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A B S T R A C T

Numerous recurrent seep sites were identified in the deep-water environment of the Lower Congo Basin from the
analysis of an extensive dataset of satellite-based synthetic-aperture radar images. The integration of current
data was used to link natural oil slicks with active seep-related seafloor features. Acoustic Doppler current
profiler measurements across the water column provided an efficient means to evaluate the horizontal deflection
of oil droplets rising through the water column. Eulerian propagation model based on a range of potential
ascension velocities helped to approximate the path for rising oil plume through the water column using two
complementary methods. The first method consisted in simulating the reversed trajectory of oil droplets between
sea-surface oil slick locations observed during current measurements and seep-related seafloor features while
considering a range of ascension velocities. The second method compared the spatial spreading of natural oil
slicks from 21 years of satellite monitoring observations for water depths ranging from 1200 to 2700m against
the modeled deflections during the current measurement period. The mapped oil slick origins are restricted to a
2.5 km radius circle from associated seep-related seafloor features. The two methods converge towards a range of
ascension velocities for oil droplets through the water column, estimated between 3 and 8 cm s−1. The low
deflection values validate that the sub-vertical projection of the average surface area of oil slicks at the sea
surface can be used to identify the origin of expelled hydrocarbon from the seafloor, which expresses as specific
seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

1. Introduction

Natural hydrocarbon seeps occur along most continental margins
(Wilson et al., 1973; Levy and Ehrhardt, 1981; MacLean et al., 1981;
Becker and Manen, 1988; Kvenvolden and Cooper, 2003; Zatyagalova
et al., 2007; Jauer and Budkewitsch, 2010; Körber et al., 2014; Suresh,
2015; Jatiault et al., 2017).

For environmental purposes, understanding the dynamic behavior
of the oil plume is crucial for emergency response to oil spills
(Spaulding, 1988; Reed et al., 1999; Price et al., 2006; Leifer et al.,
2006, 2012; Chen et al., 2007; MacFadyen et al., 2011; Fingas and
Brown, 2014; MacDonald et al., 2015). Defining the rise path of the oil
helps to target probable areas affected by environmental damage due to
anthropogenic spills (Chen et al., 2015; Korotenko, 2016). For scientific
expeditions and exploration campaigns, understanding the rise paths of

the oil plume is of prime importance to link sea surface natural oil slicks
to their origin on the seafloor (Crooke et al., 2014). The targeting and
inventorying of seafloor areas accommodated by deep-sea communities
is facilitated by identifying seepage areas (MacDonald et al., 1996;
Garcia-Pineda et al., 2010; Lessard-Pilon et al., 2010; Jones et al.,
2014). In petroleum exploration, the identification of seafloor seeps is
used as a first-order tool to identify active petroleum systems and
confirms the presence of matured source rocks (e.g. Abrams, 2005).
Combined with geophysical sub-seafloor datasets, locating active sea-
floor thermogenic seeps provides significant evidence for under-
standing the hydrocarbon plumbing system (Serié et al., 2016). Pock-
marks, which are local depressions on the seafloor associated with
contemporary focused fluid flow (e.g. King and MacLean, 1970;
Hovland and Judd, 1988), are widely recognized as the seafloor outlet
of expelled fluids. Even if hydrocarbon migration across the water

https://doi.org/10.1016/j.dsr.2018.04.009
Received 3 August 2017; Received in revised form 28 March 2018; Accepted 16 April 2018

⁎ Corresponding author at: University of Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110, 52 Avenue Paul
Alduy, 66100 Perpignan, France.

E-mail addresses: romain.jatiault@gmail.com, romain.jatiault@univ-perp.fr (R. Jatiault).

Deep-Sea Research Part I 136 (2018) 44–61

Available online 21 April 2018
0967-0637/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09670637
https://www.elsevier.com/locate/dsri
https://doi.org/10.1016/j.dsr.2018.04.009
https://doi.org/10.1016/j.dsr.2018.04.009
mailto:romain.jatiault@gmail.com
mailto:romain.jatiault@univ-perp.fr
https://doi.org/10.1016/j.dsr.2018.04.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsr.2018.04.009&domain=pdf


column presents strong and varied implications, the phenomenon re-
mains strongly under-evaluated.

The fate of oil droplets either sinking to the seafloor or rising
through the water column depends on the buoyancy of the expelled
hydrocarbons. Lighter components rise through the water column (De
Beukelear et al., 2003; Körber et al., 2014; Garcia-Pineda et al., 2015)
until reaching the sea surface (e.g. MacDonald et al., 2002; Greinert
et al., 2006; Rollet et al., 2006; Smith et al., 2014).

During the ascent through the water column, oceanic currents affect
the deflection of the plume by advecting the oil droplets during their
rise from the seafloor to the surface (Crooke et al., 2015). The lateral
deflection distance is controlled by the current strength and the transit
time of the oil droplets in the water column. The transit time is con-
trolled by both the water depth and the ascension velocity and can be
affected by horizontal and vertical turbulent dispersion. Estimating the
ascension velocity is therefore compulsory for quantifying the range of
the deflection (Table 1).

The few case studies documenting the ascension velocity of oil
droplets are exclusively based on laboratory experiments or measured
in a few marine settings (e.g. Gulf of Mexico and Black Sea). The re-
ported ascension velocities range from 2 to 50 cm s−1. While most
studies focused on the vertical ascent of oil droplets in the water
column (MacDonald et al., 2002; Greinert et al., 2006; Crooke et al.,
2015; Chen et al., 2015; Korotenko, 2016), only a handful have ad-
dressed the horizontal deflection associated with currents in natural
systems. In the Gulf of Mexico, the lateral deflection of oil droplets was
estimated using an affine deflection function based on water depths
(Garcia-Pineda et al., 2010).

Quantitative models approximate the ascension velocity of hydro-
carbon droplets based on characteristics such as bubble shape and
diameter (Clift et al., 1978; Perry and Green, 1984; Korotenko, 2016).
Depending on the oil type and environmental conditions, the shape of
the oil droplets can range from spherical, ellipsoidal to "jellyfish" (Van
Ganse et al., 2013; Aprin et al., 2015). The droplet size distribution and
rising regime depend on the oil type (Clift et al., 1978); however, oil
composition is in most case unknown due to unavailable in-situ sam-
plings. In addition, the composition and properties of expelled oil from
natural seeps can be altered by external factors including biodegrada-
tion ( Head et al., 2003; Larter et al., 2003; Larter et al., 2006; Jones
et al., 2008; Peters et al., 2007; Aeppli et al., 2014) and gas hydrate
formation (Rehder et al., 2002; Leifer and MacDonald, 2003; McGinnis
et al., 2006).

