SST) is better than 5 µatm.
(2) Did or did not follow approved methods/SOP criteria.
(3) Metadata documentation complete.
(4) Data set QC was deemed acceptable.

D (14) (1) Accuracy of calculated fCO2rec (at SST) is better than 5 µatm.
(2) Did or did not follow approved methods/SOP criteria.
(3) Metadata documentation incomplete.
(4) Data set QC was deemed acceptable.

E (17) Primarily for alternative sensors
(1) Accuracy of calculated fCO2rec (at SST) is better than 10 µatm.
(2) Did not follow approved methods/SOP criteria.
(3) Metadata documentation complete.
(4) Data set QC was deemed acceptable.

S (15) (Suspend) (1) More information is needed for data set before flag can be assigned.
(2) Data set QC revealed non-acceptable data.
(3) Data are being updated (part or the entire data set).

X (15) (Exclude) The data set duplicates another data set in SOCAT.

N (No flag) No data set flag has yet been given to this data set.

U (Update) The data set has been updated.
No data set flag has yet been given to the revised data.

1 A cross-over between two data sets is defined as an equivalent distance of less than 80 (Pfeil et al., 2013). This criterion combines distance and
time as ([1x2

+ (1t× 30)2]0.5)≤ 80 with distance x in kilometres and time t in hours. One day of separation in time is equivalent (heuristically) to
30 km of separation in space. 2 A high-quality cross-over is defined as a cross-over between two data sets with a maximum cross-over equivalent
distance of 80 km, a maximum difference in sea surface temperature of 0.3 ◦C and a maximum f CO2rec difference of 5 µatm. Inconclusive
cross-overs with the temperature or f CO2rec difference between the data sets exceeding 0.3 ◦C or 5 µatm, respectively, do not receive a flag of A.
High-quality cross-overs are rare in coastal waters, near sea ice and in regions of freshwater influence, as a result of high spatial variation, not for
lack of measurement quality (Sect. 4.4). 3 Seven approved methods or SOP (standard operating procedure) criteria need to be fulfilled for a data set
quality control flag of A and B (Sect. 4.4) (after Pfeil et al., 2013). In version 3, the accuracy requirement for equilibrator pressure has been relaxed
to 2.0 hPa from 0.5 hPa in earlier SOCAT versions. The six other criteria are the same in SOCAT versions 1, 2 and 3.

weighted and unweighted gridded products. This was both
in time and in position. This error was corrected in the grid-
ded data products for version 3. Note that this error remains
present in the gridded products for versions 1 and 2.

In summary, SOCAT version 3 is a significant update
of version 2. It provides a 58-year record (1957–2014) of
14.7 million surface ocean f CO2 values for the global
oceans and coastal seas. It has higher-quality data with better
documentation than version 2. Addition of a flag of E has en-

abled inclusion of calibrated f CO2 values from alternative
sensors and platforms. All surface ocean f CO2 values now
have an accuracy estimate, embedded in the data set QC flag.
Automated quality control checks during version 3 data up-
load have identified outliers. The graphical interface of the
Data Set Viewer has been vastly improved. These character-
istics of version 3 are described in more detail in Sects. 4 to
6.
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Figure 3. Decadal distribution of surface water f CO2 (µatm) for
the global oceans and coastal seas in SOCAT version 3: (a) 1957
through 1969, (b) 1970s, (c) 1980s, (d) 1990s, (e) 2000s, and
(f) 2010 through 2014. Similar figures are available for versions 1
and 2 (Pfeil et al., 2013; Brévière et al., 2015).

3 Fair Data Use Statement for SOCAT version 3

The Surface Ocean CO2 Atlas provides access to a vast
amount of surface ocean CO2 data from the global oceans
and coastal seas, painstakingly collected by marine carbon
scientists around the world over 58 years. These data sets rep-
resent an important scientific output by these scientists. Indi-
vidual researchers and the marine carbon community make
these data public in SOCAT, such that they are available for
scientific research and for informing policy (Sects. 7 and 8).
Nonetheless, it is important that the data providers receive
credit for the data that they collected. This will provide data
providers with vital evidence of how their data are being
used, enabling successful funding applications for future data
collection.

Furthermore, the assembly, quality control and archiving
of SOCAT data products involve many data managers and
scientists (Tables 3 and 4). Planning meetings and commu-
nity events have proved effective in informing SOCAT con-
tributors and users, in discussing SOCAT progress and in set-
ting SOCAT strategy (Table 5).

The SOCAT Fair Data Use Statement therefore contains
an urgent request to generously acknowledge the contribu-
tion by SOCAT data contributors and investigators. Ideally
users will invite large data providers to contribute to regional
studies and, if they do, to co-author relevant papers. Citation
of relevant scientific articles by data providers is a good sci-
entific practice. The following Fair Data Use Statement ap-
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Figure 4. Seasonal distribution of surface water f CO2 (µatm) for
the months (a) January through March, (b) April through June,
(c) July through September and (d) October through December in
the years 2000 through 2009 in SOCAT version 3 for data sets with
flags of A to E (after Bakker et al., 2014).

plies to SOCAT data products (SOCAT, 2016): the synthesis
and gridded SOCAT products are a result of scientific effort
by data providers, data managers and quality controllers. It is
important that users of the SOCAT products fairly acknowl-
edge this effort. This will help generate funding for continu-
ation of observational products and promote further sharing
of data.

We expect the following from users of SOCAT data prod-
ucts:

1. To generously acknowledge the contribution of SOCAT
data providers and investigators in the form of invita-
tion to co-authorship, reference to relevant scientific ar-
ticles by data providers or by naming the data providers
in the acknowledgements. Specifically, in regional stud-
ies, users should invite large data providers, who fre-
quently possess valuable expert knowledge on data and
region, to collaborate at an early stage, which may lead
to an invitation of co-authorship. We recognise that co-
authorship is only justified in the case of a significant
scientific contribution to a publication and that provi-
sion of data on its own does not warrant co-authorship.

2. To cite SOCAT and its data products as follows:

version 3: this study;

version 2: Bakker et al. (2014);

version 1 (synthesis data products): Pfeil et al. (2013);

version 1 (gridded data products): Sabine et al. (2013)
and Pfeil et al. (2013).

3. To include the following text in the acknowledge-
ments: “The Surface Ocean CO2 Atlas (SOCAT) is
an international effort, endorsed by the International
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Table 3. Activities and participants in SOCAT version 3 and the automation (after Bakker et al., 2014). Regional group leads are in Table 4.

Activity Participants

Global group Bakker (chair), Currie, Kozyr, Metzl, O’Brien, Olsen, Pfeil, Pierrot, Telszewski
Data retrieval, upload, f CO2 calculation Landa, Pfeil, Olsen, Smith
Live Access Server for data upload, quality
control and data viewers

Smith, O’Brien, Manke, Hankin, Schweitzer

Inclusion of sensors Wanninkhof, Steinhoff, Bakker, Bates, Boutin, Olsen, Sutton
Automation (version 3) O’Brien, Smith, S. D. Jones, Landa, Manke, Olsen, Pfeil, Schweitzer, Bakker
Automation (metadata, version 4) As automation for version 3, plus Shrestha, Ranjeet
Quality control Alin, Bakker, Barbero, Bonou, Castle, Cosca, Currie, Evans, Featherstone, Green-

wood, Harasawa, Hauck, Humphreys, Hunt, Ibánhez, Lefèvre, Metzl, Nakaoka, Pa-
terson, Schuster, Skjelvan, Steinhoff, Sullivan, Sutton, Tilbrook, Wada

Data products, archiving Pfeil, Smith, Kozyr, Manke, O’Brien, Schlitzer, Sieger
Matlab code for reading products Pierrot, Landschützer
Website Pfeil, Bakker, Landa, Metzl
Meetings Bakker, Cosca, O’Brien, Steinhoff, Telszewski

Table 4. Regions with their leads in version 3 (after Bakker et al., 2014). The regions are the same as in version 2.

Region Definition Lead(s)

Coastal and marginal seas < 400 km from land;
70◦ N to 30◦ S for 100◦W to 43◦ E;
66◦ N to 30◦ S elsewhere

Alin

Arctic Ocean North of 70◦ N for 100◦W to 43◦ E;
north of 66◦ N elsewhere, incl. coastal waters

Mathis

North Atlantic 70 to 30◦ N Schuster
North Pacific 66 to 30◦ N Nojiri
Tropical Atlantic 30◦ N to 30◦ S Lefèvre
Tropical Pacific 30◦ N to 30◦ S Cosca
Indian Ocean North of 30◦ S Sarma
Southern Ocean South of 30◦ S, incl. coastal waters Tilbrook, Metzl

Ocean Carbon Coordination Project (IOCCP), the Sur-
face Ocean Lower Atmosphere Study (SOLAS), and
the Integrated Marine Biogeochemistry and Ecosystem
Research program (IMBER), to deliver a uniformly
quality-controlled surface ocean CO2 database. The
many researchers and funding agencies responsible for
the collection of data and quality control are thanked for
their contributions to SOCAT.”

