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Abstract

The subgrid terms of the low Mach number equations are investigated in a
strongly anisothermal low Mach number flow. The filtered low Mach number
equations are established in three formulations in order to compare the un-
weighted classical filter and the density-weighted Favre filter on the one hand,
and the filtering of the momentum conservation equation and the velocity
transport equation on the other hand. In the three formulations, we establish
the filtered equations of mass conservation, momentum conservation, energy
conservation, of the ideal gas law and of the resolved kinetic energy transport
equation. The magnitude of all subgrid terms is assessed a priori in the three
formulations using the results of direct numerical simulations of a strongly
anisothermal fully developed turbulent channel flow. The classification of the
subgrid terms gives the relevance of various effects of the temperature gradient.

1 Introduction

In solar power towers, the solar flux is concentrated towards the solar receiver,
wherethrough its energy is transferred to the heat transfer fluid. The optimisation
of the internal geometry of the solar receiver is a key challenge for the efficiency of
solar power towers. The thermal exchange towards the fluid should be maximised
while the pressure loss should be minimised. This long-term goal would benefit
from accurate numerical simulations of the low Mach number strongly anisothermal
turbulent flows found in solar receivers [34]. However, high numerical costs prevent
the direct numerical simulation (DNS) of all scales of turbulence in the conditions
of a real solar receiver. An effective alternative is the thermal large-eddy simulation
(LES). The LES resolves the largest scales of the flow and models the effect of the
small scales on the large scales. The method requires subgrid-scale models suited to
low Mach number strongly anisothermal turbulent flows [4, 5, 16].

The subgrid terms can be investigated a priori from high-resolution three-dimensional
flow fields. A priori tests were carried out with particle image velocimetry measure-
ments [24, 10] and DNS results, in incompressible isotropic homogeneous turbulence
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[14, 1], rotating turbulence [25], channel flows [30, 22], in two phase divergence-free
flows [40], in passive and active scalar decaying homogeneous turbulence [12, 20] and
in flows with purely compressible effects, in a temporal shear layer [43, 44, 42] and in
freely decaying homogeneous isotropic turbulence [26]. In flows with variable fluid
properties, the analysis can be carried out using two large-eddy simulation filters,
the unweighted classical filter and the density-weighted Favre filter [18]. The Favre
filter is used by most authors in compressible flows [19]. The classical filter has been
employed by Yoshizawa [46], Sun and Lu [37], Boersma and Lele [8], Bodony and
Lele [7] and Sidharth et al. [36]. In addition, the set of subgrid terms to model de-
pends on the formulation of the filtered governing equations, of the energy equation
in particular but also of the momentum equation [35]. Using a priori tests, Vreman
et al. [43] and Martín et al. [26] assessed the amplitude of all subgrid terms involved
in the compressible Navier–Stokes equations for different formulations of the energy
conservation equation.

In the literature, the subgrid terms have not been investigated for low Mach
number strongly anisothermal turbulent flows. In this paper, we extend the analysis
to this configuration. In strongly anisothermal flows, the large temperature differ-
ences require taking into account the variations of the fluid properties. If in addition
the flow is turbulent, the variations of the fluid properties are related to the velocity
fluctuations. The figure 2 is an illustration of the correlation between the velocity
and temperature. The isosurface of figure 2 is not only an isotherm but also a surface
of isodensity, isoviscosity and isoconductivity. Both the velocity and temperature
profiles are turbulent and exhibit a wide range of length scales. The correlations be-
tween velocity and temperature lead to additional subgrid terms associated with the
nonlinearities of the viscous term and of the heat flux. In the literature, these addi-
tional subgrid terms are always neglected (see for example [34, 45, 2, 11, 33, 32, 23]).
However, to the best of our knowledge, there is no study to justify this assumption
in low Mach number flows. We investigate whether these additional subgrid terms
may be neglected. This study is essential for the flows found in solar receivers,
characterised by a strong coupling between turbulence and temperature, along with
high variations of the fluid properties (density, viscosity and thermal conductivity)
with temperature [39].

We study the subgrid terms using the results of direct numerical simulations of
a strongly anisothermal fully developed turbulent channel flow. The investigation
is based on a particular form of the Navier–Stokes equations under the low Mach
number hypothesis, called low Mach number equations [15]. The filtering of the low
Mach number equations gives rise to specific subgrid terms. Three formulations of
the filtered low Mach number equations are investigated, which leads to three spe-
cific sets of subgrid terms. The analysis is carried out using the classical filter and
the Favre filter. With the classical filter, we compare the filtering of the momentum
conservation equation to the filtering of the velocity transport equation. We assess
the magnitude of each term in the three formulations. This provides insights on the
asymmetry of the subgrid and non-subgrid terms between the two sides of the chan-
nel and on the relative importance of the various competing physical processes. The
study takes into account both the subgrid terms associated with non-commutation of
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the filter with the derivative and the nonlinearities arising from the large variations
of the fluid properties. The objective is to identify the subgrid terms that can be
neglected and the subgrid terms that should be modelled in the three formulations.

We describe the low Mach number equations in section 2. In section 3, we
study the filtering of the low Mach number equations in three formulations. The
subgrid terms derived in the general case are then estimated in the channel flow
configuration. The detailed channel flow configuration can be found in section 4 as
well as the numerical method used to compute the subgrid terms. The results are
discussed in section 5.