This paper aims to link sea-surface oil slicks to seep-related seafloor
features by estimating the horizontal deflection of oil droplets, based on
the integration of current measurements, satellite-based surface slick
data, and high-resolution bathymetric maps. In addition, our objective
is to quantify the temporal variability of the oil plume deflection offset
through the water column. Indeed, affine deflection functions still need
to be validated in open-sea conditions that are usually associated with a
greater hydrodynamic complexity. Understanding the rise path of oil in
a challenging area will definitely contribute to understand the probable
deflection ranges of oil in other provinces.

2. Regional settings

The study area is located offshore Angola in the Lower Congo Basin
(LCB) (Fig. 1), in water depths ranging from 1200 to 2700m. The LCB
deep-water province corresponds to one of the most important natural
oil seep systems in the world, where 4380m3 of oil is expelled each year
towards the sea surface (Jatiault et al., 2017). In addition, extensive oil
and gas exploration activities in the LCB during the last decades have
provided a large volume of geophysical data, both at the seafloor and in
the water column. The LCB appears to be a key area for understanding
the dynamic behavior of oil droplets rising through the water column.

The significant occurrence of oil seeps in the LCB is mainly asso-
ciated to the presence of prolific source rocks intervals including to the
pre-salt Early Cretaceous Bucomazi Fm (Burwood, 1999; Cole et al.,
2000) and the post-salt Late Cretaceous Iabe Fm, (Cole et al., 2000;
Schoellkopf and Patterson, 2000; Séranne and Anka, 2005). An efficient
plumbing system is reported in deep province (Andresen and Huuse,
2011; Andresen, 2012, Gay et al., 2007) in association with strong
compressive salt tectonics (Fig. 1; Marton et al., 2000; Brun and Fort,
2004; Fort et al., 2004; Séranne and Anka, 2005; Guiraud et al., 2010).

The LCB presents open-sea oceanic conditions characterized by a
complex vertical succession of surface and deep currents (Peterson and
Stramma, 1991; Schneider et al., 1996; Holmes et al., 1997; Stramma
and England, 1999; Shannon, 2001; Hardman-Mountford et al., 2003;
Hopkins et al., 2013; Phillipson and Toumi, 2017). The main currents in
the LCB reported in the literature are shown in Fig. 1. The major surface
current following along the coast is the Angolan Current (AC) trans-
porting equatorial waters from 0 to roughly 300m below the sea sur-
face (Moroshkin et al., 1970; Hardman-Mountford et al., 2003). The AC
is steady, narrow, and fast current flowing southwards with velocities
ranging from 20 to 50 cm s−1, and salinities around 36.4 (Moroshkin
et al., 1970; Hardman-Mountford et al., 2003). The northernmost
branch of the Benguela Coastal Current (BCC) is reported to bypass the
border with the AC at the Angolan Benguela Frontal Zone (ABFZ),
bringing cold and low salinity waters along the Angolan coast
(Schneider et al., 1996; Hopkins et al., 2013). The influence depth of
the BCC is limited to the surface and subsurface layers. The southward-
flowing Southern Intermediate Counter Current (SICC), transporting
Antarctic Intermediate Water (AAIW) (Stramma and England, 1999;
Stramma and Schott, 1999; Shannon, 2001), controls intermediate
water circulation (500 – 1000m). The deep-water circulation along the
Angolan coast corresponds to the slow southward flow of the North
Atlantic Deep Water (NADW) (Lynn, 1971; Stramma and England,
1999; Arhan et al., 2003). This bottom boundary current could corre-
spond to the eastern retroflection of the Deep Western Boundary Cur-
rent (DWBC) (Garzoli et al., 2015).

3. Data and methods

3.1. Data

3.1.1. Mooring measurements
Currents were measured with RD® instruments Acoustic Doppler

Table 1
Compilation of reported values of hydrocarbon ascension velocities through the water column.

Reference Hydrocarbon type Minimum value (cm s−1) Maximum value (cm s−1) Type of study

Rehder et al. (2002) Methane 26 27 Laboratory
Leifer and Patro (2002) Methane 5 15 Laboratory
Greinert et al. (2006) Methane 12 22 In-situ measurement (Black Sea)
De Moustier et al. (2013) Methane 17 23 In-situ measurement (Gulf of Mexico)
Leifer and MacDonald (2003) Methane, oily bubbles 2 20 Laboratory
Crooke et al. (2015) Oil and gas mixture 5 50 In-situ measurement (Gulf of Mexico)
Van Ganse et al. (2013) Oil and gas mixture 2 18 Laboratory
Körber et al. (2014) Oil and gas mixture 13 15 In-situ measurements (Black Sea)
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Current Profilers (ADCP - Rowe and Young, 1979; Gordon and
Instruments, 1996) and Aanderaa Seaguard single-point Doppler Cur-
rent Sensors (DCS) mounted on two different moorings (Table 2, see
location on Fig. 1). The upper and sub-surface layers were sampled with
upward-looking 300 kHz and 75 kHz ADCPs, respectively. The deeper
layers were sampled with single-point DCS positioned every 200–250m
down to the bottom. The observation period lasted 6 months (Jan. 16,
2009 - Jul. 26, 2009) for mooring 1, and 13 months (Sept. 22, 1997 -
Oct. 27, 1998) for mooring 2. The data were corrected considering a
magnetic declination of 5.4°E between the geographic and magnetic

poles.
Mooring 1 was located close to recurrent oil seep sites, which is a

considerable advantage for understanding the plume dynamic deflec-
tion by integrating both mooring records and satellite images (Fig. 2).
Measurements were restricted to a 6-month period, and indeed limiting
the concomitant availability of satellite images and the assessment of
the effect of the seasonal variability of the current. Mooring 2 was lo-
cated further south from the main oil seepage area (Fig. 2) limiting the
integration with satellite image; however, the thirteen month mon-
itoring period was relevant in assessing the seasonal variability of the

Fig. 1. Location map of the study area and characteristics of the reported main currents (depth and current speed range). The radial variation of the average slope
direction of the seafloor is associated with the alluvial cone of the Neogene Congo deep-sea fan.

