Addressing nonlinearities in Monte Carlo - Université de Perpignan Via Domitia
Article Dans Une Revue Scientific Reports Année : 2018

Addressing nonlinearities in Monte Carlo

Jeremi Dauchet
Cyril Caliot
Christophe Coustet
  • Fonction : Auteur
Vincent Eymet
  • Fonction : Auteur
  • PersonId : 865114
Vincent Forest
  • Fonction : Auteur
Lionel Pelissier
Benjamin Piaud
  • Fonction : Auteur
  • PersonId : 951078
  • IdRef : 124064140
Maxime Roger

Résumé

Monte Carlo is famous for accepting model extensions and model refinements up to infinite dimension. However, this powerful incremental design is based on a premise which has severely limited its application so far: a state-variable can only be recursively defined as a function of underlying state-variables if this function is linear. Here we show that this premise can be alleviated by projecting nonlinearities onto a polynomial basis and increasing the configuration space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles, and concentrated solar power plant production, we prove the real-world usability of this advance in four test cases which were previously regarded as impracticable using Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to acute problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise on model refinement or system complexity, and convergence rates remain independent of dimension.
Fichier principal
Vignette du fichier
s41598-018-31574-4.pdf (3.82 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01871366 , version 1 (10-09-2018)

Licence

Identifiants

Citer

Jeremi Dauchet, Jean-Jacques Bézian, Stéphane Blanco, Cyril Caliot, Julien Charon, et al.. Addressing nonlinearities in Monte Carlo. Scientific Reports, 2018, 8 (1), art.13302-11 p. ⟨10.1038/s41598-018-31574-4⟩. ⟨hal-01871366⟩
888 Consultations
207 Téléchargements

Altmetric

Partager

More