2 Low Mach number equations

We consider a turbulent flow at low Mach number (Ma < 0.3). The low Mach
number hypothesis let us use Paolucci’s method [29] to remove acoustic effects from
the Navier–Stokes equations. Each variable of the Navier–Stokes equations is written
as a power series of the squared Mach number. Keeping only the smaller-order terms
leads to the so-called low Mach number equations. The pressure is split in two parts:
the thermodynamical pressure P , mean pressure in the domain, and the mechanical
pressure P0, associated with momentum variations. The thermodynamical pressure
is constant in space. The gas is air, an ideal gas for the purpose of this study. The
effects of gravity are neglected.

Those considerations lead to the low Mach number equations, given by:

• Mass conservation equation

∂ρ

∂t
+
∂ρUj
∂xj

= 0, (1)

• Momentum conservation equation

∂ρUi
∂t

= −∂ρUjUi
∂xj

− ∂P

∂xi
+
∂Σij

∂xj
, (2)

• Energy conservation equation

∂Uj
∂xj

= − 1

γP0

[
(γ − 1)

∂Qj

∂xj
− ∂P0

∂t

]
, (3)

• Ideal gas law

T =
P0

ρr
, (4)

with ρ the density, T the temperature, Σij the shear-stress tensor, Qj the conductive
heat flux, γ the heat capacity ratio, r the ideal gas specific constant, t the time, P
the mechanical pressure, P0 the thermodynamical pressure, Ui the i-th component
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of velocity and xi the Cartesian coordinate in i-th direction. Einstein summation
convention is used and δij is the Kronecker delta.

In the low Mach number equations, the energy conservation equation has a dis-
tinctive form. The local conservation of energy is imposed by a constraint on the
divergence of the velocity. Namely, the dilatation of the fluid is proportional to the
difference between the conductive heat flux and the global variation of thermody-
namical pressure. To obtain equation (3), we use the low Mach number hypothesis
to approximate the compressible energy conservation equation in enthalpy form as
[28]

∂ρCpT

∂t
+
∂ρUjCpT

∂xj
=
∂P0

∂t
− ∂Qj

∂xj
, (5)

where Cp is the heat capacity at constant pressure. We then use the ideal gas law
(4) to substitute in this equation ρT with P0/r. Using the fact that the thermody-
namical pressure is constant in space, we isolate the divergence of the velocity and
combine the two temporal terms.

We assume that air is a Newtonian fluid to compute the shear-stress tensor,

Σij = µ(T )

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
µ(T )

∂Uk
∂xk

δij. (6)

The heat flux is given by

Qj = −λ(T )
∂T

∂xj
. (7)

The variations of viscosity with temperature are accounted for by the Suther-
land’s law [38],

µ(T ) = µ0

(
T

T0

) 3
2 T0 + S

T + S
, (8)

with µ0 = 1.716 · 10−5, S = 110.4 and T0 = 273.15 K. The thermal conductivity is
deduced from the Prandlt number Pr and the heat capacity at constant pressure
Cp, both assumed constant with Pr = 0.76 and Cp = 1005 J kg−1 K−1. The ideal
gas specific constant is r = 287 J kg−1 K−1.

We will study the filtering of the low Mach number equations in three formu-
lations that we shall call the Classical formulation, the Favre formulation and the
Velocity formulation.

3 Filtering of the low Mach number equations

The large-eddy simulation is based on the idea of scale separation. Theoretically,
the separation is carried out by the application of a filter, denoted ( · ), on the
Navier–Stokes equations. We restrict our discussion in this paper to a spatial filter.
The filter is taken to verify the properties of conservation of constants, a = a with
a a constant, and of linearity, φ+ ψ = φ + ψ for any φ and ψ [31]. Note however
that the filter may be inhomogeneous and thus not commute with derivation. In the
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following, this spatial filter will be referred to as the classical filter. The formulation
of the filtered low Mach number equations involves two kinds of subgrid terms. The
first kind arises from the non-commutation of the filter with the derivative and are
related to the variations of filter width, that is from the LES mesh inhomogeneity.
They are denoted in the form Cβ

α . The second kind arises from nonlinearities, that
is from the non-commutation between the filtering and the multiplication operator.
They are denoted in the form Fα. Most of them are related to the large variations
of the fluid properties, with the notable exception of the subgrid term associated
with momentum convection.

3.1 Classical formulation

In the Classical formulation, the low Mach number equations are filtered with
the classical filter and expressed in terms of classical-filtered variables. The filtered
low Mach number equations in the Classical formulation are given by:

• Mass conservation equation

∂ρ

∂t
+

∂

∂xj

(
ρU j + FρUj

)
+ Cj

ρUj
= 0, (9)

• Momentum conservation equation

∂

∂t

(
ρU i + FρUi

)
= − ∂

∂xj

(
ρU j U i + FρUjUi

)
− Cj

ρUjUi
− ∂P

∂xi
− Ci

P

+
∂

∂xj

(
Σ̌ij + FΣij

)
+ Cj

Σij
,

(10)

• Energy conservation equation

∂U j

∂xj
+ Cj

Uj
= −γ − 1

γP0

[
∂

∂xj

(
Q̌j + FQj

)
+ Cj

Qj

]
− 1

γP0

∂P0

∂t
, (11)

• Ideal gas law

T =
P0

r

(
1

ρ
+ F1/ρ

)
, (12)

with the classical filter counterparts of the shear-stress tensor and of the heat flux
given by