Table 2
Characteristic of ADCP records for mooring 1 and mooring 2.

Mooring Point Recording interval
(min)

Start of
recording

End of
recording

Water depth
(m)

Upper layer 300 kHz
ADCP

Sub-surface Layer
75 kHz ADCP

Deep layer Single-point
DCS

Mooring 1 10 Jan. 16, 2009 Jul. 26, 2009 1820 2m depth cells from 10
to 78 mbsl

16m depth cells from
78 to 446 mbsl

Every 250m from 720 to
1720

Mooring 2 20 Sept. 22, 1997 Oct. 27, 1998 1385 4m depth cells from 4
to 50 mbsl

8 m depth cells from 50
to 193 mbsl

Every 200m from
380− 1380
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potential droplet deflection.
The recording characteristics of both moorings helped estimate the

probable deflection of oil droplets expelled at natural seep sites using
two different methods. Mooring 1 data were used to link spot ob-
servations of sea surface oil slicks and the probable seafloor origin.
Mooring 2 data were used to compare the distribution of the modeled
horizontal deflection over a longer period and was confronted to the
deflection values measured during the bi-decadal monitoring of natural
oil seepage with satellite images.

We completed our dataset with a CTD (conductivity, temperature,
depth) profile acquired in the study area in January 2009 providing
water properties with vertical measurements intervals of 50 cm across
an 1820m water column.

3.1.2. Remote sensing inventory of natural oil seep sites
The Synthetic Aperture Radar (SAR) system sends electromagnetic

waves to the earth's surface and retrieves the backscattered signal (e.g.,
McCandless and Jackson, 2003). Based on Bragg's scattering, the
technique provides an efficient means for measuring wind-induced sea-
surface roughness. The presence of oil slicks strongly affects the sea-
surface roughness and significantly reduces the amount of back-
scattered energy to the satellite, accounting for the Fresnel specular
reflection. Sea surface covered by oil seepage appears as low radio-
metric areas on SAR images (e.g., Espedal and Wahl, 1999; Johannessen
et al., 2000; Espedal and Johannessen, 2000; Williams and Lawrence,
2002; Zatyagalova et al., 2007; Ivanov et al., 2007; Garcia-Pineda et al.,
2010; Körber et al., 2014; Jatiault et al., 2017).

We based our analysis on a stack of overlapping SAR scenes ac-
quired as X-band (wavelength from 2.5 to 3.75 cm) and C-band (wa-
velength from 3.75 to 7.5 cm) data, which are the most suitable

wavelengths for detecting surface oil slicks, especially for the recogni-
tion of thinnest oil films (Gade and Alpers, 1998; Leifer et al., 2012).
The entire SAR collection consisted of long-term monitoring of 156
scenes collected at variable intervals over 21 years, tasked for the
monitoring of petroleum activities in the area and coupled with free-
access data (Table 3).

The SAR density coverage varied across the study area, but the oil-
seeping province was imaged with a large stack of images consisting of
50 and 150 overlapping scenes (Fig. 2). The time interval of current
mooring 1 measurements (Jan. 16, 2009 - Jul. 26, 2009) corresponds to
a period without X and C-bands SAR data coverage.

To get simultaneous acquisitions of SAR data and current mea-
surements, we supplemented the dataset with L-band SAR scenes, also
suitable for oil slick recognition even though the volume of detected oil
might be underestimated (Gade and Alpers, 1998). The SAR coverage
during ACDP records consisted only of 10 ALOS (Advanced Land Ob-
servation Satellite) scenes, among which one scene, dated June 30,

Fig. 2. Compilation stack of SAR data with location of recurrent seep sites.

Table 3
Inventory of SAR scenes collection characteristics.

Satellite/ Sensor Period of
imagery

Wavelength Pixel
Spacing
(m)

Amount of
SAR data

ERS/Image Mode
Precision

1994− 2001 C (5.8 cm) 12.5 17

Envisat /Wide
Swath Mode

2002− 2012 C (5.8 cm) 75 46

RADARSAT−2 2005− 2012 C (5.3 cm) 25–50 7
Cosmo-SkyMed 2009− 2014 X (3.1 cm) 3–15 80
TerraSAR – X 2011 X (3.1 cm) 20 6
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2009, that notified the presence of oil slicks.
We mapped about 3000 seepage slicks using local radiometry

anomalies identified from the analysis of overlapping SAR scenes that
were reliably associated with a hundred of recurrent seep sites (Fig. 2;
Jatiault et al., 2017). The seeping province was located about 150 km
offshore Angola at water depths ranging from 1200 to 2700m. The
detectable proximal edge of recurrent oil slicks (i.e. the location of the
last oil droplet of an individual seep at the sea surface) provides the
location of the Oil Slick Origins (OSO; Garcia-Pineda et al., 2010;
Fig. 3). The spatial distribution of OSO provided an efficient means for
isolating the horizontal deflection of oil droplets produced during the
transit period within the water column, compared against the sea sur-
face displacement (winds and surface currents).

Based on the compilation map of individual OSO, we computed the
centroid of OSO clusters, namely the GMC (Geometric Mean Centre;
Fig. 3a, b). The GMC location provided the average location where oil
impacts the sea surface and was reported as the most probable location
of the origin of the oil expelled from the seafloor (Garcia-Pineda et al.,
2010; Körber et al., 2014).

3.2. Methods

3.2.1. Backward oil plume trajectory combining simultaneous SAR and
ACDP records

When SAR scenes and current measurements were concomitant, the
modeling of the horizontal deflection of oil droplets through the water
column was assessed by computing the backward trajectory of oil
droplets using ADCP measurements during the transit period before
SAR acquisition. We used mooring 1 data, which was located 15 km
from recurrent oil seep sites (Fig. 2). We considered the ascension ve-
locities of oil droplets reported in the literature (i.e., between 2 and
50 cm s−1, see Table 1). Given the water depth at mooring 1 (1820m),
the range of ascension velocity implied a time window of 1–25 h prior
to the SAR scene. The backward rise path of oil droplets from the lo-
cation of the OSO on SAR scene was computed from the iterative ad-
dition of the travelled horizontal distance through subsequent intervals
across the water column. The depth intervals were defined between the
median positions of two successive pairs of current measurements
(Fig. 3c). The travelled horizontal distance for each depth interval took
into account the transit time of the droplet in this interval, considering
the intensity and direction of the current concomitantly measured at
this level. Hence, we estimated the location of the potential seepage site
on the seafloor for the different ascension velocities. The resulting
modeled sites were superimposed to the detailed seafloor features using
a high-resolution bathymetric map (12.5m lateral resolution).