4. To report problems to submit@socat.info.

5. To inform submit@socat.info of publications in which
SOCAT is used.

The Fair Data Use Statement (SOCAT, 2016) replaces
the earlier “SOCAT Data Policy” (SOCAT, 2013a;
Bakker et al., 2014). The text has been phrased more
strongly and examples of the application of the Fair
Data Use Statement have been added. The Fair Data
Use Statement is available in full on the SOCAT
web pages (e.g. http://www.socat.info/SOCAT_fair_
data_use_statement.htm). The revision follows con-
cerns raised by SOCAT data providers and discus-

sions among SOCAT scientists at two recent community
events (SOCAT, 2014a; SOCAT and SOCOM, 2015).

4 Data assembly and quality control in version 3

4.1 Data retrieval and data upload on the SOCAT
Upload Dashboard

In version 3, new and updated data sets were obtained from
the Carbon Dioxide Information Analysis Centre (CDIAC),
PANGAEA® and public websites. In addition, many data
sets were directly submitted to SOCAT. As well as 887 new
data sets, version 3 also contains 1258 updated version of
data sets previously submitted to versions 1 and 2, with re-
vised metadata or data. Some of these were updates of data
sets previously suspended from SOCAT (e.g. Table 10 in
Bakker et al., 2014).
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Table 5. Meetings for SOCAT version 3 and the ongoing SOCAT automation. The meeting reports are available on the SOCAT website
(http://www.socat.info/meetings.html).

Timing Meeting Location Reference

May 2012 Automation planning meeting NOAA-PMEL, Seattle, USA SOCAT (2012a)
July 2012 Progress meeting Epochal Centre, Tsukuba, Japan SOCAT (2012b)
June 2013 SOCAT side event, release of version 2 9th International Carbon Dioxide Conference,

Beijing, China
SOCAT (2013b)

June 2014 Community event IMBER Open Science Conference, Bergen,
Norway

SOCAT (2014a)

October 2014 Automation meeting NOAA-PMEL, Seattle, USA SOCAT (2014b)
September 2015 SOCAT and SOCOM event, release of version

3, launch of automation system,
SOCOM science.

SOLAS Open Science Conference,
Kiel, Germany

SOCAT and SOCOM (2015)

As in previous versions, all new and updated data sets were
put in a uniform format (Pfeil et al., 2013). Similar to ver-
sion 2, an expocode was assigned to all data sets, including
moorings and drifters (Bakker et al., 2014). In general, an ex-
pocode consists of 12 characters, describing the country, the
vessel or platform, and the data set start day (Swift, 2008).
The expocode 320620090306, for example, indicates a data
set collected on the US (32) ship R/V Nathaniel B. Palmer
(06) with the first day of the cruise on 6 March 2009. There
are a few exceptions to this. If two American mooring data
sets (which always start with 3164) have the same start date,
they will end with “−1” and “−2”, corresponding to an ex-
pocode of 14 characters.

In version 3, the SOCAT data managers used the new SO-
CAT Upload Dashboard for upload of data and metadata (Ta-
ble 1). All data sets previously included in versions 1 and 2
were also uploaded, automatically screened for obvious out-
liers and added to version 3 via the SOCAT Upload Dash-
board (Table 1). This new capability is an important step in
the ongoing SOCAT automation effort and integrates data
and metadata upload, (re)calculation of f CO2, automated
data checks, data visualisation and data submission in a sin-
gle application which is tightly coupled to the SOCAT QC
Editor. Once fully operational in version 4, the Upload Dash-
board will allow data providers to upload, verify and submit
their data for SOCAT quality control.

Not all data sets had time stamps which included sec-
onds. In such cases, multiple occurrences of a time stamp
were often present. Artificial seconds were added to data
sets with 50 or more duplicate time stamps. For these data
sets, evenly distributed artificial seconds were added for each
equal time stamp. However, if there were less than 50 dupli-
cate times in a data set, a WOCE flag of 4 was generated
for the f CO2rec values (or “recommended” f CO2 values;
see Sect. 4.2) with duplicate time stamps during the auto-
mated data checks (Sect. 4.3). Adding artificial seconds is
time-consuming and there was insufficient time available for
adding artificial seconds to all duplicate times in all data sets.

4.2 (Re)calculation of fCO2

Data providers reported CO2 values as xCO2, pCO2 and/or
f CO2, at the equilibration temperature (Tequ) and/or the sea
surface temperature (SST or intake temperature). In order to
ensure a coherent SOCAT synthesis product, surface water
f CO2 values at sea surface temperature were recalculated
from the reported CO2 values using a strict calculation proto-
col with the following procedure (quoting Pfeil et al., 2013):

1. when possible, (re)calculate f CO2;

2. the preferred starting point for the calculations
is xCO2, then pCO2, and finally f CO2;

3. minimise the use of external data required to
complete the calculations.

In total, 14 algorithms were used for (re)calculating these
“recommended” f CO2 (f CO2rec) values from the xCO2,
pCO2 and/or f CO2 values reported by the data providers
(Table 6). The particular algorithm used for a given data set
is included in the data products (Sect. 5). Equations recom-
mended by Dickson et al. (2007) were applied for the con-
version of the dry CO2 mole fraction to pCO2, for the calcu-
lation of the water vapour pressure and for the correction of
pCO2 to f CO2 (Pfeil et al., 2013). The temperature correc-
tion suggested by Takahashi et al. (1993) was used to correct
for temperature change between the seawater intake and the
equilibrator. Atmospheric pressure from reanalysis and cli-
matological values of salinity were used in the calculation
if in situ values had not been reported (Table 6). The 2014
version of the atmospheric pressure data product was used
(NCEP, 2014), which is an update of the 2012 data product
used in the previous SOCAT version (NCEP, 2012). Sea sur-
face salinity was from the World Ocean Atlas (WOA) 2005
(Antonov et al., 2006). Full details on the external pressure
and salinity products are in the footnotes of Table 9. Note that
the use of external atmospheric pressure data would rule out
data set quality control flags of A and B during subsequent
quality control, while use of external salinity values would
not affect the data set quality control flag (Sect. 4.4).
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Table 6. Algorithms and surface water CO2 parameters used in the calculation of recommended f CO2 (f CO2rec) at sea surface temperature
in version 3 (after Pfeil et al., 2013). Algorithm 1 was the preferred method, followed by algorithm 2 and so forth. The algorithm used for
each data set is stated in the output files (Table 9). In the case of incomplete reporting, NCEP (National Centers for Environmental Prediction)
atmospheric pressure (Kalnay et al., 1996; NCEP, 2014) and WOA (World Ocean Atlas) 2005 salinity (Antonov et al., 2006) were applied.

Algorithm CO2 parameter Unit Data set percentage (%) Extra variable

1 xCO2water_equi_dry µmol mol−1 59.1 –
2 xCO2water_SST_dry µmol mol−1 12.5 –
3 pCO2water_equi_wet µatm 7.2 –
4 pCO2water_SST_wet µatm 3.0 –
5 f CO2water_equi µatm 0.4 –
6 f CO2water_SST_wet µatm 12.2 –
7 pCO2water_equi_wet1 µatm 0.4 NCEP pressure
8 pCO2water_SST_wet1 µatm 6.1 NCEP pressure
9 xCO2water_equi_dry2 µmol mol−1 2.9 WOA salinity

10 xCO2water_SST_dry2 µmol mol−1 3.1 WOA salinity
11 xCO2water_equi_dry1 µmol mol−1 0.3 NCEP pressure
12 xCO2water_SST_dry1 µmol mol−1 0.5 NCEP pressure
13 xCO2water_equi_dry1,2 µmol mol−1 0.05 NCEP pressure, WOA salinity
14 xCO2water_SST_dry1,2 µmol mol−1 0.2 NCEP pressure, WOA salinity

1 Atmospheric pressure was not reported in the original data file. 2 Salinity was not reported in the original data file.