Σ̌ij = µ(T )

(
∂U i

∂xj
+
∂U j

∂xi

)
− 2

3
µ(T )

∂Uk

∂xk
δij, (13)

Q̌j = −λ(T )
∂T

∂xj
, (14)

with µ the dynamic viscosity, λ the thermal conductivity and the following subgrid
terms:
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Cj
ρUj

=
∂ρUj
∂xj

− ∂ρUj
∂xj

(15)

Cj
ρUjUi

=
∂ρUjUi
∂xj

− ∂ρUjUi
∂xj

(16)

Ci
P =

∂P

∂xi
− ∂P

∂xi
(17)

Ci
Σij

=
∂Σij

∂xj
− ∂Σij

∂xj
(18)

Cj
Uj

=
∂Uj
∂xj

− ∂U j

∂xj
(19)

Cj
Qj

=
∂Qj

∂xj
− ∂Qj

∂xj
(20)

FρUj
= ρUj − ρU j (21)

FρUi
= ρUi − ρU i (22)

FρUjUi
= ρUjUi − ρU j U i (23)

FΣij
= Σij − Σ̌ij (24)

FQj
= Qj − Q̌j (25)

F1/ρ =
1

ρ
− 1

ρ
(26)

In addition, it is useful to express the transport equation of the resolved kinetic
energy ρE = 1

2
ρU iU i. Indeed, the total energy conservation is not explicitly stated

in the system of equations (9)–(12) but implied by the momentum conservation
equation (10) and the energy conservation equation (11). The resolved kinetic energy
transport equation is the part of total energy conservation related to the momentum
conservation. It is obtained from equation (10) multiplied by U i and equation (9),

∂ρE

∂t
−
∂EFρUj

∂xj
+ FρUj

∂E

∂xj
− ECj

ρUj
+
∂U iFρUi

∂t
− FρUi

∂U i

∂t

= − ∂

∂xj

(
ρU j E + U iFρUjUi

)
+ FρUjUi

∂U i

∂xj
− U iC

j
ρUjUi

− ∂U iP

∂xi
+ P

∂U i

∂xi
− U iC

i
P

+
∂

∂xj

(
U iΣ̌ij + U iFΣij

)
−
(
Σ̌ij + FΣij

) ∂U i

∂xj
+ U iC

j
Σij
.

(27)
This equation gives the contribution of the subgrid terms of the filtered momentum
conservation equation to the balance of the resolved kinetic energy. It will be used to
assess the magnitude of their energetic contribution. The contribution of the subgrid
terms with regard to total energy is given by the subgrid terms of the resolved kinetic
energy transport equation (27) and the energy conservation equation (11).

3.2 Favre formulation

The use of the Favre filter ( ·̃ ) is common when working with variable density
flows. It is a variable change in which filtered variables are weighted by density.
For any variable φ, the Favre-filtered variable φ̃ is defined as φ̃ = ρφ/ρ. With
the Favre filter, we avoid the subgrid terms associated with the nonlinearities of
the form ρφ in the convective term of the mass conservation equation, the time
derivative term of the momentum conservation equation and the ideal gas law. On
the other hand, a subgrid term is added when a variable φ appears without the
density, as the velocity in the energy conservation equation. The subgrid terms
associated with the nonlinearities of the shear-stress tensor and of the conductive
heat flux are modified by the use of the Favre filter, but it is not obvious to what
extent this affects the behaviour and importance of the subgrid terms. Finally, the
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subgrid terms associated with the non-commutation of the filter with the derivative
are not modified by the use of the Favre filter.

In the Favre formulation, the low Mach number equations are filtered with the
classical filter and expressed in terms of Favre-filtered variables. The filtered low
Mach number equations in the Favre formulation are given by:

• Mass conservation equation

∂ρ

∂t
+
∂ρŨj
∂xj

+ Cj
ρUj

= 0, (28)

• Momentum conservation equation

∂ρŨi
∂t

= − ∂

∂xj

(
ρŨjŨi + ρGUjUi

)
− Cj

ρUjUi
− ∂P

∂xi
− Ci

P

+
∂

∂xj

(
Σ̂ij +GΣij

)
+ Cj

Σij
,

(29)

• Energy conservation equation

∂

∂xj

(
Ũj + ρGUj/ρ

)
+ Cj

Uj
= −γ − 1

γP0

[
∂

∂xj

(
Q̂j +GQj

)
+ Cj

Qj

]
− 1

γP0

∂P0

∂t
,

(30)

• Ideal gas law

T̃ =
P0

ρr
, (31)

with the Favre filter counterparts of the shear-stress tensor and of the heat flux
given by

Σ̂ij = µ(T̃ )

(
∂Ũi
∂xj

+
∂Ũj
∂xi

)
− 2

3
µ(T̃ )

∂Ũk
∂xk

δij, (32)

Q̂j = −λ(T̃ )
∂T̃

∂xj
, (33)

and the following subgrid terms specific to the Favre formulation:

GUjUi
= ŨjUi − ŨjŨi (34)

GΣij
= Σij − Σ̂ij (35)

GUj/ρ = Ũj/ρ− Ũj/ρ (36)

GQj
= Qj − Q̂j (37)

The subgrid terms FρUj
and GUj/ρ are closely related,

FρUj

ρ
= −ρGUj/ρ. (38)

These two subgrid terms express explicitly the correlation between density and ve-
locity.
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The resolved kinetic energy transport equation is obtained from equation (29)
multiplied by Ũi and equation (28),

∂ρE˜
∂t

− E˜Cj
ρUj

= − ∂

∂xj

(
ρŨjE˜ + ρŨiGUjUi

)
+ ρGUjUi

∂Ũi
∂xj

− ŨiC
j
ρUjUi

− ∂ŨiP

∂xi
+ P

∂Ũi
∂xj

− ŨiC
i
P

+
∂

∂xj

(
ŨiΣ̂ij + ŨiGΣij

)
−
(
Σ̂ij +GΣij

) ∂Ũi
∂xj

+ ŨiC
j
Σij
.