3.2.2. Horizontal deflection distribution over time
To complement the deflection assessed from simultaneous im-

plementation of SAR and ADCP data, we performed a statistical analysis
of the observed deflection during the long-term acquisition of SAR
scenes. Sub-surface water column measurements were unavailable
during the SAR scene monitoring (1994–2014), and the only available
current measurements were restricted to surface measurements, which
are inappropriate for quantifying the water column deflection. The in-
ventory of the location of recurrent seep sites (a hundred of sites con-
centrated around OSO clusters; Fig. 2) was used to quantify the un-
derwater deflection.

The method consisted in measuring the distance and orientation of
the spatial spreading of OSO from individual GMC. It provided a
complementary technique for estimating the horizontal deflection in
the water column when current measurements were unavailable
(Fig. 4). We gathered the horizontal deflection assessed from each in-
dividual recurrent seep site to obtain a unique OSO population.

Finally, the theoretical OSOs were estimated at each mooring site
considering a range of ascension velocities and the temporal variability
of currents in the water column. An ensemble of possible forward

Fig. 3. a. Schematic representation of the methodology used to quantify the
deflection of oil droplets in the water column. Oil Slick Origins (OSO) were
drawn from the detectable proximal edge of seepage slicks on the compilation
stack of SAR data. b. The distribution of the deflection value was assessed from
the distance and orientation between the GMC (Geometric Mean Centre) and
individual OSO. c. Representation of the vertical distribution of sensors (Zi) and
the methodology used to define water column intervals (Ii) based on the depth
of sensors pairs (see details in text).

Fig. 4. Method used to assess the in-situ underwater deflection by integrating the seepage slicks mapping, recurrent OSO around a common GMC. The modeling of
the deflection used current measurements at moorings 1 and 2 for different oil droplet ascension velocities.
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droplet deflections was computed for every current-measurement time-
step (every 10min during 6 months for mooring 1, and every 20min
during 13 months for mooring 2). In those models, all seafloor origins
were centred on the mooring locations, and we calculated the theore-
tical lateral deflection of oil droplets towards the sea surface, taking
into consideration a transit period depending on the ascension velocity.
The spatial spreading of the modeled OSO ensemble was compared
against the observed deflection distribution (Fig. 4). The understanding
of the basin hydrodynamics independently from seasonal variations is
meaningful in this study because SAR scenes were acquired in-
dependently throughout the year. Although mooring point 2 was lo-
cated further from the main seeping province (Fig. 2), it benefited from
a full year of records compared to mooring 1.

4. Results

4.1. Current distribution during the monitoring period

The analysis of current and CTD measurements acquired in com-
plement to mooring data shows that water masses and associated cur-
rents were layered across the water column in the study area (Fig. 5a).
The fresh and warm waters layer of the first 10 m probably corresponds
to the Congo plume (Fig. 5b). The sub-surface layer (between 10 and
130m in Fig. 5c) is warmer (16− 24 °C), saltier (35.5 psu) and gather

similar characteristics to those of the Angolan Current described by
Hardman-Mountford et al. (2003). The sub-surface layer waters flowed
mostly along-slope, towards the southwest, at velocities of 0–35 cm s−1.
From 130m to roughly 385m, the flow was predominantly along-slope,
oriented to the northwest (Fig. 5c). The Benguela Counter Current in-
trusion along the Angolan coast probably corresponds to this inter-
mediate flow, even though the reported influence is restricted to
shallow waters (Schneider et al., 1996; Hopkins et al., 2013). The deep
(385− 1185m) and bottom (1185− 1600m) currents were also or-
iented along-slope, with the mean flow towards the southeast (interval
3 and 4 in Fig. 5c) with peak velocities around 20 cm s−1. These layers
probably correspond to the Antarctic Intermediate Water (AAIW) and
North Atlantic Deep Water (NADW), transported by the Southern In-
termediate Counter Current (SICC).

The temperature and the salinity values (Fig. 5b) demonstrated that
the seawater density gradient was greater than 5mg l−1 between the
bottom waters (< 27.5 g l−1) and the near-surface waters
(> 22.7 g l−1). The water density strongly decreased from 100m up-
wards due to a salinity contrast between the Angolan Current and the
Congo River plume.

4.2. Evidence of active hydrocarbon seepage

From Jan. 16, 2009 to Jul. 26, 2009 when the currents were being

Fig. 5. a. Left: Annual mean along-slope (left) and across-slope (right) components of the current recorded at mooring 2 (see location in Fig. 1). We considered the
local slope orientation declination of 125°N. b. Ө-S diagram from CTD (conductivity, temperature, depth) profiles collected in addition to mooring data during
January 2009. Potential temperature corresponds to the temperature corrected for the effect of pressure. c. Distribution of the mean current orientations and
strengths of the main hydrographical units as shown in Fig. 5a. 1: surface layer (7–130m), 2: sub-surface layer (130− 385m), 3: intermediate layer (385− 1185m)
4: bottom layer (1185− 1385m).
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recorded (mooring 1), a SAR scene was gathered on June 30, 2009. It
showed the presence of seven areas characterized by local decreases in
the radiometric values and moderate reflectivity contrasts between oily
covered areas and oil-free water. Two slicks characterized by con-
tinuous elongated black patches ranging from 5 to 20 km in length were
observed near mooring site 1 (~15 km) with orientation respectively
varying from 290°N and 330°N for slicks site 1 and 2, respectively.

