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Chapter 11
Chemical RNA Modifications: The Plant 
Epitranscriptome

Celso Gaspar Litholdo Jr and Cécile Bousquet-Antonelli

Abstract RNA post-transcriptional modifications create an additional layer to 
control mRNA transcription, fate, and expression. Considering that they are non- 
genetically encoded, can be of reversible nature, and involved in fine-tuning gene 
expression, the landscape of RNA modifications has been coined the “RNA epig-
enome” or “epitranscriptome.” Our knowledge of the plant epitranscriptome is so 
far limited to 3′-uridylation and internal m6A and m5C modifications in 
Arabidopsis. m6A is the most abundant and well-studied modification on mRNAs, 
and involves the activities of evolutionarily conserved “writer” (methyltransfer-
ase), “reader” (RNA binding proteins), and “eraser” (demethylases) proteins. In 
Arabidopsis, m6A is crucial for embryogenesis, post-embryonic growth, develop-
ment, phase transition, and defense responses. Conversely to animals, our under-
standing of the roles of m6A is limited to the finding that it is an mRNA stabilizing 
mark. Yet likely to exist, its roles in controlling plant mRNA maturation, traffick-
ing, storage, and translation remain unexplored. The m5C mark is much less abun-
dant on the transcriptome and our knowledge in plants is more limited. Nonetheless, 
it is also an important epitranscriptomic mark involved in plant development and 
adaptive response. Here, we explore the current information on m6A and m5C 
marks and report knowledge on their distribution, features, and molecular, cellu-
lar, and physiological roles, therefore, uncovering the fundamental importance in 
plant development and acclimation of RNA epigenetics. Likely to be widespread 
in the green lineage and given their crucial roles in eukaryotes, the fostering of 
data and knowledge of epitranscriptome from cultivated plant species is of the 
utmost importance.
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11.1  Chemical RNA Modifications: A New Layer of Post- 
transcriptional Regulation

The pattern of gene expression of a cell is what determines its identity and activity. 
Maintaining its homeostasis is hence crucial for any organism. However, cells must 
also respond to developmental and environmental stimuli for organisms to develop 
and grow, or to acclimate to external conditions. In such cases, their pattern of gene 
expression needs to be adjusted, occasionally very fast. This reprogramming takes 
place simultaneously at the transcriptional (Kaufmann et al. 2010; de Nadal et al. 
2011; Lelli et al. 2012) and post-transcriptional levels (Mata et al. 2005; Zhao et al. 
2017; Schaefke et  al. 2018). Post-transcriptional regulation is exerted at pre- 
messenger RNA (pre-mRNA) maturation (including transcription termination/
polyadenylation and splicing), mRNA intracellular trafficking (including nucleocy-
toplasmic and sub-compartment localization), storage, stability, and translation. 
Regulation of the transcriptome is dependent on the primary genetic code, which 
provides local structures and short sequences, either for binding of proteins that 
form with the messenger RNA RiboNucleoProtein (mRNP) complexes or for com-
plementary recognition by microRNAs (miRNAs).

In the last couple of years, the scientific community regained interest in RNA (in 
particular mRNA) chemical modifications, and recognized that they create an addi-
tional layer to the control of mRNA transcription and fate. Considering that RNA 
modifications are non-genetically encoded, they can display a reversible nature, and 
fine-tune the fate and expression of transcripts harboring them. The landscape of 
modifications deposited on the transcriptome (in particular on mRNAs) of a cell has 
been coined the “RNA epigenome” (He 2010) or “epitranscriptome” (Meyer et al. 
2012; Saletore et al. 2012).

In all three domains of life (Archaea, Bacteria, and Eukarya) as well as in viruses, 
RNAs carry chemical modifications. More than 110 distinct modifications (http://
mods.rna.albany.edu/mods/) have been recognized across all domains of life and 
across all types of RNAs [mRNAs, ribosomal RNAs (rRNAs), transfer RNAs 
(tRNAs), long noncoding RNAs (lnRNA), circular RNAs (circRNAs), and small 
noncoding RNAs (sRNAs)] but the roles of the vast majority of them remain 
unknown (Li and Mason 2014). Although highly debated until 2012, the existence 
of chemical modifications deposited on mRNAs is now well recognized and docu-
mented in several eukaryotes, such as yeast, mammals, and plants, as well as 
recently in bacteria (Deng et al. 2015; Hoernes et al. 2015). In addition to the 5′ cap 
and 3′-poly(A) tail, eukaryotic mRNA 3′-extremities can be modified by the non- 
templated addition of uridines (uridylation; de Almeida et al. 2018a) and/or carry 
internal modifications, which can be of over 15 different types (http://mods.rna.
albany.edu/mods/; Song and Yi 2017).