An important change relative to earlier versions is that the
(re)calculation in version 3 took place using Ferret scripts
on the new SOCAT Upload Dashboard after data upload
(Sect. 4.1), rather than in Matlab before the bulk upload
of the data (Table 1). The implementation of the Ferret
scripts enables full integration of SOCAT data submission,
(re)calculation of f CO2 and quality control on a single soft-
ware platform. This streamlines and simplifies the SOCAT
data flow. The Matlab code used for the (re)calculation in
versions 1 and 2 was transferred to Ferret scripts on the Up-
load Dashboard for version 3. The new Ferret scripts were
checked by comparing f CO2rec values in version 2 calcu-
lated using Matlab and new values calculated using Ferret.
Almost all new values were within 0.01 µatm of the value
calculated in Matlab, if not identical to it. Significant changes
(smaller than 5 µatm) for less than 200 data points were at-
tributed to changes in atmospheric pressure from reanalysis
(Table 1).

4.3 Automated data checks

A newly developed, automated data checker performed
checks on parameters directly influencing the position, time
or calculation of f CO2rec values (Tables 1 and 7). A WOCE
flag of 4 (meaning a bad data point) was assigned to all
f CO2rec values with an incorrect position or time stamp or
otherwise identified as inaccurate. These automated checks
were carried out on all data in version 3 after (re)calculation
of f CO2rec and before submission to the quality control sys-
tem.

Unintentionally, WOCE flags of 4 were also assigned for
values which were out of range in parameters which do not

directly affect f CO2rec values, such as wind speed and ship
direction (Table 7). This resulted in a WOCE flag of 4 being
given to some good-quality f CO2rec values in newly added
and updated data sets in version 3. The criteria for the auto-
mated checks will be reconsidered for version 4.

Automated data checks were also performed for data sets
previously included in versions 1 and 2 (and not updated in
version 3). For these data sets all WOCE flags of 4 assigned
by the automated data checker, other than for duplicate time
stamps, were removed to preserve the data sets as reported
for version 2.

4.4 Secondary quality control

Secondary quality control is a key part of the creation of a
high-quality data synthesis product. During secondary qual-
ity control, scientists, also known as quality controllers, as-
sess the quality of each new and updated data set by follow-
ing a checklist of specific criteria, while also examining the
documentation of the data, known as metadata, for complete-
ness. The quality controllers assign a data set quality control
flag to each data set, based on their findings (Table 2).

The SOCAT quality control system has been upgraded
(Table 1), as part of the ongoing SOCAT automation. In par-
ticular, the ease of use, search options and visualisation tools
have been improved. Other modifications are that the quality
control criteria used for setting the data set quality control
flag now must be specified (by a tick box system) and that a
comment needs to be entered when assigning a WOCE flag
(Table 1). Text relating to the tick boxes and the comments
accompanying WOCE flags are incorporated into the quality
control comments.
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Table 7. Criteria for the automated data checks and the action taken in version 3. In the case of duplicate time stamps, artificial seconds
were generated. If there were less than 50 duplicate times in the data set, a WOCE flag of 4 was given. For other parameters, a flag of 4 was
automatically assigned to the f CO2rec value if their values were outside a specified range. Criteria not directly affecting f CO2rec values
will be revised for version 4 (Sect. 4.3).

Parameter Unit Criteria Action

Time – Duplicate times Artificial seconds
added; flag of 4 if < 50
duplicate times in data
set.

Sampling depth, water m <−20 or > 20 flag of 4
Salinity – < 0 or > 50 flag of 4
Sea surface temperature ◦C <−8 or > 50 flag of 4
Equilibrator temperature ◦C <−10 or > 45 flag of 4
Atmospheric pressure mbar < 800 or > 1200 flag of 4
Equilibrator pressure mbar < 800 or > 1200 flag of 4
xCO2, pCO2, f CO2 water µmol mol−1 or µatm < 0 or > 10 000 flag of 4
xCO2, pCO2, f CO2 air µmol mol−1 or µatm < 0 or > 10 000 flag of 4
1xCO2, 1pCO2, 1f CO2 µmol mol−1 or µatm <−10 000 or > 10 000 flag of 4
xH2O equilibration mmol mol−1 < 0 or > 200 flag of 4
WOCE flag, from PI – < 1 or > 9 flag of 4
Air temperature ◦C <−35 or > 60 flag of 4
Relative humidity % < 0 or > 100 flag of 4
Specific humidity – < 0 or > 40 flag of 4
Wind direction ◦ < 0 or > 360 flag of 4
Wind speed m s−1 < 0 or > 50 flag of 4
Ship direction ◦ < 0 or > 360 flag of 4
Ship speed, from PI km h−1 < 0 or > 100 flag of 4
Ship speed, calculated km h−1 > 720 flag of 4 for following

point

The definitions of the data set quality control flags in ver-
sion 3 have been revised relative to versions 1 and 2 (Tables 1
and 2) (Wanninkhof et al., 2013b; Olsen et al., 2015). These
revised QC criteria were applied to all new and updated data
sets in version 3, but not retrospectively to data sets included
in earlier versions, unless data providers had updated these.
Version 3 has data set quality control flags of A to E and
WOCE flags of 2, 3 and 4 for individual f CO2rec values.
For a data set to obtain a data set quality control flag, it needs
to meet all the criteria of that specific data set flag (Table 2).

All data set flags now have an accuracy requirement for
the f CO2rec values. Previously, flags of C and D did not
have an accuracy requirement (Pfeil et al., 2013; Bakker et
al., 2014). In version 3, requirements are an accuracy of bet-
ter than 2 µatm for flags of A and B, and of better than 5 µatm
for flags of C and D and of better than 10 µatm for a flag of
E (Table 2). The accuracy requirement takes precedent over
the criteria that follow (Wanninkhof et al., 2013b; Olsen et
al., 2015), implying that, if the accuracy requirement is not
met, a data set is given a data set flag with a lower accuracy
requirement, appropriate to the accuracy of the data set.

Seven approved methods or SOP (standard operating pro-
cedure) criteria need to be met for a data set quality control
flag of A and B (after Pfeil et al., 2013):

1. The data are based on xCO2 analysis, not f CO2 calcu-
lated from the other carbon parameters pH, total alka-
linity and dissolved inorganic carbon.

2. Continuous CO2 measurements have been made, not
discrete CO2 measurements.

3. The CO2 detection is based on an equilibrator system
and is performed by infrared analysis or gas chromatog-
raphy.

4. The calibration has included at least two non-zero gas
standards, traceable to World Meteorological Organiza-
tion (WMO) standards.

5. The equilibrator temperature has been measured to
within 0.05 ◦C accuracy.

6. The intake seawater temperature has been measured to
within 0.05 ◦C accuracy.

7. The equilibrator pressure has been measured to within
2.0 hPa accuracy.

The requirement regarding the accuracy of the equilibrator
pressure has been relaxed to an accuracy of 2.0 hPa in version
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3, replacing the earlier requirement of 0.5 hPa, as an accuracy
of 2.0 hPa in pressure is sufficient for achieving an accuracy
of 2.0 µatm in f CO2 (Wanninkhof et al., 2013b; Olsen et
al., 2015). The six other criteria are the same in all SOCAT
versions.

In version 3, a high-quality cross-over has become a pre-
requisite for a data set flag of A, replacing the earlier re-
quirement of “an acceptable comparison (or cross-over) with
other data” (Wanninkhof et al., 2013b; Olsen et al., 2015).
As in previous versions, a cross-over is defined by an equiv-
alent distance of less than 80 km between two data sets (Pfeil
et al., 2013). This criterion combines distance and time as
([1x2

+ (1t×30)2]0.5)≤ 80 with distance x in kilometres
and time t in days. One day (or 24 h) of separation in time
is equivalent (heuristically) to 30 km of separation in space.
According to this definition, the maximum time separation
(at a spatial distance of 0 km) is 64 h for a cross-over to oc-
cur. The new definition of a high-quality cross-over between
two data sets requires that differences in sea surface tempera-
ture and f CO2rec between the data sets do not exceed 0.3 ◦C
and 5 µatm, respectively. These criteria reflect the test for a
high-quality cross-over between two data sets with a flag of
A or B, i.e. each with an accuracy for f CO2rec of better than
2 µatm or a joint accuracy of better than 4 µatm with 1 µatm
added to account for differences in time and space. A temper-
ature difference of 0.3 ◦C roughly corresponds to an f CO2
difference of 5 µatm. “Inconclusive” cross-overs, where dif-
ferences in temperature or f CO2rec exceed these values, do
not qualify for a data set flag of A in version 3.

It is worth noting that meaningful high-quality cross-overs
are rarely found in coastal waters, near sea ice and in regions
of freshwater influence (ROFIs), as a result of high spatial
variation in sea surface temperature and f CO2rec, not for
lack of measurement quality. Even if a small number of sea
surface temperature and f CO2rec values are within 0.3 ◦C
and 5 µatm, this tends to be a coincidence rather than a mean-
ingful correspondence between data sets. This can be illus-
trated for the US research ships Nathaniel B. Palmer and the
Lawrence M. Gould, which have frequent high-quality cross-
overs in the open Southern Ocean but few high-quality cross-
overs near Palmer station, where they both make port calls.