Slicks orientations are aligned with near-surface currents flowing to-
wards westward (268°N) at a speed of 20 cm s−1 during the SAR ac-
quisition. Slick observed at site 1 is comparable to the 41 individual
slicks interpreted from 102 overlapping SAR scenes during the long-
term SAR monitoring (1994–2014). As shown on the map, slicks have
different orientation through time; however, all slicks observed at site 1
point out to the same origin and likely associated with recurrent seep on

Fig. 6. a. Extract of the ALOS SAR scene acquired on June 30, 2009 zoomed-in on the location of mooring 1 and closest oil slicks (scene provided by the Japan
Aerospace Exploration Agency). Two oil slicks are outlined in black polylines for the display. OSOs are spotted from the proximal edge of recurrent oil slicks deduced
from the slicks compilation map. b. Compilation map of seepage slicks identified from the analysis of the 103 overlapping SAR scenes. The color-scale refers to the
year of observation. The black box in the right top corner displays the slicks compilation map focused on the probable surfacing area.

R. Jatiault et al. Deep-Sea Research Part I 136 (2018) 44–61

50



the seafloor (Fig. 6b).
Based on the high repeatability of slicks observations, site 1 can be

interpreted as a high activity seep with a slick reoccurrence rate of 40%,
as opposed to site 2 with only one observable slick (Fig. 6a, b).

4.3. Computation of the horizontal deflection of oil droplets

The deflection of oil droplets during their transit time through the
water column depends on their ascension velocity (Table 4).

The calculated transit period ranged from 1 h to 25 h depending on
the ascension velocity (Table 4). During the 24 h preceding the SAR
scene acquisition, currents were constant over time (Fig. 7). Vertical
shear layers appeared between depths of 1200 and 700m, due to cur-
rent reversal (Fig. 7). Assuming that the current configuration was
probably similar between the way-in (entering) moment and the way-
out (leaving) moment in incremental intervals, this suggests that the
approximation of a constant deflection during the transit time within
intervals (> 3 h 30) is fairly satisfactory.

The backward deflections and the locations of the potential seepage
sites on the seafloor with the different ascension velocities for the June
30, 2009 ALOS SAR scene are shown in Fig. 8. The seafloor origin is
located southwards of the OSO location when ascension velocities are
greater than 3 cm s−1; the location is southwesterly for lower ascension
velocities (< 3 cm s−1). The deflection distance increased with de-
creasing ascension velocity (Table 4), between 150m for the highest
values (50 cm s−1) and 1255m for the lowest one (2 cm s−1; Fig. 8a;
Table 4).

4.4. Connecting sea-surface slicks with seep-related seafloor features

Reverse deflections modeling shows potential seafloor origin lo-
cated southward of the surface slick location (Fig. 8). In this direction,
the proximal edge of both slicks (seep sites 1 and 2. Fig. 6) is in the

Table 4
Inventory of modeled deflection values expressed in distance and orientation
for a range of probable ascension velocities, considering a water depth of
1820m (depth of mooring 1). The orientation is provided for a backward de-
flection from the slicks observed from the sea surface towards the seafloor
emission point. It also presents the deflection orientation for forward modeling
from the seafloor origin towards the sea-surface slick.

Ascension
velocity
(cm.s−1)

Transit
period
(hh: mm)

Modeled
distance of
deflection (m)

Backward
deflection
angle (°)

Forward
deflection
angle (°)

2 25:15 1255 224 44
2,5 20:15 1247 218 38
3 16:50 654 171 351
3,5 14:25 593 169 349
4 12:35 488 168 348
4,5 11:15 394 175 355
5 10:05 409 174 354
6 8:25 399 177 357
7 7:15 373 168 348
8 6:20 379 196 16
9 5:35 182 176 356
10 5:00 250 157 337
15 3:20 169 209 29
30 1:41 145 210 30
50 1:00 127 211 31

Fig. 7. Stick-plots of currents at mooring 1 for selected depths, from June 29, 2009 to July 01, 2009, i.e. 36 h before and 12 h after the ALOS SAR acquisition time.
This period includes the period of the droplet's ascent through the water column. Positive and negative values refer to Northward displacements while negative values
refer to Southward displacement. The current velocity is given in cm s−1.
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vicinity of the vertical projection of seafloor depressions (Fig. 8b, c)
interpreted as pockmark formed by hydrocarbon expulsion on the
seafloor.

The water depth at seep site 1 is roughly 2100m. The broad ovoid-
shaped bathymetric relief represents the seafloor expression of an un-
derlying salt diapir (outlined in pink dashed lines). The active seep-
related seafloor features are characterized by seven individual sub-cir-
cular depressions on the present day seafloor, also known as pock-
marks. The edge of the proximal pockmark was close to the location of
the modeled seafloor origin using ascension velocities ranging from 3 to
7 cm s−1 (Fig. 8b).

At seep site 2, where the water depth is 1940m, the seafloor dis-
turbance is characterized by a large depression (800m in diameter)
scattered with micro-depressions (Fig. 6c). The main depression was
close to the location of the modeled seafloor origin using ascension
velocities ranging from 3 to 4 cm s−1 (Fig. 8c).

The best spatial overlap between modeled seafloor origin and seep-
related seafloor features corresponds to model using ascension velocity
of 3 cm s−1 for both seep sites 1 and 2. Fig. 9a illustrates the modeled
path of rising oil droplets through the water column from the seafloor
origin (red star) and the OSO surface using an ascension velocity of
3 cm s−1. The modeled deflection shows strong variations in the

direction of droplet deflection through the water column, with a total
travelled distance of 1200m (Fig. 9b). The orientation of the near-
surface deflection was in agreement with the surface slick direction.

4.5. Statistical assessment of the horizontal deflection

In addition to the assessment of the deflection from the simulta-
neous acquisition of SAR scenes and mooring data, we inspected the
distribution of roughly 3000 deflection distances between OSO and
their GMC from SAR acquired over 21 years (Fig. 11). The OSO were
deflected radially with a distance of 0–2500m from the GMC. Most
deflection distances occurred between 500 and 1000m, with a peak
around 750m.