(39)

Compared to the Classical formulation, the Favre formulation is a priori more
suited to the momentum conservation equation, the mass conservation equation and
the ideal gas law but is less appropriate for the energy conservation equation.

3.3 Velocity formulation

The Velocity formulation is based on the velocity filtering approach suggested by
Sidharth and Candler [35], Sidharth et al. [36]. The momentum conservation equa-
tion in the low Mach number equations is rewritten before filtering as the velocity
transport equation,

∂Ui
∂t

= − ∂UjUi
∂xj

+ Ui
∂Uj
∂xj

− 1

ρ

∂P

∂xi
+

1

ρ

∂Σij

∂xj
. (40)

The equations are then filtered with the classical filter and expressed in terms of
classical-filtered variables. The filtered low Mach number equations in the Velocity
formulation are given by the mass conservation equation (9), the energy conservation
equation (11), the ideal gas law (12) and the velocity transport equation:

ρ
∂U i

∂t
= − ρ

∂

∂xj

(
U j U i + FUjUi

)
− ρCj

UjUi
+ ρU i

∂U j

∂xj
+ ρFUi∂jUj

+ ρU iC
j
Uj

− ∂P

∂xi
− Ci

P − ρF∂iP/ρ +
∂

∂xj

(
Σ̌ij + FΣij

)
+ Cj

Σij
+ ρF∂jΣij/ρ,

(41)

with the following subgrid terms:

Cj
UjUi

=
∂UjUi
∂xj

− ∂UjUi
∂xj

(42)

FUjUi
= UjUi − U j U i (43)

FUi∂jUj
= Ui

∂Uj
∂xj

− U i
∂Uj
∂xj

(44)

F∂iP/ρ =
1

ρ

∂P

∂xi
− 1

ρ

∂P

∂xi
(45)

F∂jΣij/ρ =
1

ρ

∂Σij

∂xj
− 1

ρ

∂Σij

∂xj
(46)

Upon filtering, the velocity transport equation gives rise to different subgrid
terms than the momentum conservation equation. The time derivative of the velocity
density product subgrid term FρUi

does not appear in the Velocity formulation.
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However, there is three additional subgrid terms associated with the divergence of
the velocity and the correlation of the density with other terms of the equation.

The resolved kinetic energy transport equation is given by

ρ
∂E

∂t
= − ρ

∂

∂xj

(
U jE + FUjUi

U i

)
+ ρFUjUi

∂U i

∂xj
− ρU iC

j
UjUi

+ ρE
∂U j

∂xj
+ ρU iFUi∂jUj

+ 2ρECj
Uj

− ∂PU i

∂xi
+ P

∂U i

∂xi
− U iC

i
P − ρU iF∂iP/ρ

+
∂

∂xj

(
Σ̌ijU i + FΣij

U i

)
−
(
Σ̌ij + FΣij

) ∂U i

∂xj
+ U iC

j
Σij

+ ρU iF∂jΣij/ρ.

(47)

This equation is obtained from equation (41) multiplied by U i and equation (9).

4 Numerical study configuration

4.1 Channel flow configuration

We consider a fully developed three-dimensional anisothermal channel flow, as
shown in figure 1. This geometry is one of the simpler that reproduces the distinctive
features of low Mach number strongly anisothermal turbulent flows. It is therefore
well suited to the study of the subgrid scale specificities of these flows.

Figure 1 – Biperiodic anisothermal channel flow.

The channel is periodic in both the streamwise (x) and spanwise (z) directions.
The temperatures of the two plane channel walls are T2 = 586 K at the hot wall
and T1 = 293 K at the cold wall. This creates the temperature gradient in the
wall-normal direction (y). Two mean friction Reynolds number are considered, Reτ
= 180 and Reτ = 395, where Reτ is defined as the average of the friction Reynolds
numbers Reτ,ω calculated at the hot and cold wall,

Reτ,ω =
Uτh

νω
, (48)
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with Uτ = νω(∂yUx)
0.5
ω the friction velocity and νω the wall kinematic viscosity. We

show in figure 2 an isotherm and the velocity magnitude on a plane for a given
timestep at Reτ = 180.

Figure 2 – Surface of the 400 K isotherm and velocity magnitude in a plane normal
to the flow direction (Reτ = 180).