In version 3, a data set with a flag of C “did or did not
follow approved methods or SOP criteria” (Wanninkhof et
al., 2013b; Olsen et al., 2015). This is an amendment from
the earlier requirement that the data set “did not follow ap-
proved methods or SOP criteria” (Pfeil et al., 2013; Bakker et
al., 2014). The new flag of E enables inclusion of f CO2 val-
ues from calibrated alternative sensors and platforms (Wan-
ninkhof et al., 2013b; Olsen et al., 2015). A flag of E re-
quires complete metadata and a demonstrable accuracy for
f CO2rec of better than 10 µatm by in situ calibration of the
sensor. The WOCE flags for individual f CO2rec values are
defined as 2 (good), 3 (questionable) and 4 (bad) in versions
1, 2 and 3 (Pfeil et al., 2013). New is the requirement to add
a comment when assigning WOCE flags of 3 and 4 (Table 1).

As in version 2, five additional guidelines were consid-
ered for open-ocean f CO2rec values, away from sea ice. The
guidelines were used for assigning data set quality control
flags and WOCE flags (after Pfeil et al., 2013, and Bakker et
al., 2014):

1. warming between the seawater intake and the equilibra-
tor should be less than 3 ◦C;

2. warming rate should be less than 1 ◦C h−1, unless a
sharp temperature front is apparent;

3. warming outliers should be less than 0.3 ◦C, compared
to background data;

4. cooling between the seawater intake and the equilibra-
tor is unlikely in high-latitude oceans for an indoor mea-
surement system;

5. zero or constant temperature difference between the
equilibrator and seawater intake usually indicates the
absence of SST values.

As for SOCAT version 2, quality controllers were organised
into eight regions, each with a group lead (Table 4). The eight
regions included the coastal and marginal seas, the Arctic
Ocean, the North and tropical Atlantic, the North and tropi-
cal Pacific, the Indian Ocean, and the Southern Ocean. The
quality controllers gave data sets a quality control flag for
each region they crossed. As a final step, the data set quality
control flags for the different regions had to be reconciled.

5 Data products in version 3

5.1 Overview of data products

In essence, the data products and data platforms are the same
as for earlier SOCAT versions with some modifications (Ta-
ble 8). Improvements include a major upgrade of the search
and visualisation capabilities of the Data Set Viewer (previ-
ously known as the Cruise Data Viewer) and uniform con-
tents for the files downloadable from the Data Set Viewer
(Tables 1 and 9). Access to the data products is via the SO-
CAT website (http://www.socat.info/) and the web addresses
for the individual data platforms (Table 8).

Quality-controlled recommended surface ocean f CO2
measurements in a uniform format are available in individ-
ual data set files, in regional and global synthesis files and
in gridded form (Table 8). These three data products can
be accessed via the user-friendly, interactive online Data Set
Viewer and Gridded Data Viewer, by downloading data files,
or in Ocean Data View (Schlitzer, 2015). Similar to earlier
versions, data sets with a quality control flag of A to D and
recommended f CO2 values with a WOCE flag of 2 (good)
are included in the synthesis files and gridded products. Data
sets with a flag of E are available in a separate synthesis
file. Data set flags of A to E and a WOCE flag of 2 for
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Table 9. Content of the individual data set files (IF) and the synthesis files in SOCAT version 3 (after Bakker et al., 2014). The global
synthesis product is available as zip text files (ZIP) at CDIAC and in Ocean Data View (ODV) format (Table 8). Subsets of the global
synthesis data set can be created via the Data Set Viewer (DSV), both in the main menu and via the Table of Datasets. The first column lists
column headers for the parameters in the files.

Column header IF ZIP DSV ODV Unit Description

Expocode/Cruise –
√ √ √

– Twelve-character expocode
Version –

√
–

√
– Most recent SOCAT version in which data set was added (N) or

updated (U)
SOCAT_DOI –

√ √ √
– Digital object identifier for the individual data set and metadata

QC_Flag –
√ √ √

– Data set quality control flags A, B, C, D and E
Date/Time/Datetime

√
–

√ √
– yyyy-mm-dd / hh:mm:ss (ISO8859 and other formats)

yr/Year –
√ √

– Year Year (UTC)*
mon –

√ √
– Month Month (UTC)*

day –
√ √

– Day Day (UTC)*
hh/Hour –

√ √
– Hour Hour (UTC)*

mm/Minute –
√ √

– Minute Minute (UTC)*
ss/Second –

√ √
– Seconds Seconds (may include decimals)*

Day of Year – – –
√

Day of year Day of year (UTC) with 1 January, 00:00, as 1.0.
Longitude

√ √ √ √
◦ E, ◦W Longitude (0 to 360/−180 to 180)*

Latitude
√ √ √ √

◦ N, ◦ S Latitude (−90 to 90)*
Depth water/Depth

√ √ √ √
m Water sampling depth*1

Sal/Salinity
√ √ √ √

– Salinity on practical salinity scale*
Temp/SST

√ √ √ √
◦C Sea surface temperature*

Tequ/Temperature_Equi
√ √ √ √

◦C Equilibrator chamber temperature*
PPPP/Pressure_Atm

√ √ √ √
hPa Atmospheric pressure*

Pequ/Pressure_Equi
√ √ √ √

hPa Equilibrator chamber pressure*
Sal interp/WOA_SSS

√ √ √ √
– Salinity from WOA2

PPPP interp/NCEP_SLP
√ √ √ √

hPa NCEP atmospheric pressure3

Bathy_depth/ETOPO2_depth
√ √ √ √

m ETOPO2 bathymetry4

Distance/dist-to-land
√ √ √ √

km Distance to major land mass
xCO2air_interp/GVCO2

√ √ √ √
µmol mol−1 Atmospheric xCO2 from GLOBALVIEW-CO2 (2014)5

xCO2water_equ_dry
√

– – – µmol mol−1 xCO2 (water) at equilibrator temperature (dry air)*
f CO2water_SST_wet

√
– – – µatm f CO2 (water) at sea surface temperature (air at 100 % humid-

ity)*
pCO2water_SST_wet

√
– – – µatm pCO2 (water) at sea surface temperature (air at 100 % humid-

ity)*
xCO2water_SST_dry

√
– – – µmol mol−1 xCO2 (water) at sea surface temperature (dry air)*

f CO2water_equ_wet
√

– – – µatm f CO2 (water) at equilibrator temperature (air at 100 % humid-
ity)*

pCO2water_equ_wet
√

– – – µatm pCO2 (water) at equilibrator temperature (air at 100 % humid-
ity)*

f CO2rec
√ √ √ √

µatm Recommended f CO2 calculated following the SOCAT proto-
col

Algorithm/f CO2_source
√ √ √ √

– Algorithm for calculating f CO2rec (0: not generated; algorithm
1–14, Table 6)

Flag/WOCE_CO2_Water
√ √ √

– – WOCE flag for f CO2rec (2: good; 3: questionable; 4: bad)6

f CO2 in wet air – – –
√

µatm f CO2 (air) calculated for sea surface temperature and 100 %
humidity from GVCO2

Ocean – Air f CO2 Difference – – –
√

µatm f CO2 difference between water and air
Vessel – – –

√
– Name of vessel or platform

√
Available. * If reported by the data originator. 1 If the intake depth has not been reported by the data originator, an intake depth of 5 m has been assumed. 2 Sea surface salinity on the

practical salinity scale extracted from the World Ocean Atlas (WOA) 2005 (Antonov et al., 2006), available at http://www.nodc.noaa.gov/OC5/WOA05/woa05nc.html, using the data set
s0112an1.nc from the “monthly” link at http://data.nodc.noaa.gov/opendap/woa/WOA05nc/ (last access: 1 September 2015). This data set is identical to that SOCAT version 2.
3 Atmospheric pressure extracted from the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) 40-Year Reanalysis Project on a
6-hourly, global, 2.5◦ latitude by 2.5◦ longitude grid (Kalnay et al., 1996; NCEP, 2014). This is an update relative to the 2012 data set (NCEP, 2012) used in SOCAT version 2.
4 Bathymetry extracted from ETOPO2 (2006) 2 min Gridded Global Relief Data. This data set is identical to that in SOCAT version 2. 5 GLOBALVIEW-CO2 (2014), downloading the
“surface” reference type gives the sine function of latitude versus time for the reference marine boundary layer. This is an update relative to the 2012 version used in SOCAT version 2.
6 Individual data set files contain all f CO2rec data. Synthesis files at CDIAC and via ODV contain data sets with a flag of A–D and f CO2rec values with a WOCE flag of 2 (Table 6).
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Table 10. Gridded products and parameters reported for each grid cell in SOCAT version 3 (after Sabine et al., 2013). Version 3 does not
have a monthly climatology.