The theoretical dispersion of OSO was assessed from the repetitive
calculation of the deflection distance using the current measurements of
the two mooring sites and with different ascension velocities. The
number of deflection scenarii was defined from the mooring sampling
interval (10min for mooring 1 and 20min for mooring 2) and the
period of records (6 months for mooring 1 and 1 year for mooring 2).
Assembling theoretical OSO provided an additional approach for
quantifying the probable deflection depending on the ascension velo-
cities (see appendices; Figs. A.1 and A.2). The ascent modeling was

Fig. 8. a. Top view of the total backward deflection values related to the acquisition of the ALOS SAR scene dated June 30, 2009. The deflection value is computed by
integrating current measurements at Mooring 1 for a range of ascension velocities between 2 and 50 cm s−1. a, b. Bathymetric and slope maps on the proximal edge of
oil slicks at the Seep sites 1 and 2, respectively (see locations in Fig. 6). Steep slopes that appear in dark correspond to seafloor disturbances associated with natural
oil seeps on the seafloor and usually entitled as pockmarks. Black continuous lines are 50m isobaths. The oil slicks detected at the sea surface on June 30, 2009 are
superimposed with the OSO and the modeled deflections for a range of probable ascension velocities (colored stars).
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reproduced for each time step in the recording periods, resulting in the
computation of 27 300 theoretical OSO for mooring 1 and 28800 OSO
for mooring 2. The distribution of OSO deflection distances is displayed
in Fig. 12a for Mooring 1 and Fig. 12b for Mooring 2, for the range of
ascension velocities reported in the literature by comparison with the
measured deflection distribution.

The deflection associated with velocities ranging from 50 to
10 cm s−1 produced restricted deflections (mostly lower than 100m)
and the spatial distribution clearly differed from the measured deflec-
tions for both mooring 1 or 2 (for more details see appendices; Figs. A.1

and A.2). The measured and computed deflection distributions were
quite similar for ascension velocities ranging 6–9 cm s−1 (see additional
data) and were almost alike for ascension velocities of 8 cm s−1

(Fig. 12). Slower ascension velocity values (2− 5 cm s−1) produce
deflections that largely exceeded measured values. The scatter plot of
the theoretical OSO locations was characterized by a strong preferential
orientation of the droplet deflections along the 140°N- 320°N direction
for Mooring 1, and 120°N-300°N for Mooring 2 (i.e. along the con-
tinental slope; Fig. 11c, d). The average modeled deflection (modeled
GMC in Fig. 11c, d) located around 350m to the northwest for Mooring

Fig. 9. a. Modeled rise path of the oil droplets (June 30, 2009) in the water column using Mooring 1 records for an ascent velocity of 3 cm s−1. The location of the
modeled seafloor origin is shown by the red star and the OSO by a cross in a white circle. b. Top view of oil plume location across the water column.

Fig. 10. a. Horizontal deflection observed from the individual location of OSO and GMC locations for roughly 3000 individual slicks over 21 years. Continuous lines
are isodensity markers. b. Histogram of the distribution of the distances between OSO and their GMC.
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Fig. 11. a, b: Distribution of deflection distances using mooring 1 and 2 respectively, computed using the kernel density for reported ascension velocities in dashed
lines. The distribution of measured deflection is displayed as a thick continuous black line. c: Computation of the theoretical location of OSO at the sea surface during
the monitoring period (Jan. 16, to Jul. 26, 2009) with 10-min intervals for an ascension velocity of 8 cm s−1. d: Computation of the theoretical location of OSO at the
sea surface during the monitoring period (Sep 22, 1997 to Oct 27, 1998) with 20-min intervals for an ascension velocity of 8 cm s−1.
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1 and was almost at the same vertical location (< 150m) with the
theoretical seafloor origin (mooring locations) of expelled oils for
Mooring 2.

5. Discussion

The aim of this paper is to: (1) quantify the spatio-temporal varia-
tion of oil droplets rising through the water column in the Lower Congo
Basin, (2) link sea-surface oil slicks with seep-related seafloor features,
(3) propose a range of probable rising velocities, (4) and evaluate the
deflection offset compared against the water depth. The following dis-
cussion aims to establish:

• The accuracy of the model and potential limiting factors.

• The possible behavior variability of rising oil plume through the
water column.

• A comparison with predicted ascent models.

• A comparison with published results to understand if deflection
values can be compared between study areas.

5.1. Accuracy of the model

The calculation based on in-situ mooring measurements and

statistical methods developed in this study shows that the best corre-
lation between surface slicks and seep-related seafloor features (i.e.
Pockmarks) account for an ascension velocity ranging from 3 cm s−1 to
8 cm s−1. Although the two methods provided slightly distinct results,
the velocity range proposed in this paper corresponds to the lowest
reported values in previous studies (from 2 to 50 cm s−1; MacDonald
et al., 2002; Crooke et al., 2015). The sub-circular depressions observed
in the vicinity of the vertical projection of surface area of recurrent oil
slicks are interpreted as pockmarks resulting from active or recent fluid
flow at the seafloor (King and McLean, 1970; Gay et al., 2006a; Gay
et al., 2006b; Gay et al., 2007; Andresen and Huuse, 2011; Andresen,
2012). The reversed deflection model suggests expulsion points in the
vicinity of the mapped pockmarks; however remains under-estimated as
model seeps do not directly overlap with the pockmark centre (Fig. 12).

We consider that several parameters might induce differences be-
tween measured and modeled deflections, thereby limiting the accuracy
of the modeling technique that combines concomitant ADCP and SAR
acquisitions:

• Even if the Mooring 1 location is only 15 km from recurrent seep site
locations, the underwater current might be slightly different be-
tween the seepage and mooring locations.

• The OSO corresponds to the detectable proximal edge of the slicks

Fig. 12. Synthetic representation of the probable rise path of the oil plume between a sea-surface slick and a cluster of seafloor pockmarks, considering an ascension
velocity of 3 cm s−1 at seep site 2. Cold colors refer to deep intervals; warm colors refer to shallow intervals. Circles with crosses pinpoint the locations in depth of the
main inflection of rise path of the oil plume.
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(Garcia-Pineda et al., 2010), which is subjected to great variability
in slick thickness. The proximal edge location depends on the SAR
detectability threshold of the slick thickness (0.1 µm – MacDonald
et al., 1993; National Research Council, 2003) and therefore may be
slightly different from the in-situ location.

• The amount of detected oil is significantly underestimated with L-
band acquisition compared to X and C bands (Gade and Alpers,
1998). Therefore, although ALOS scenes have a restricted pixel
spatial resolution (12.5m), the difference between the surface area
and the detectable proximal edge is probably increased using L-band
satellite images.