4.2 Numerical settings

To provide the data required to compute the subgrid terms of the low Mach
number equations, direct numerical simulations of the fully developed channel flow
described in 4.1 are carried for the two selected friction Reynolds number (180 and
395). At Reτ = 180, the domain size is 4πh× 2h× 2πh, and the mesh used contains
384 × 266 × 384 grid points. At Reτ = 395, the domain size is 4πh × 2h × 4/3πh
and the mesh used contains 768 × 512 × 512 grid points. In both cases, the mesh is
regular in both homogeneous directions and follow a hyperbolic tangent law in the
wall-normal coordinate direction. The wall-normal grid coordinates are given by

yk = Ly

(
1 +

1

a
tanh

[(
k − 1

Ny − 1
− 1

)
tanh−1(a)

])
, (49)

with a the mesh dilatation parameter and Ny the number of grid points in the
wall-normal direction. The cell sizes in wall units are ∆+

x = 8.5, ∆+
y = 0.13 – 4.2

and ∆+
z = 4.2 at Reτ = 180; ∆+

x = 9.1, ∆+
y = 0.25 – 4.1 and ∆+

z = 4.7 at Reτ =
395. The two meshes have the same level of refinement. The small differences are
due to the constraints of the numerical method (multigrid solver) and parallelism.
A finite volume method is used with a third-order Runge–Kutta time scheme and
a fourth-order centred momentum convection scheme. This is performed using the
TrioCFD software [9]. The numerical set-up is validated through a mesh convergence
study and by comparison of our results in the incompressible case to the reference
data of Moser et al. [27] and Vreman and Kuerten [41]. These numerical results
have been validated against experimental data [13, 17, 21, 3]. We provide in figure
3 a comparison of the spatial turbulence kinetic energy terms computed by our
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Figure 3 – Validation of the spatial turbulence kinetic energy terms.

numerical procedure to the reference data of Vreman and Kuerten [41] at Reτ =
180. Similarly, the results have been compared to the reference data of Moser et al.
[27] at Reτ = 395 (not shown here). This validates our numerical method at the
incompressible limit. In the anisothermal configuration, the same code has been
validated against experimental data for a similar friction Reynolds number and
temperature gradient by Bellec et al. [6].

4.3 Filtering process

To compute the subgrid terms a priori, we filter explicitly the DNS flow field.
At Reτ = 180, three filters of varying width are investigated, from now on called
“filter A”, “filter B” and “filter C”. The three filters are three-dimensional box filter,
also known as top-hat filter, of uniform width in both homogeneous directions and
nonuniform width in the wall-normal direction. The filter sizes in wall units and the
number of grid points corresponding to the filters are,

• filter A: ∆
+

x = 43, ∆
+

y = 0.8 – 21, ∆
+

z = 21 and 77 × 53 × 77 grid points;

• filter B: ∆
+

x = 68, ∆
+

y = 0.5 – 25, ∆
+

z = 34 and 48 × 50 × 48 grid points;

• filter C: ∆
+

x = 91, ∆
+

y = 0.13 – 43, ∆
+

z = 45 and 36 × 40 × 36 grid points.

At Reτ = 395, only filter A is examined. The filter sizes in wall units are ∆
+

x = 47,
∆

+

y = 1.5 – 21 and ∆
+

z = 24. This corresponds to a mesh with 154× 102× 102 grid
points.

The filter A corresponds to an average over five DNS cells in the three directions.
It is computed using the following discrete approximation of the box filter:

φ(xi, yk, zj, t) =
1

25 (yk′+3 − yk′−2)

i+2∑
i′=i−2

k+2∑
k′=k−2

j+2∑
j′=j−2

φ(xi′ , yk′ , zj′ , t) (yk′+1 − yk′) .

(50)
The variations of the filter width in the wall-normal direction follow those of the
DNS mesh.
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The filters B and C are constructed to follow a hyperbolic tangent law (49) in the
wall-normal direction. We cannot use the same method as for filter A to compute
the filters B and C because the filter width is a non-integer multiple of the DNS
cell size. In order to carry out the filtering with an arbitrary filter length, the DNS
data are first interpolated using a cubic spline. Then, the top-hat filter is computed
from the interpolated values without mesh restrictions. The spline interpolation
adds an additional filtering to the box filter. However, this additional filter can be
neglected given the resolution of the direct numerical simulation. The interpolation
and filtering are not computed in three dimensions but sequentially in the three
spatial directions. This is possible because the box filter is separable, that is, can
be expressed as the product of three one-dimensional filters. Using the filter width
of filter A, the method given similar results to equation (50).

The filtered quantities are not computed very close the domain boundary, where
not enough points are available to apply the filter. This is justified by the fact that
in practice, the large-eddy simulation of the channel would be carried out with DNS
precision very close to the wall.

5 Results and discussion

We assess the importance of the subgrid terms in the Classical formulation, the
Favre formulation and the Velocity formulation. This provides valuable data to
determine which terms can be neglected and which terms should be modelled. The
strength of the subgrid terms are investigated according to their quadratic mean, or
root mean square, compared to the non-subgrid terms. Numerically, the quadratic
mean is computed by an average on the two homogeneous directions and on 100
non-consecutive time steps that cover all thermodynamic configurations of the flow.
The results are converged as the mean computed on 50 time steps is identical to the
mean computed on 100 time steps. Since the flow is homogeneous in the streamwise
and spanwise directions, the analysis is carried out as a function of the wall-normal
coordinate y, scaled by the height of the channel and in the classical wall scaling

y+ = Reτ
y

h
=
yUτ
νω

. (51)

The subgrid terms are first investigated with the filter A. Then, the effect of the
filter width on the results is examined.