Parameter Unit Decadal Annual Monthly Monthly 1/4◦× 1/4◦

mean mean mean coastal

Number of data sets –
√ √ √ √

Number of observations –
√ √ √ √

f CO2 unweighted mean µatm
√ √ √ √

f CO2 data-set-weighted mean µatm
√ √ √ √

f CO2 max µatm
√ √ √ √

f CO2 min µatm
√ √ √ √

f CO2 SD unweighted µatm – –
√ √

f CO2 SD weighted µatm – –
√ √

Latitudinal average offset from cell centre ◦ N – –
√ √

Longitudinal average offset from cell centre ◦ E – –
√ √

f CO2 values is the default setting for the Data Set Viewer.
Quality control comments can be accessed via the Data Set
Viewer (Table 8). While the SOCAT data products include
seawater temperature and salinity, as these are required for
(re)calculation of f CO2, these two parameters have not been
quality-controlled to the high standards required by the phys-
ical oceanographic community (SOCAT, 2014a).

As in earlier versions, each individual data set has a dig-
ital object identifier (DOI), which provides a direct link to
the metadata, including the name and affiliation of the data
provider. This DOI for the data set is available for each rec-
ommended surface ocean f CO2 value in the synthesis files.
This enables users to easily identify the data provider and
to gain access to the original data set and to detailed infor-
mation on the data set, including any relevant peer-reviewed
journal articles that we are aware of. The Data Set Viewer
now enables to search the data collection by data provider.
Data providers are also prominently displayed in the Table of
Datasets (access via the Data Set Viewer) (Table 8). A more
detailed description of the data products follows.

5.2 Individual data set files

Individual data set files are available for all data sets with
flags of A, B, C, D and E. Each individual data set has a DOI.
The files contain all original CO2 measurements and recom-
mended f CO2 values with a WOCE flag of 2, 3 and 4 (Ta-
ble 8), as set by the data originator, by the automated range
checker or during the secondary quality control. The files
also contain other parameters, such as atmospheric pressure
from reanalysis, climatological salinity and the atmospheric
CO2 mole fraction. Metadata reported by the data provider
accompany the files and links to the original data sets are pro-
vided. The files are available in text format at PANGAEA®

(https://doi.org/10.1594/PANGAEA.849770).

5.3 Global synthesis product

The global and regional synthesis files contain recommended
f CO2 values with a WOCE flag of 2 (good) for data sets
with flags of A, B, C and D (Table 8). A separate syn-
thesis file is available for data sets with a flag of E. Each
line of the global and regional synthesis files contains the
DOI for the corresponding individual data set, as archived at
PANGAEA®, thus enabling retrieval of metadata, name of
the data provider and the original CO2 values reported by
the data provider (Table 9) (Sect. 5.2). Global and regional
files are available as compressed zip text files via CDIAC
(http://cdiac.ornl.gov/ftp/oceans/SOCATv3/). Matlab code is
available for reading these text files. Regional files for the
SOCAT regions (Table 4) only contain data for a specific re-
gion with no overlap, so that many data sets on moving ships
are split between several regional files. The global synthesis
product for data sets with flags of A to D is also available in
Ocean Data View format (https://odv.awi.de/en/data/ocean/
socat_fCO2_data) (Schlitzer, 2015).

5.4 Subsetting the global synthesis product

The interactive Data Set Viewer (http://ferret.pmel.noaa.gov/
SOCAT_Data_Viewer/) has powerful search capabilities and
an attractive graphical interface following the upgrade for
version 3 (Tables 1 and 8). The SOCAT Data Viewer now
hosts the Data Set Viewer and the Gridded Data Viewer on a
single software platform. The move of the Data Set Viewer
onto this platform in version 3 streamlines access to the SO-
CAT synthesis and gridded products via a Live Access Server
(LAS). The move and upgrade of the Data Set Viewer accom-
pany that of the closely associated SOCAT quality control
system (Sects. 2 and 4.4).

The Data Set Viewer enables subsetting of the global SO-
CAT data collection. The default setting is for data sets with
flags of A to E and “valid” f CO2 values with a WOCE flag
of 2 for years 1957 to 2014, corresponding to 3640 data sets
for version 3. Recommended f CO2 values with flags of 3
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and 4 can also be selected. In the Data Set Viewer, the user
can select data sets by, for example, year, month, region,
platform/vessel, “valid” values, data provider, data set flag,
WOCE flag and SOCAT version. It is also possible to define
limits for the values shown. Maps of surface ocean f CO2
demonstrate the data distribution, as well as temporal and
spatial variation in surface ocean f CO2 for the selected data
sets (Figs. 1, 3 and 4). High-quality figures can be rapidly
created for scientific presentations to fellow scientists, fund-
ing agencies and policy makers. Scatter plots or property–
property plots, available via the Correlation Viewer, can be
used to depict any two variables of a data set or data sets, en-
abling further investigation. Examples are figures of f CO2
or sea surface temperature as a function of time, salinity or
latitude.

The data shown on the Data Set Viewer have been sub-
sampled for system efficiency, such that only part of the data
are shown. Visual display of these data sets on maps in the
Data Set Viewer is subject to further improvement, as the in-
terpolation of sparse data ignores topographic features. As a
result cruise tracks occasionally appear to cross land. This
issue does not affect the data sets themselves. The Table of
Datasets (previously known as the Table of Cruises) can be
accessed from the Data Set Viewer. It provides access to the
original CO2 measurements; f CO2 values with a WOCE flag
of 2, 3 and 4; metadata; comments entered during quality
control; and thumbnail plots (Table 8) (Sect. 4.4). Thumb-
nail plots consist of a series of scatter plots for key param-
eters in an individual data set and are useful for obtaining a
quick overview of a data set. Both the Data Set Viewer and
the Table of Datasets allow download of data sets in NetCDF
and text format (Tables 8 and 9). All downloadable files now
contain the same parameters (Table 9).

The performance speed of the Data Set Viewer may be
slower if the full SOCAT data collection is accessed. Sub-
setting the data collection by decade or region considerably
improves the system speed of the Data Set Viewer. Updates
of web browsers occasionally result in less than perfect web
access to the Data Set Viewer. In such cases, another web
browser may provide better access. The web manager (so-
cat.support@noaa.gov) may have useful advice.

5.5 Gridded products

The protocol for the creation of gridded f CO2 products in
version 3 follows that for versions 1 and 2, as described by
Sabine et al. (2013). The gridded products have a 1◦ latitude
by 1◦ longitude resolution with a higher resolution of 0.25◦

latitude by 0.25◦ longitude for coastal seas. Recommended
surface ocean f CO2 values from 1970 to 2014 with a WOCE
flag of 2 from data sets with flags of A to D have been used
for the gridded products. The gridded products have no in-
terpolation – i.e. there is no gap-filling and grid cells without
f CO2 values are empty. No correction is made for the long-
term increase in surface ocean f CO2.

Gridded f CO2 values are reported as unweighted means
and as data-set-weighted means (Sabine et al., 2013). In
an unweighted mean, all f CO2 values in a grid cell have
equal weight for calculating the mean. In a data-set-weighted
mean, averages of the f CO2 values are calculated per data
set for each grid cell, before calculating averages of these
data set means. In version 3, a small error was corrected in
the procedure for creating the gridded data products. This
resulted in a small reduction in the number of grid cells
with data in the data-set-weighted product for versions 1 and
2. This problem was corrected in gridded files in version 3
with the revised gridded data set made public on 2 Novem-
ber 2015.

Gridded products are available per decade, per year and
monthly per year (Table 10). A monthly climatological
f CO2 product has not been made available for version 3, out
of concern, that such a product without a correction for the
long-term increase in f CO2 could be misinterpreted. Grid-
ded f CO2 values may have temporal bias, for example, if
only summertime f CO2 values are available for a grid cell
in the annual gridded product. Several auxiliary variables
are reported per grid cell, for example the number of data
sets and observations and the standard deviation in the un-
weighted and weighted f CO2 mean values (Table 10).

Gridded products are available in NetCDF format
at CDIAC (http://cdiac.ornl.gov/ftp/oceans/SOCATv3/
SOCATv3_Gridded_Dat/) (Table 8). Matlab code is
available for reading the files. The Gridded Data Viewer
(http://www.socat.info/; select “Gridded Data Viewer”)
provides easy access to the gridded data products, as well
as comparison to gridded products from earlier versions.
Figures 5 and 6 have been made with the gridded data
product.