The most common of the internal nucleotide modifications consists in the addi-
tion of a methyl group to the 2′-O position of the ribose moiety. In addition, up-to- 
date transcriptome-wide mapping on mRNAs and functional data are available on 
transcripts that can be edited by deamination of adenosine to inosine (A-to-I  editing; 
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Yablonovitch et al. 2017; Sinigaglia et al. 2018) or carry N1-methyladenosine (m1A; 
Dominissini et  al. 2016), N6-methyladenosine (m6A; Dominissini et  al. 2013), 
5-methylcytosine (m5C; Squires and Preiss 2010), N4-acetylcytidine (ac4C; Arango 
et  al. 2018), pseudouridine (Ψ; Schwartz et  al. 2014a; Carlile et  al. 2014), or 
hydroxymethylcytosine (h5mC) (Fig.  11.1a, b). Additional modifications include 
the N6-2′-O-dimethyladenosine (m6Am) and 5-hydroxymethylcytosine (h5mC) 

Fig. 11.1 The epitranscriptome landscape. (a) The major post-transcriptional modifications 
deposited on the transcriptome of mammalian cells are N1-methyladenosine (m1A), N6- 
methyladenosine (m6A), N6,2′-O-dimethyladenosine methyladenosine (m6Am), N5-methylcytosine 
(m5C), N3-methylcytosine (m3C), N4-acetylcytidine (ac4C), N7-methylguanosine triphosphate 
(m7G), inosine (I), and pseudouridine (Ψ). (b) An RNA polymerase II transcribed RNA is repre-
sented, including the 5′-cap structure, which is a modified 7-methylguanosine (m7G) linked via an 
unusual 5′ to 5′ triphosphate linkage to mRNA, and the 3′-end poly(A) tail (AAAn). For each 
particular RNA chemical modification, a representation is shown in relation to mRNA position (5′ 
UTR, blue; CDS, red or 3′ UTR, yellow). (c) The molecular consequences of each RNA marks and 
the biological roles of these modifications are also represented. It is important to mention that only 
m6A and m5C modifications have been identified so far in the plant epitranscriptome AU3
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(Song and Yi 2017; Frye et al. 2018). These modifications can regulate all steps of 
an mRNA life (Fig. 11.1c) and can even recode open reading frames (Powers and 
Brar 2018). Several were proposed to be of a dynamic nature (i.e., they can be 
erased) and their profiles found to be distinct across development or in response to 
stress exposure. At the organism level, RNA modifications are required for differen-
tiation, development, gametogenesis, sex determination, embryogenesis, circadian 
rhythm control, immune response, biotic and abiotic stress responses (Fig. 11.1c, 
Sinigaglia et al. 2018; Song et al. 2018).

Except for the 5′-cap and poly(A)-tail, our knowledge of the plant epitranscrip-
tome is so far limited to uridylation (de Almeida et al. 2018a, b), m6A (Luo et al. 
2014; Li et al. 2014c, 2018), and m5C (Cui et al. 2017; David et al. 2017). Plant 
mRNAs are likely to carry other types of modifications but their existence and roles 
remain to be explored. A-to-I editing though is absent from the plant nuclear tran-
scriptome but organelle transcripts (chloroplast and mitochondria) carry C to U 
edited bases, and in ferns and mosses also U-to-C changes (Takenaka et al. 2013). 
Excellent reviews have recently been published on the synthesis, molecular, cellu-
lar, and physiological roles of uridylation (de Almeida et al. 2018a, b), and organelle 
editing (Takenaka et al. 2013). We will hence focus the present chapter on the fea-
tures and functions of the internal m6A and m5C modification of messenger RNAs 
in plants.

11.2  Roles and Features of the m6A Mark in Plants

11.2.1  General Features of the m6A Mark

The m6A mark is the most abundant and widespread of mRNA modifications. It has 
been profiled on the polyadenylated transcriptome of the yeast Saccharomyces cere-
visiae (Schwartz et al. 2013) and of various human and mouse cell lines and tissues 
(Dominissini et al. 2012; Meyer et al. 2012; Fustin et al. 2013; Schwartz et al. 2014b; 
Wang et al. 2014; Chen et al. 2015). In higher plants, it has been mapped on rice cal-
lus and leaves (Li et al. 2014c), in two distinct ecotypes of Arabidopsis thaliana (Luo 
et al. 2014), and in mature leaves (Anderson et al. 2018), 5- and 14-day old seedlings 
(Shen et al. 2016; Duan et al. 2017) and across several organs (leaves, flowers, and 
roots; Wan et al. 2015) of Arabidopsis Columbia-0 ecotype. Consistent with the evo-
lutionarily conserved nature of the m6A mark, several of its features were found to 
be conserved across organisms and tissues. Transcriptome-wide, m6A represents 
1–1.5% of the total number of adenosines on polyadenylated transcripts. It mostly 
localizes in the 3′-UTRs, following the stop codon and in the last exons of transcripts 
(Ke et al. 2015). A nucleotide sequence context around m6A is shared across eukary-
otes. Indeed, m6A is mainly confined at the consensus RRACH (where R = A/G and 
H = U > A > C) and found in 70% of the cases at GAC. In mammals at least, the m6A 
mark was detected on most, if not all, polymerase II transcribed RNAs, including 
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primary transcripts of miRNAs (Alarcon et  al. 2015), lnRNAs, circRNAs, and 
mRNAs (Meyer et al. 2012; Dominissini et al. 2013; Schwartz et al. 2013).