5.1 Magnitude of the subgrid terms

In this section, the magnitude of subgrid terms is assessed at Reτ = 180 and
Reτ = 395 with the filter A. The results at Reτ = 180 and Reτ = 395 are iden-
tical with regard to the classification of the subgrid terms. We thus only provide
the results with the filter A at Reτ = 180, for the mass conservation equation (fig-
ure 4), the streamwise momentum conservation equation or the streamwise velocity
transport equation (figure 5), the spanwise momentum conservation equation or the
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spanwise velocity transport equation (figure 6), the wall-normal momentum con-
servation equation or the wall-normal velocity transport equation (figure 7), the
resolved kinetic energy transport equation (figure 8), the energy conservation equa-
tion (figure 9), and the ideal gas law (figure 10). In each case, the results are given
in the entire channel with a linear abscissa and at the cold side with a logarithmic
abscissa, to emphasise the near-wall region. Only the cold side is shown with the
logarithmic abscissa because a large-eddy simulation of the channel would be less
resolved at the cold side than at the hot side.

Indeed, given the dependence of density, viscosity and conductivity on temper-
ature, the temperature gradient generates an asymmetry between the hot and cold
sides of the channel. The dynamic viscosity and the friction velocity are higher at
the hot wall and the friction Reynolds number is larger at the cold side. All terms of
the mass conservation equation, momentum conservation equation, resolved kinetic
energy transport equation and energy conservation equation have a larger amplitude
at the cold side than at the hot side. In addition, the local maxima of the profiles of
most subgrid terms are closer to the wall at the cold side than at the hot side. This
asymmetry can in a large part be explained by the local variations of the mean fluid
properties [39]. The profiles are also subject to a low Reynolds number effect [16].
Since the three filters used are symmetric with respect to the centre of the channel,
the cold side is less resolved in wall units than the hot side. This contributes to the
fact that the subgrid terms have a larger amplitude at the cold side than at the hot
side in the mass conservation equation, momentum conservation equation, resolved
kinetic energy transport equation and energy conservation equation.

5.1.1 Mass conservation equation

The mass conservation equation (figure 4) gives a relationship between the time
derivative of density and the divergence of the mass flux. With the classical filter
(Classical or Velocity formulation), the subgrid term associated with the density-
velocity correlation ∂jFρUj

is very small at the centre of the channel and remains
one order of magnitude smaller than the non-subgrid terms near the wall, where
it is the most significant. The filter-derivative non-commutation subgrid term Cj

ρUj

has a smaller amplitude in most part of the channel but has the same order of
magnitude at the wall. With the Favre filter, it is the only subgrid term in the mass
conservation equation.

Since the statistical average of the time derivative of density is zero, the diver-
gence of the resolved mass flux ∂jρUj is in balance with the subgrid terms. With
the classical filter, the statistical average of the density-velocity correlation subgrid
term has the same order of magnitude as the divergence of the resolved mass flux,
while the filter-derivative non-commutation subgrid term is negligible. The mod-
elling of the subgrid term ∂jρUj is necessary to take this behaviour into account in
a large-eddy simulation. Therefore, we consider that with the classical filter, the
modelling of the density-velocity correlation subgrid term ∂jFρUj

is more important
than the modelling of the filter-derivative non-commutation subgrid term Cj

ρUj
.
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(b) With the Favre filter.

Figure 4 – Root mean square of the terms of the mass conservation equation as a
function of the wall-normal coordinate in the Classical and Velocity formulations
(a) and in the Favre formulation (b) at Reτ = 180 with the filter A. The amplitude
is scaled by the maximum value in the domain in the three formulations.

5.1.2 Momentum conservation equation

To study the subgrid terms related to the momentum conservation, we investi-
gate the subgrid terms as they appear in the streamwise, spanwise and wall-normal
momentum conservation equations (figures 5, 6 and 7 respectively), or velocity trans-
port equation in the case of the Velocity formulation, and the energetic contribution
of the subgrid terms from the resolved kinetic energy transport equation (figure 9).
In either case, the time derivative term and the convective term predominate at the
centre of the channel. Nevertheless, these two terms in a large part cancel each other
out. To be considered negligible, a subgrid term should thus at least be negligible
compared to the third largest non-subgrid term, namely the pressure term.

Two non-subgrid terms are negligible throughout the entire channel, namely the
velocity-dilatation product in the spanwise and wall-normal velocity transport equa-
tions and the pressure-dilatation product in the resolved kinetic energy transport
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(b) In the Favre formulation.
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(c) In the Velocity formulation.

Figure 5 – Root mean square of the terms of the streamwise momentum conservation
equation as a function of the wall-normal coordinate in the Classical formulation (a),
in the Favre formulation (b) and of the terms of the streamwise velocity transport
equation in the Velocity formulation (c) at Reτ = 180 with the filter A. The am-
plitude is scaled by the maximum value in the domain in the three formulations.
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(b) In the Favre formulation.
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(c) In the Velocity formulation.

Figure 6 – Root mean square of the terms of the spanwise momentum conservation
equation as a function of the wall-normal coordinate in the Classical formulation
(a), in the Favre formulation (b) and of the terms of the spanwise velocity trans-
port equation in the Velocity formulation (c) at Reτ = 180 with the filter A. The
amplitude is scaled by the maximum value in the domain in the three formulations.
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Figure 7 – Root mean square of the terms of the wall-normal momentum conservation
equation as a function of the wall-normal coordinate in the Classical formulation (a),
in the Favre formulation (b) and of the terms of the wall-normal velocity transport
equation and in the Velocity formulation (c) at Reτ = 180 with the filter A. The
amplitude is scaled by the maximum value in the domain in the three formulations.
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(b) In the Favre formulation.
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(c) In the Velocity formulation.