6 Future developments

6.1 Direct data upload and annual SOCAT releases

The SOCAT automation system was formally launched on
7 September 2015 (SOCAT and SOCOM, 2015). Data
providers can now directly upload, check and submit their
data on the SOCAT quality control system for future SOCAT
versions. The SOCAT automation was first discussed at the
2011 Data2Flux Workshop in Paris (SOCAT, 2011). The au-
tomation system was designed at the 2012 Automation Plan-
ning Meeting (SOCAT, 2012a) and approved shortly after-
wards by global and regional group leads (SOCAT, 2012b)
(Table 5). The automation system has been implemented in
the background, with all the work for the biannual SOCAT
releases of versions 2 and 3 taking place in the foreground
(Bakker et al., 2014, this study). This considerable achieve-
ment has been made possible by the hard work and planning
of the NOAA-PMEL and University of Washington Live Ac-
cess Server team and other members of the SOCAT automa-
tion team (Table 3).
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Figure 5. Bar plots of the number of decadal mean f CO2 values
per 4 µatm range for data-set-weighted gridded f CO2 values in ver-
sion 3. Red bars indicate the mean atmospheric value (µmol mol−1)
at Mauna Loa, Hawaii, for each decade (Tans and Keeling, 2016).
Note the changing scale on the y axis. Similar figures have been
made for versions 1 and 2 (Olsen et al., 2013; Sabine et al., 2013).

The new automation system allows data providers to up-
load their data, to check their data with the automated
data checker and to visualise their data. Finally, if the data
provider deems the data of good quality, he or she can sub-
mit them to the SOCAT quality control system. As part of the
data submission to SOCAT, the data provider is encouraged
to make the original data set public, for example at CDIAC
(SOCAT and SOCOM, 2015), either immediately or upon
the release of the SOCAT version of which the data set is
part. The automation system will enable annual SOCAT re-
leases. The timetable for future SOCAT versions envisages
that data upload will end in late January of each year and
quality control in late March for a release in summer later

Figure 6. (a) Number of unique months and (b) total number of
months with f CO2 values per 1◦× 1◦ grid cell for 1970 through
2014 in SOCAT version 3. Similar figures are available for versions
1 and 2 (Sabine et al., 2013; Bakker et al., 2014). The higher reso-
lution of 0.25◦× 0.25◦, available for coastal seas (Sect. 5.5), is not
shown.

that year. With the new system it is now possible to upload
and submit data to SOCAT, while quality control of previ-
ously submitted data sets is in progress. Thus, both data up-
load and quality control can now be carried out in parallel.
Data upload and quality control for the next SOCAT version
will start as soon as they have finished for the preceding ver-
sion. Thus, the automation system will enable rolling, con-
tinuous data upload and quality control, as well as annual
SOCAT releases. The system for automated data upload is
under continuous improvement. Metadata templates and up-
load will be integrated into the SOCAT data upload system.
Other planned improvements include searchable information
for funding agency and entry of preliminary data set flags by
the data provider. A number of additional features are being
considered for future SOCAT versions, some of which may
be implemented as early as version 4. These are discussed
below.

6.2 Atmospheric CO2 values

Data providers can now submit measurements of atmo-
spheric CO2 mole fraction, made in parallel to surface wa-
ter f CO2. A separate WOCE flag will be created for mea-
surements of the atmospheric CO2 mole fraction in future
SOCAT versions. Once quality control has been carried out
on the atmospheric CO2 measurements, such values will be
included in the SOCAT data products.
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In future, atmospheric f CO2 will be calculated from at-
mospheric xCO2 values, both from the measurements and
from GLOBALVIEW-CO2 (2014) values. New graphics will
enable comparison of surface ocean f CO2 values to atmo-
spheric f CO2 values. The graphs will become an impor-
tant quality control tool. Future data products will contain
atmospheric f CO2 values calculated from atmospheric mea-
surements and from GLOBALVIEW-CO2, in addition to the
atmospheric mole fractions from GLOBALVIEW-CO2 al-
ready part of the SOCAT data products (Table 9).

6.3 Additional surface water parameters

In 2014, SOCAT scientists decided to allow inclusion of
additional surface water parameters accompanying surface
water f CO2 values in SOCAT data output files (SOCAT,
2014a). Such additional parameters might include dissolved
inorganic carbon, total alkalinity, pH, nutrients, methane
(CH4) and nitrous oxide (N2O) concentrations. SOCAT sci-
entists will not carry out quality control on these additional
parameters, but would welcome collaboration with other
communities taking responsibility for this. These additional
parameters will be made public in parallel to the official SO-
CAT releases. The extra parameters will be posted in sepa-
rate data files to emphasise that they have not been quality-
controlled. A SOCAT and MEMENTO (MarinE MethanE
and NiTrous Oxide; Bange et al., 2009) working group is
considering the way forward for surface water CH4 and N2O
measurements (SOCAT and SOCOM, 2015).

7 Impact and scientific highlights of SOCAT

7.1 A multi-decade record of surface ocean fCO2
values

SOCAT provides a record of the history of surface ocean
CO2 research (Fig. 3). Initial, exploratory surface water CO2
measurements in the late 1950s, 1960s and 1970s were fol-
lowed by more frequent CO2 data collection on research
ships in the 1980s and large (inter)national research pro-
grams, such as the World Ocean Circulation Experiment
(WOCE), the Joint Global Ocean Flux Study (JGOFS) and
the Tropical Atmosphere Ocean (TAO) network in the 1990s.
The operation of CO2 instruments on ships part of the Car-
bon Voluntary Observing Ships (Carbon VOS) programme,
also referred to as the Ships Of Opportunity Programme
(SOOP), strongly increased the number of available f CO2
values from the 1990s onwards. Data availability in the SO-
CAT collection has increased 4-fold from 0.2 to 0.4 mil-
lion f CO2 values per year for the years 1995 to 2000 to
1.0 to 1.2 million values per year for 2005 to 2012. Nev-
ertheless, large gaps are notable in the data collection since
the year 2000, e.g. in the Indian Ocean, the South Pacific
Ocean, the Mediterranean Sea, the East China Sea, the Malay

Archipelago and the Sea of Okhotsk. Elsewhere, in the Arctic
Ocean, measurements are being reported for the first time.

The seasonal distribution of surface ocean f CO2 values in
the relatively data-rich decade from 2000 to 2009 is shown
in Fig. 4. This figure highlights the lack of winter data in the
high-latitude oceans, as well as the opposing seasonal cy-
cle of surface ocean f CO2 in the subtropical and temperate
oceans (Takahashi et al., 2002). The distribution of surface
ocean f CO2 values per decade clearly shows the long-term
increase in surface ocean f CO2 (Fig. 5), while suggesting
that surface ocean f CO2 has increased slower than the at-
mospheric CO2 concentration since the 1990s. Figure 6 vi-
sualises the data availability as the number of months in each
1◦ latitude by 1◦ longitude grid cell with f CO2 values since
1970, both as unique months and as total months.

7.2 Impact of SOCAT

SOCAT and its data products are cited or named in influ-
ential international reports, in more than 100 peer-reviewed
scientific publications, PhD and master’s theses, book chap-
ters and numerous other publications, as listed on the SO-
CAT website (http://www.socat.info/publications.html). Fig-
ure 7 shows the rapid increase in such publications, since
the initiation of SOCAT in 2007 (IOCCP, 2007) and the
first SOCAT release in 2011 (Pfeil et al., 2013; Sabine et
al., 2013). The SOCAT data collection forms the basis of
several data products (http://www.socat.info/products.html)
and diverse scientific applications. These include a dozen
mapping products of surface ocean pCO2 and air–sea CO2
fluxes for the global oceans (see overview in Rödenbeck et
al., 2015). The SOCAT gridded product and one data prod-
uct based on SOCAT (Landschützer et al., 2015) are inte-
grated with the ESMValTool (Eyring et al., 2016) for rou-
tine evaluation of Earth system models. For the same pur-
pose, the SOCAT gridded product is currently being inte-
grated into the Obs4MIPs (Observations for Model Inter-
comparison Projects) data repository (Ferraro et al., 2015).
Citation of SOCAT in high-impact reports, scientific appli-
cations of SOCAT and scientific findings based on SOCAT
are discussed below.

The importance of the SOCAT synthesis is highlighted by
its citation in three categories of high-impact reports, notably
reports on ocean observing systems, assessments of climate
change and global carbon budgeting, including carbon ob-
serving strategies, and ocean acidification studies.