• Even if pockmarks corresponds to the seafloor expression of a fo-
cused fluid flow (King and MacLean, 1970), oil can emit from dis-
crete sources outwards of the main fluid conduit (MacDonald et al.,
2003; Gay et al., 2007; Johansen et al., 2017). Moreover, seafloor
emission outlets are subjected to spatio-temporal evolution within
seafloor seeps features (Gay et al., 2006a).

• The water depths are greater at site 1 (2100m) and site 2 (1940m)
compared to the mooring location. The observed deflection is ex-
pected to be greater than the modeled deflection; this may partially
explain why the modeled deflection fails to fall within the vicinity of
the mapped seep-related seafloor features.

• The SAR acquisition deficiency from the C and X band satellite
constellation inhibits the spontaneous quantification of the deflec-
tion. To improve the accuracy of the method, the integration of a
larger SAR dataset (Ku -bands) during mooring records would be
instrumental in quantifying the deflection and therefore estimate
the ascension velocity through the water column.

5.2. Modifications parameters of the ascension velocity through the water
column

In this section, we propose possible interactions between bubbles
and the environment that could explain the difference between mod-
eling and observations. The bubble ascension velocity was reported to
decrease through the water column in the Black Sea (Greinert et al.,
2006). The hydrate bubble coating only occur within the Gas Hydrate
Stability Zone (GHSZ) and is known to delay the dissolution of light
methane, prohibiting the interactions between ocean water and me-
thane (Rehder et al., 2002; McGinnis et al., 2006). In the LCB, hydrate-
related BSR that mark the base of the GHSZ was already reported within
the sedimentary series (Lucazeau et al., 2004; Zühlsdorff and Spiess,
2005; Gay et al., 2006b). The top of the GHSZ that depends on the sea-
surface temperature and the thermal gradient is estimated at 430m
below sea surface (Kvenvolden and Barnard, 1983; Dholabhai et al.,
1991; Rehder et al., 2002; McGinnis et al., 2006; Sloan and Koh, 2008).
The rapid gas components dissolution above the GHSZ leads to a re-
lative increase in the oil/gas ratio, resulting in a decrease of buoyant
forces and ascension velocity through the water column. For seep sites
characterized by an oil and gas mixture, 80–99% of methane dissolves
in the water column while rising to the sea surface (Solomon et al.,
2009). Even if the effect of a hydrate bubble coating on the ascension
velocity remains poorly documented, the methane preservation in
stable hydrate conditions presumably steers the ascent regime. In ad-
dition, the plume consistency produces an ensemble of buoyancy forces
that decrease the transit time to the sea surface in the case of high fluid
flow (Leifer et al., 2006). Methane dissolution would therefore produce
a dual effect on the ascension velocity by increasing the oil/gas ratio
and diminishing the buoyant forces. Moreover, the seawater density
gradient of the LCB (Δ=5 g l−1) is high compared to other seeping
regions (Greinert et al., 2006) and the associated water layering ap-
pears to significantly contribute to the hydrographical dynamics of the

LCB (Fig. 5b). The strong decrease in the seawater density of the upper
layer probably also contributes to the decrease in the density contrast
between hydrocarbon bubbles and seawater. Experimental studies de-
monstrated that a consistent portion of crude oil remains potentially
stored between layered water mass units (Adalsteinsson et al., 2011;
Camassa et al., 2013; Landeau et al., 2014; Mirajkar et al., 2015). Hy-
drocarbon stratification is possible in the LCB above the GHSZ and may
be expected below the shallow and buoyant Congo River Plume waters.

In this study, we approximated the ascension velocity as constant
through the water column. However, a decrease in the bubble velocity
model, or hydrocarbon stratification in the water column, would rela-
tively enhance the impact of sub-surface currents compared to bottom
currents, by increasing the residence time of the oil droplet in the sub-
surface. Since the sub-surface dynamics flowed north-westward during
the acquisition of ALOS SAR scene (Fig. 9), the modeled deflection
would best fit between the observed location of seafloor pockmarks and
sea surface OSO considering a slower bubble velocity in the subsurface
water layer. However, the connection between surface slicks and sea-
floor pockmarks suggests that the delay associated with a decrease in
the ascension velocity cannot be considered as a prevailing contributor
to the underwater deflection.

5.3. Comparison with predicted ascent models

After listing in the previous section the potential parameters that
might modify the rising velocity, we will provide a comparative study
of reported ascension velocity values in this section. The model estab-
lished by Clift et al. (1978) considered a range of probable ascension
velocities up to 50 cm s−1 for expelled rising hydrocarbon bubbles with
ellipsoidal shapes. This study shows that probable ascension velocities
of natural oil bubbles range between 3 and 8 cm s−1 in the LCB, which
would correspond to a range of bubble diameter distribution between
0.3 and 0.8 mm and a spherical ascension regime (Clift et al., 1978).
This corresponds to the lower range of reported values (Leifer and
Patro, 2002) but remains consistent with low energy releases. Con-
versely, only larger methane bubbles (> 2.4 mm) are presumed to
reach the sea surface (Solomon et al., 2009). The density of oil naturally
entering the environment are largely increased under the action of
bacteria either during the migration through the sediments (Head et al.,
2003; Larter et al., 2003, 2006; Jones et al., 2008), across the water
column (Aeppli et al., 2014) or under water washing processes (Palmer
et al., 1993). Oil density modification can potentially results in oil
plume drop-off on the seafloor (Valentine et al., 2014). Expelled oils are
usually more viscous and heavier than oil found in reservoirs due to
severe biodegradation. Therefore, the ascension velocity of natural oil is
presumed to be slower than anthropogenic spills and therefore pro-
duces larger deflection cut-off values (Fig. 11). This study shows that
modeled deflection velocities are not compatible with reported sizes of
sea surface bubbles, which suggest that natural oil bubbles probably
follow a different regime than the classical "ellipsoidal" regime (Clift
et al., 1978). In agreement with nearby acquisitions of photos/videos at
seafloor seeps (unpublished data), we believe that the expulsion of oils
rather occurs as threadlike oil streaks instead of regular bubbles. The
presumed difference in the bubble regime is probably associated with
the degree of hydrocarbon biodegradation in the sedimentary series
(Wenger and Isaksen, 2002; Head et al., 2003; Larter et al., 2003, 2006;
Peters et al., 2007; Jones et al., 2008). Additional information related to
hydrocarbon composition would significantly help to constrain the as-
cension velocity and therefore improve hydrocarbon ascension mod-
eling through the water column.
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5.4. Horizontal deflection compared to the water depth