Figure 8 – Root mean square of the terms of the resolved kinetic energy transport
equation as a function of the wall-normal coordinate in the Classical formulation
(a), in the Favre formulation (b) and in the Velocity formulation (c) at Reτ = 180
with the filter A. The amplitude is scaled by the maximum value in the domain in
the three formulations.
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equation. The velocity-dilatation product in the streamwise velocity transport equa-
tion is also small but is not negligible. This shows the small influence of dilatation
on the flow dynamics in low Mach number strongly anisotermal flows. This is consis-
tent with the negligible effect of dilatation on the turbulence kinetic energy budget
[16].

In the momentum conservation equation (figures 5, 6 and 7), the most significant
subgrid term in the three formulations is the subgrid term associated with momen-
tum or velocity convection, ∂jFρUjUi

, ∂jρGUjUi
and ∂jFUjUi

. It is larger than viscous
term in the bulk and cannot be neglected at the wall. This subgrid term has a larger
amplitude at the centre of the channel in the Classical formulation than in the Favre
and Velocity formulations but a slightly lower amplitude near the wall. It is harder
to model in the Classical formulation since it is a triple correlation whereas it is a
double correlation in the Favre and Velocity formulations.

Three subgrid terms have a medium-sized amplitude. In the Classical formula-
tion, the time derivative subgrid term ∂tFρUi

is the second most significant subgrid
term. In particular, it has the same order of magnitude as the viscous term at the
centre of the channel. Present in the three formulations, the filter-derivative non-
commutation subgrid term associated with the convective term, Cj

ρUjUi
or Cj

UjUi
,

has a lower amplitude than any non-negligible non-subgrid term but by less than
one order of magnitude. It appears very small in the spanwise and wall-normal
directions, but is more significant in the streamwise momentum equation. In the
Velocity formulation, this subgrid term is followed by the velocity divergence filter-
derivative non-commutation subgrid term Cj

Uj
, which has a similar behaviour. Since

the subgrid terms Cj
UjUi

and Cj
Uj

appear with opposite sign in the velocity transport
equation, the subgrid terms associated with the filter-derivative non-commutation
are less significant in the Velocity formulation.

The subgrid term associated with the nonlinearities of the viscous diffusion,
∂jFΣij

and GΣij
, can be considered insignificant in the three formulations. Its am-

plitude is increased by around one order of magnitude in the Favre formulation but
remains one order of magnitude smaller than any non-subgrid term in the entire
channel. Assuming that the small-scale variations of velocity are significant, this
suggests that the influence of small-scale variations of viscosity on the behaviour of
the flow is negligible. The filter-derivative non-commutation subgrid term associated
with the pressure and viscous terms Ci

P and Ci
Σij

are also negligible. All three of the
additional subgrid terms in the Velocity formulation, FUi∂jUj

, F∂iP/ρ and F∂jΣij/ρ,
are also found to have a very small amplitude. The most significant of the three
is the subgrid term F∂iP/ρ. The Velocity formulation thus appears more interesting
than the classical formulation with regard to the subgrid-scale modelling as the time
derivative subgrid term is replaced with three negligible subgrid terms.

The resolved kinetic energy transport equation (figure 9) confirms the classifi-
cation of the subgrid terms in the momentum conservation equation. The most
significant subgrid term in the momentum conservation equation have a significant
energetic contribution, reaffirming the importance of the subgrid terms associated
with momentum or velocity convection, ∂jFρUjUi

, ∂jρGUjUi
and ∂jFUjUi

, and, in the
Classical formulation, of the subgrid term associated with the time derivative term,
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Figure 9 – Root mean square of the terms of the energy conservation equation as
a function of the wall-normal coordinate in the Classical and Velocity formulations
(a) and in the Favre formulation (b) at Reτ = 180 with the filter A. The amplitude
is scaled by the maximum value in the domain in the three formulations.

∂tFρUi
.

5.1.3 Energy conservation equation

Omitting the time derivative of the thermodynamical pressure, constant in space,
the energy conservation equation (figure 9) expresses the equality, up to a constant
scalar factor, of the divergence of the velocity and of the heat flux. The difference
between the divergence of the resolved velocity and heat flux represents the effect of
the subgrid terms. With the classical filter (Classical or Velocity formulation), the
only significant subgrid term is the filter-derivative non-commutation subgrid term
Cj
Uj

associated with the divergence of the velocity. The subgrid terms ∂jFQj
and

Cj
Qj

associated with the heat flux are at least 50 times smaller than the non-subgrid
terms throughout the entire channel. This is consistent with the assumption that
the variations of conductivity over a small control volume can be neglected. With
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Figure 10 – Root mean square of the terms of the ideal gas law as a function of
the wall-normal coordinate in the Classical and Velocity formulations (a) and in the
Favre formulation (b) at Reτ = 180 with the filter A. The amplitude is scaled by
the maximum value in the domain in the three formulations.

the Favre filter, the additional subgrid term associated with the density-velocity
correlation GUj/ρ has a large amplitude, of the same magnitude as the non-subgrid
terms. In other words, the divergence of the Favre-filtered velocity is a poor ap-
proximation of the divergence of the velocity because of the small-scale variations
of density and velocity. The density-velocity correlation is more significant in the
energy conservation equation in the Favre formulation than in mass or momentum
conservation equation in the Classical or Velocity formulations. The nonlinearity
error ∂jGQj

associated with the heat flux is significantly larger with the Favre filter
than with the classical filter but remains rather small.