– Reports on ocean observing systems include publica-
tions from OceanObs’09 (Borges et al., 2010; Mon-
teiro et al., 2010), the Framework for Ocean Observ-
ing (FOO, 2012), the Tropical Pacific Observing Sys-
tem 2020 (Mathis et al., 2014) and the 2nd International
Indian Ocean Expedition (Hood et al., 2015).

– Assessments of climate change and global carbon bud-
geting citing SOCAT are the 2013 IPCC (Intergovern-
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Figure 7. (a) Number of publications citing or naming SOCAT
per year by type of publication and (b) scientific applications of
SOCAT in peer-reviewed, scientific articles. The number of pub-
lications in 2016 only includes publications before 22 April 2016.
Types of publications are peer-reviewed, scientific articles, PhD and
MSc theses, high-impact reports, book chapters and all other pub-
lications. Scientific applications in peer-reviewed, scientific articles
are grouped as reference (only) to the SOCAT data synthesis; use
of figures or tools based on SOCAT; use of surface ocean f CO2
values for various environmental studies; modelling; trend analysis
in ocean acidification studies; f CO2 process studies; and carbon
budgeting of coastal seas, open ocean and land systems. These sci-
entific applications are discussed in Sects. 7.2 and 7.3. A list of
publications citing or naming SOCAT is available on the SOCAT
website (www.socat.info/publications.html).

mental Panel on Climate Change) report (Ciais et al.,
2013) and the State of the Climate in 2014 (Blunden and
Arndt, 2015). Three reports describing a global carbon
or climate observing system highlight SOCAT, notably
the GEO (Group on Earth Observations) Carbon Strat-
egy (Ciais et al., 2010), the Carbon Strategy for Car-
bon Observations from Space (CEOS, 2014), and Status
of the Global Observing System for Climate (GCOS,
2015).

– A number of ocean acidification studies cite SO-
CAT, notably reports by the International Council for
the Exploration of the Sea (ICES, 2013), the Joint
OSPAR/ICES Ocean Acidification Study Group (ICES,
2014), the Global Ocean Acidification Observing Net-
work (Newton et al., 2014) and the Secretariat of the
Convention on Biodiversity (2014).

7.3 Scientific applications of SOCAT

SOCAT is used for a variety of scientific applications
(Fig. 7b), some of which imply a wider relevance for SOCAT
data products than envisaged during the creation of SOCAT
(IOCCP, 2007). Scientific applications of SOCAT include

– figures of surface ocean CO2 observations;

– use of SOCAT tools and protocols;

– use of surface ocean f CO2 in diverse environmental
studies;

– model–data comparison, model evaluation and data as-
similation;

– detection of ocean acidification trends;

– regional process studies of surface ocean f CO2;

– quantification of coastal ocean carbon sinks and
sources;

– quantification of the ocean carbon sink and its variation;

– quantification of the land carbon sink.

These applications are roughly listed in order of the increas-
ing importance of the SOCAT synthesis for the studies. The
use of the SOCAT data collection in peer-reviewed, scientific
publications is evolving. Initial publications made reference
to the ongoing synthesis activity. Actual use of the SOCAT
data collection started as soon as version 1 was released in
2011 (Pfeil et al., 2013; Sabine et al., 2013). Studies that
heavily rely on SOCAT data products, such as modelling,
ocean acidification trend analysis and carbon budgeting, rep-
resent one-third to half of the scientific publications citing or
naming SOCAT from 2013 onwards.

Examples of scientific applications of SOCAT are given
below. There is no strict separation between the different
types of applications identified here, with several studies be-
longing to more than one type of application. Many of the
studies use surface ocean pCO2 values, derived from the
f CO2 values reported in SOCAT data products.

Figures of surface ocean CO2 observations. Newly created
figures based on the SOCAT data collection and existing fig-
ures from SOCAT publications have been used in scientific
publications. Such figures generally highlight the availability
or lack of surface ocean CO2 data in specific regions or sea-
sons or over time (Chierici et al., 2012; Regnier et al., 2013;
Wanninkhof et al., 2013a; Ciais et al., 2014; Majkut et al.,
2014a; Brévière et al., 2015; Hofmann et al., 2015).

Use of SOCAT tools and protocols. A variety of tools and
protocols has been developed in SOCAT. One of these is the
definition of a continental margin mask which defines coastal
waters as waters within 400 km from land (Pfeil et al., 2013).
Evans and Mathis (2013) and Evans et al. (2015) use this con-
tinental margin mask. Other studies have adopted SOCAT
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protocols for calculation of f CO2 (Ulfsbo et al., 2014) and
quality control (Sutton et al., 2014b).

Use of surface ocean f CO2 in diverse environmental stud-
ies. Regional f CO2 values from SOCAT are used in diverse
environmental studies with topics ranging from ocean acidi-
fication to genomics, gas transfer velocity and evaluation of
independent measurements (Blomquist et al., 2014; Larsen
et al., 2014; Holding et al., 2015; Marrec et al., 2015; Bonou
et al., 2016; Reum et al., 2016). Reum et al. (2016) assess the
co-variance between pCO2, pH and other environmental pa-
rameters with the aim to improve the design of future ocean
acidification incubation experiments. Larsen et al. (2014) es-
tablish a significant correlation between gene expression for
the relative turnover (synthesis or consumption) of CO2 and
surface ocean f CO2. SOCAT f CO2 values are also used for
evaluation of surface ocean f CO2 estimates from eddy cor-
relation (Blomquist et al., 2014) or from other carbonate pa-
rameters (Bonou et al., 2016) and for evaluation of regression
parameterisations (Marrec et al., 2015; Xu et al., 2016).

Model-to-data comparison, model evaluation and data as-
similation. SOCAT data products are used for model-to-data
comparison, model evaluation and data assimilation in cou-
pled and ocean-only biogeochemical models. Model-to-data
comparisons of surface water f CO2 have been carried out
for seasonal (Tjiputra et al., 2012; Arruda et al., 2015) to
multi-year timescales (Tjiputra et al., 2014; McKinley et al.,
2016). In several studies, model data are subsampled to sur-
face ocean pCO2 observations from SOCAT (Séférian et
al., 2014; Tjiputra et al., 2014; Turi et al., 2014). Cooley
et al. (2015) evaluate surface ocean pCO2 values from an
integrated assessment model with pCO2 observations from
SOCAT and other sources. SOCAT data products are sup-
porting model evaluation in context of the Coupled Model
Intercomparison Project (CMIP) and beyond (Eyring et al.,
2016). The SOCAT data collection is used for assimilation of
surface ocean pCO2 values in global ocean biogeochemical
models (While et al., 2012; Simon and Bertino, 2013, as cited
in Gehlen et al., 2015). Ocean biogeochemical models have
many applications, such as quantification and attribution of
trends in the ocean carbon sink (Le Quéré et al., 2014, 2015a,
b; Séférian et al., 2014) and forecasting population dynamics
of sea scallops, which are the basis of important commercial
fisheries (Cooley et al., 2015).

Detection of ocean acidification trends. A number of stud-
ies estimate trends in surface ocean pH or the carbonate con-
centration by combining SOCAT f CO2 values with another
carbonate parameter (Lauvset and Gruber, 2014; Freeman
and Lovenduski, 2015; Lauvset et al., 2015).

Regional process studies of surface ocean f CO2. Sev-
eral authors investigate regional processes driving temporal
or spatial variation in surface ocean f CO2 and CO2 air–
sea fluxes. Examples are for the Subantarctic Indian Ocean
(Lourantou and Metzl, 2011) and the eastern equatorial Pa-
cific Ocean (Walker Brown et al., 2015).

Quantification of coastal ocean carbon sinks and sources.
SOCAT data products are used for quantification of CO2
sources and sinks in coastal seas. Such studies are regional
or global in extent (Chen et al., 2013; Signorini et al., 2013;
Laruelle et al., 2014, 2015).