The maximum lateral deflection of oil droplets through the water
column is sometimes estimated using linear functions that depend on
the water depth (Garcia-Pineda et al., 2010). Deflection laws are
probably valid for uniform vertical current components, but this study
refutes this assumption for complex hydrodynamic settings. The ver-
tical displacement of oil slicks from the origin on the seafloor can reach
a distance up to 5 times the water depth in the Gulf of Mexico (Garcia-
Pineda et al., 2010). In the LCB, the deflection cut-off remains below
the value of the water depth for most (95%) of recurrent seepage sites
(deflection range to water depth ratio of less than 1). The deflection cut-
off outreaches the water depth only for shallow seepage sites (water
depth of 1200m). The hydrodynamic conditions of the LCB are char-
acterized by multiple current components (Fig. 1) and the averaged
current distribution shows opposite current directions between water
masses (Figs. 5 and 7). The reverse currents relatively decrease the
vertical deflection distance between the location of the OSO and its
vertical projection on the seafloor (Fig. 9), which explains why the total
value of the horizontal deflection remains low compared to the water
depth.

The deflections modeled with slow ascension velocities (2 and 2.5)
were consistently different from the deflections computed for
3–50 cm s−1. The spot intensification of the current speed observed at
969m, 18 h before the SAR acquisitions induced strong south-west
deflection (Fig. 7). This could explain the difference in orientation for
backward propagation models at lower ascension velocities. The transit
period can be strongly different (3 h 50− 25 h) depending on the water
depth (1100− 2700m) and ascension velocity (3− 8 cm s−1).
Therefore, it is highly probable that the underwater deflection between
shallow (1100m) and deeper seep sites (2700m) during simultaneous
active stages will be consistently different.

Mooring 1 is 430m deeper than mooring 2, yet the stack of the
theoretical OSO location along the monitoring period shows that
modeled OSO spans a larger distance for the shallower mooring 2
(Fig. 11c and d). Proximal areas from the shelf are probably affected by
more consistent current variability between the BCC (Hopkins et al.,
2013) and the AC (Hardman-Mountford et al., 2003), but also can be
affected by a "Venturi effect" that increases the velocity of water masses
towards the shelf. The enhancement of the current velocity in shallower
areas of the LCB (Santos et al., 2012; Kopte et al., 2017) is probably
responsible for the greater deflection values observed during long-term
monitoring (Jatiault et al., 2017).

The average location of OSO (modeled GMC; white star in Fig. 11c,
d) is horizontally displaced by 350m from for the vertical projection of
the seafloor origin for mooring 1 while it roughly corresponds to the
sub-vertical projection of the seafloor origin for mooring 2. Considering
that the recording period of Mooring 1 is restricted to 6 months, the
average deflection observed for Mooring 1 (350m towards the North-
west; Fig. 11c) is presumably associated with seasonal variations in the
current direction distribution (Hardman-Mountford et al., 2003; Kopte
et al., 2017). This suggests that the sub-vertical link between the GMC
location and the seafloor origin is only valid considering a SAR dataset
acquired homogeneously throughout the year. The measured deflection

distribution is associated with a slighter prominent orientation of the
deflection along the slope axis (Fig. 10a) in agreement with modeled
deflections (Fig. 11a, b). This suggests that the main current distribu-
tions prevail on droplet deflection compared to the water depth in open
sea-conditions. The comparison between measured current velocity at a
local scale and regional scale models (HYCOM, SAT-OCEAN) could help
clarify the velocity range and thereby improve our understanding of
rise paths of oil droplets in the water column.

6. Summary and conclusion

In this paper, we estimated a range of probable ascension velocities
of oil droplets through the water column in the case of natural oil
seepage systems. This study brings new insights in understanding the
effect of vertical current variations on the oil droplet deflection through
the water column and provides a predictive model for the deflection of
natural oil droplets in natural seeps. The following conclusions were
established from the integration of SAR slicks inventory, mooring
measurements, and bathymetric data:

• The bi-decadal SAR monitoring of seepage manifestations shows
that the OSO locations are limited to a maximum deflection of
2500m in diameter from the seafloor origin.

• The modeled path for oil droplets shows that most of the lateral
deflection occurs in the subsurface layer where the current velocity
intensifies, and the ascension velocity of the oil droplets decreases.

• The integration of ADCP measurements successfully supports the
reverse modeling method looking at the vertical migration of oil
droplets from seep-related seafloor features to slicks at the surface
while considering a range of ascension velocity through the water
column. The best results were obtained based on ascension velo-
cities between 3 cm s−1 to 8 cm s−1.

• Shallower seepage sites are affected by a greater average deflection
value which therefore confirms that affine deflection functions be-
tween the deflection value and the water depth are not applicable
for complex hydrographical provinces such as open sea conditions.

• For most of the recurrent seep sites, the horizontal deflection of oil
droplets remains below the value of the water depth. The reverse
currents associated with a vertical hydrographical layering in the
LCB decreases the horizontal deflection values of the oil plume.
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Appendix A

See Figs. A.1 and A.2.
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Fig. A.1. Compilation of the theoretical location of OSO at the sea surface modeled using current velocities and directions during the period of Mooring 1 (Jan. 16, to
Jul. 26, 2009) with 10min interval for a range of reported rising speeds. Each dots corresponds to a modeled OSO; the color scale refers to the modeled OSO density.
The location of the Mooring 1 corresponds to the location of the modeled origin of the expelled oil plume. Bottom right: Measured deflection distribution.
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Fig. A.2. Compilation of the theoretical location of OSO at the sea surface modeled using current velocities and directions during the period of Mooring 2 (Sept. 22,
1997 to Oct. 27, 1998) with 20min interval for a range of reported rising speeds. Each dots corresponds to a modeled OSO; the color scale refers to the modeled OSO
density. The location Mooring 2 corresponds to the vertical location of the modeled origin of the expelled oil plume. Bottom right: Measured deflection distribution.
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