5.1.4 Ideal gas law

The ideal gas law (figure 10) is used to compute the filtered temperature from
the filtered density. With the Favre filter, there is theoretically no subgrid term in
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Equation Formulation Large Medium Small or very small

Mass Classical, Velocity ∂jFρUj
, Cj

ρUj

Favre Cj
ρUj

Momentum
Classical ∂jFρUjUi

∂tFρUi
, Cj

ρUjUi
Ci
P , ∂jFΣij

, Ci
Σij

Favre ∂jρGUjUi
Cj
ρUjUi

Ci
P , ∂jGΣij

, Ci
Σij

Velocity ρ∂jFUjUi
ρCj

UjUi
, ρU iC

j
Uj

ρFUi∂jUj
, ρF∂iP/ρ, Ci

P ,
ρF∂jΣij/ρ, ∂jFΣij

, Ci
Σij

Energy Classical, Velocity Cj
Uj

∂jFQj
, Cj

Qj

Favre GUj/ρ Cj
Uj

∂jGQj
, Cj

Qj

Ideal gas law Classical, Velocity F1/ρ

Favre

Table 1 – Classification of the subgrid terms in the three formulations.

the ideal gas law. With the classical filter (Classical or Velocity formulation), the
subgrid term F1/ρ it is found negligible. The ideal gas law can thus be used without
model with both the classical and Favre filter.

5.1.5 Summary

The subgrid terms are classified according to their quadratic average in table
1. The large subgrid terms are the most significant subgrid terms, and should be
modelled first. The medium subgrid terms have a smaller amplitude. The modelling
of the small or very small subgrid terms should only be considered after all large
and medium subgrid terms are modelled, and may not be recommended as their
amplitude may not be larger than even the modelling error of the larger subgrid
terms.

5.2 Effect of the filter width

The effect of the filter width on the subgrid term is investigated at Reτ = 180 by
comparing the amplitude of the subgrid terms with the filters A, B and C. As the
filter size is increased, the magnitude of all subgrid term is increased compared to the
non-subgrid terms. In the mass conservation equation, the momentum conservation
equation and the ideal gas law, the increase is not sufficient to affect the conclusions
of the classification of the subgrid terms, since the order of magnitude of the subgrid
terms remains similar for the three filters. This supports the assumption that,
while the variations across the channel of viscosity and thermal conductivity have
a significant impact on turbulence [33], the effects of their small-scale variations on
the flow are negligible.

In the energy conservation equation, the filter width has a strong influence on
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the magnitude of the filter-derivative non-commutation subgrid term Cj
Uj

associated
with the divergence of the velocity. While the magnitude of this subgrid term is
moderate with the filter A (figure 9), it is very large with the filter C (figure 11), as
its amplitude is larger than that of the resolved heat flux from the logarithmic region
to near the centre of the channel. The results with the filter B (not presented here)
are in-between. The differences are primarily due to the increased anisotropy of the
filter when the filter width is increased. The three filters follow a hyperbolic tangent
law in the wall-normal coordinate direction, with a larger dilatation parameter the
larger the filter width. With the filter C, the subgrid term Cj

Uj
is rather small in the

viscous sublayer and becomes very large farther from the wall. This suggests that
a filter more uniform in the logarithmic region is preferable to limit the influence of
this subgrid term.

The conclusions of the classification of the subgrid terms (1) are valid for the
filter A and B. For the filter C, Cj

Uj
is a large subgrid term. We consider its modelling

necessary.

6 Conclusion

The low Mach number equations are suited to turbulent flows with a low Mach
number but subjected to large variations of the fluid properties. They are char-
acterised by a distinctive form of the energy conservation equation, that does not
let us categorically choose between the classical filter and the Favre filter. In this
study, we filter the low Mach number equations and identify the specific subgrid
terms. Then, we investigate a priori the magnitude of all subgrid terms using the
flow field from direct numerical simulations of a strongly anisothermal turbulent
channel flow. The temperature gradient creates an asymmetry between the hot and
cold sides regarding the amplitude and position of the maxima of the subgrid terms,
explained by the local variations of the mean fluid properties and a low Reynolds
number effect. Regardless of the formulation, more than half of the subgrid terms
are found negligible. In particular, the effect of small-scale variations of viscos-
ity and thermal conductivity may be neglected. The two most significant subgrid
terms are the subgrid terms associated with momentum convection and with the
density-velocity correlation. Due to the mesh inhomogeneity, the modelling of some
filter-derivative non-commutation may also need to be considered, depending on the
width of the selected filter. The classical filter is found more appropriate if the mo-
mentum equation is expressed as the velocity transport equation. The Favre filter
removes the need for the modelling of the density-velocity correlation from the mass
conservation equation but requires the modelling of an additional subgrid term in
the energy equation, which has a very significant amplitude. The density-velocity
correlation thus needs to be modelled in both cases.
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Figure 11 – Root mean square of the terms of the energy conservation equation as
a function of the wall-normal coordinate in the Classical and Velocity formulations
(a) and in the Favre formulation (b) at Reτ = 180 with the filter C. The amplitude
is scaled by the maximum value in the domain in the three formulations.
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