Quantification of the ocean carbon sink and its variation.
An important application of the SOCAT data collection is
quantification of the ocean carbon sink on seasonal to multi-
year timescales with a mapping or gap-filling method. Such
studies may be regional or global in extent. Studies tend to
be either for the coastal seas (Signorini et al., 2013) or for
the open ocean (Rödenbeck et al., 2015). The studies in-
terpolate sparse pCO2 data from a SOCAT or LDEO syn-
thesis product in time and space by a gap-filling method.
Approaches include statistical interpolation (Rödenbeck et
al., 2013; Goddijn-Murphy et al., 2015; S. D. Jones et al.,
2015), multiple linear regression (Schuster et al., 2013; Sig-
norini et al., 2013; Iida et al., 2015), neural network ap-
proaches (Landschützer et al., 2013, 2014; Nakaoka et al.,
2013; Sasse et al., 2013; Zeng et al., 2014) and model-based
regression and tuning (Valsala and Maksyutov, 2010; Majkut
et al., 2014b). Mapping methods may be specific to individ-
ual regions (“biomes”) (Signorini et al., 2013; Landschützer
et al., 2014) or may apply to the full (global) domain (e.g.
Rödenbeck et al., 2013; S. D. Jones et al., 2015). Most of
these approaches use additional parameters with good data
coverage during the gap-filling process, for example satellite-
derived sea surface temperature and chlorophyll a, as well
as sea surface salinity and mixed layer depth from reanaly-
sis. Many mapping methods use a time-dependent variable,
such as time itself or the steadily increasing atmospheric CO2
mole fraction, in order to be able to reproduce a long-term in-
crease in surface ocean pCO2.

The Surface Ocean pCO2 Mapping Intercomparison
(http://www.bgc-jena.mpg.de/SOCOM/) compares the sur-
face ocean pCO2 distribution and air–sea CO2 fluxes in 14
data-based mapping products, 10 of them using SOCAT (Rö-
denbeck et al., 2015). The methods vary in their characteris-
tics, making them suitable for different space and timescales.
The SOCOM initiative aims to quantify uncertainties and to
identify common features in the gap-filling methods. The
first SOCOM results highlight considerable differences be-
tween mapping products, especially in data-sparse regions
(Rödenbeck et al., 2015).

The high-profile Global Carbon Budget uses ocean bio-
geochemical models for estimating trends in the global ocean
carbon sink (Le Quéré et al., 2014, 2015a, b). Recent bud-
gets also consider observation-based estimates of the ocean
carbon sink using the LDEO and SOCAT synthesis prod-
ucts (Park et al., 2010; Landschützer et al., 2014, 2015; Rö-
denbeck et al., 2014). The 2015 Global Carbon Budget as-
sesses the uncertainty in the ocean carbon sink by comparing
model results to observation-based estimates (Le Quéré et al.,
2015b).
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Quantification of the land carbon sink. Quantification of
the ocean carbon sink is critical to resolving the Global Car-
bon Budget and underpins the estimate of the land carbon
sink (Le Quéré et al., 2014, 2015a, b). In addition, quantifi-
cation of ocean–atmosphere CO2 fluxes in space and time
provides priors for atmospheric inversion, thus improving es-
timates of the land carbon sink (Rödenbeck et al., 2014; Van
der Laan et al., 2014; S. D. Jones et al., 2015).

7.4 Scientific findings obtained using the SOCAT data
collection

This section provides an overview of scientific findings ob-
tained using the SOCAT data collection.

Model-to-data comparison. Schuster et al. (2013) carry
out a comparison of CO2 air–sea fluxes for the Atlantic
Ocean from data-based methods, ocean biogeochemical
models, ocean inversion, and atmospheric inversions. The
seasonal cycle and year-to-year variation in the fluxes differ
between the various methods for most Atlantic regions.

Two studies subsample model pCO2 data to surface ocean
pCO2 observations derived from SOCAT. The authors con-
clude that ocean biogeochemical models on average un-
derestimate the spatial and temporal variation in regional
and global surface ocean pCO2 by 10 to 40 % (Séférian
et al., 2014; Turi et al., 2014). This corroborates the SO-
COM finding that ocean biogeochemical models underesti-
mate the year-to-year and decadal variation in the global air–
sea CO2 flux (Rödenbeck et al., 2015). However, at least one
model-to-data comparison study concludes that the Commu-
nity Earth System Model captures the annual to 30-year vari-
ability in the ocean carbon cycle at regional to global scales
(McKinley et al., 2016). Landschützer et al. (2015) demon-
strate how ocean carbon observations are delivering new in-
sights into large and globally significant decadal changes in
the ocean carbon sink. The variability in the ocean carbon
sink in regions like the Southern Ocean is not apparent in
modelled estimates of ocean carbon uptake or from atmo-
spheric inverse calculations (e.g. Lenton et al., 2013).

Detection of ocean acidification trends. SOCAT-based re-
search indicates a decrease in global surface ocean pH at a
rate of −0.0018± 0.0004 yr−1 for 1991 to 2011 with signif-
icant decreases in 70 % of all ocean regions (Lauvset et al.,
2015).

Data-based carbon budgeting. Using SOCAT and other
data sources, Regnier et al. (2013) estimate that anthro-
pogenic activities may have increased open-ocean out-
gassing of land-derived carbon by 0.1 Pg C yr−1. The global
CO2 sink in continental shelf seas has been estimated as
0.4 Pg C yr−1 (Chen et al., 2013) and 0.19± 0.05 Pg C yr−1

(Laruelle et al., 2014).
Several mapping studies highlight large year-to-year vari-

ation in air–sea CO2 fluxes in the tropical Pacific Ocean
(Landschützer et al., 2014; Rödenbeck et al., 2014, 2015).
This variation is closely related to the El Niño–Southern Os-

cillation (ENSO) (Feely et al., 1999, 2002; Inoue et al., 2001;
Rödenbeck et al., 2014). The variation in the equatorial Pa-
cific Ocean roughly corresponds to 40 % of the interannual
variation in the global ocean carbon sink (Rödenbeck et al.,
2014), which has been estimated as 0.31 Pg C yr−1 (Röden-
beck et al., 2015).

The SOCOM comparison of mapping methods identifies
an increase in global ocean carbon sink by 1 Pg C decade−1

since 2000 (Rödenbeck et al., 2015). About half of this in-
crease in the global ocean carbon sink originates south of
35◦ S in the Southern Ocean (Landschützer et al., 2014,
2015).

8 Conclusions

SOCAT version 3 represents an important release of the SO-
CAT data collection, by creating a 58-year data record and by
adding many additional data sets for recent years. The new
data set flag of E in version 3 now enables inclusion of cal-
ibrated surface ocean f CO2 measurements from alternative
sensors (with an accuracy of better than 10 µatm) made on
alternative platforms, such as moorings and drifters, in re-
mote and less remote ocean regions. This article provides an
ESSD “living data” update of SOCAT version 3. The launch
of the SOCAT automation system will enable annual SOCAT
releases from version 4 onwards.

The rapid growth of scientific publications using SOCAT
(Fig. 7) demonstrates the importance of this synthesis ac-
tivity by the international marine carbon community. The
SOCAT data collection is being used in high-impact, scien-
tific applications such as evaluation of ocean biogeochemical
models, carbon budgeting, and trend analysis of the ocean
carbon sink and ocean acidification. SOCAT-based studies
have informed the Paris climate negotiations, as the 2015
Global Carbon Budget was released at the 21st Conference
of the Parties of the United Nations Framework Convention
on Climate Change (Le Quéré et al., 2015b).

However, despite much progress in data synthesis, ma-
jor uncertainties remain in observation-based studies of the
ocean carbon sink and ocean acidification due to (1) in-
adequate spatial and seasonal data coverage, (2) short data
records, and (3) uncertainty in the correction for “natural”,
pre-industrial oceanic outgassing of land-derived CO2 (Ja-
cobson et al., 2007) and any anthropogenic perturbation of
this outgassing (Regnier et al., 2013). Data coverage is par-
ticularly poor in the Indian Ocean, the Southern Hemisphere
oceans and coastal seas and in the high-latitude oceans, no-
tably in ice-covered regions and in winter (Figs. 3, 4 and 6).

The above reinforces the need for the continuing col-
lection and synthesis of accurate, well-calibrated and well-
documented observations and investment in high-quality sur-
face ocean CO2 measurements on autonomous platforms.
Adequate resources need to continue to be made available
for data collection, quality control and data synthesis. Sys-
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tems should be automated whenever possible. The SOCAT
data synthesis highlights the success of a bottom-up approach
with buy-in from the international marine carbon community
and endorsement by IOCCP, SOLAS and IMBER.

9 Data availability

This manuscript describes how the synthesis product has
been created (Sect. 4) and how the individual data set
files, synthesis files and gridded products can be accessed
(Sect. 5) (Table 8). Individual data set files, all combined
forming the synthesis product, can be downloaded here:
doi:10.1594/PANGAEA.849770. Global and regional files
are available as compressed zip text files via CDIAC (http:
//cdiac.ornl.gov/ftp/oceans/SOCATv3/). The global synthe-
sis product for data sets with flags of A to D is also avail-
able in Ocean Data View format (https://odv.awi.de/en/data/
ocean/socat_fCO2_data). The gridded products are available
here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID. Further
details are in Sects. 4 and 5.
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