In plants, a thin layer chromatography analysis of the m6A/A ratio on the poly-
adenylated transcriptome of Arabidopsis shows that it ranges from 0.9% in roots 
and leaves to 1.4% in flowers (Zhong et al. 2008) and that it is not randomly distrib-
uted, but mostly enriched at the 3′-end of transcripts (Bodi et al. 2012). Subsequently, 
next generation sequencing (NGS) profiling of the polyadenylated transcriptome 
found, both in rice and Arabidopsis, that the vast majority of the m6As peaks occur 
in the 3′-UTRs or overlap the stop codon (Li et al. 2014c; Luo et al. 2014; Anderson 
et al. 2018; Shen et al. 2016; Wan et al. 2015). These studies in rice and Arabidopsis 
also found that 10–15% of the detected m6A peaks are located around the start 
codon (Li et al. 2014c; Luo et al. 2014; Shen et al. 2016). The presence of some m6A 
marks around the start codon and in 5′-UTR is not restricted to plants, for instance, 
this has been observed in certain mammalian cells types and growth conditions 
(Domnissini et al. 2012; Zhou et al. 2015). Most of the m6A peaks were found to 
carry the RRACH consensus suggesting that this sequence motif is necessary also 
in plants for the deposition of the mark. However, recent findings support the idea 
that m6A sites could occur in sequence contexts other than RRACH [such as 
“GGAU” or URUAY (R = G > A, Y = U > A)] in Arabidopsis (Luo et al. 2014; 
Anderson et al. 2018; Shen et al. 2016; Wei et al. 2018) and rice (Li et al. 2014c). 
Whether other types of plant RNA polymerase II transcripts (such as pre-miRNAs, 
lnRNAs, and sRNA) are modified with m6A remains to be explored.

In mammals and flies at least, the m6A mark is deposited co-transcriptionally by 
a conserved heteromultimeric complex called the “writer” complex and can be 
reverted to unmodified adenines by demethylases tagged as “erasers” (see Sect. 
11.2.2; Fig. 11.2). At the molecular level, the most prevalent role of m6As is to influ-
ence the binding of proteins to their RNA targets. They can either act to repel or 
attract RNA binding proteins (RBPs), the latter of which are known as “m6A read-
ers” (Arguello et al. 2017; Edupuganti et al. 2017). Readers convey the m6A signal 
by directly controlling the fate of their RNA target and/or by recruiting effector 
proteins. The m6A mark recruits readers by two main processes. First, the reader 
may carry a YTH domain, an evolutionarily conserved RNA binding motifs whose 
folding forms a pocket that tightly accommodates the m6A residue (see Sect. 11.2.4; 
Fig. 11.2). Alternatively, the presence of m6A may positively influence the recruit-
ment of RBPs by: (1) increasing their affinity for their RNA binding region, or (2) 
acting through alteration of RNA structures in a mechanism called “m6A-switch” 
(Zhou et al. 2016; Roost et al. 2015; Liu et al. 2015).

11.2.2  The Plant Writer and Eraser Systems

In 1994, Bokar and colleagues characterized and partially purified an mRNA N6- 
methyltransferase from HeLa cell nuclei. They found that it comprises a multisub-
unit complex composed of two fractionable subcomplexes: MT-A (200 kDa) and 
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MT-B (875 kDa) containing the S-adenosyl-methionine-binding site and the RNA 
binding site, respectively (Bokar et al. 1994). The MT-A subcomplex carries on a 
70  kDa component, the methyltransferase player that was identified and named 
MT-A70 (Bokar et al. 1997). MT-A70 is conserved across eukaryotes and is known 
as METTL3 in mammals (Liu et al. 2014), IME-4 (Inducer of Meiosis-4) in S. cere-
visiae (Yadav and Rajasekharan 2017) and Drosophila melanogaster (Lence et al. 
2016), and MTA70 in A. thaliana (Zhong et al. 2008).

Purification of the writer complex from animals (human and fly) confirmed that 
it is an heteromultimeric complex, whose catalytic core is composed of two RNA 
methyltransferases (METTL3 and METLL14) and the cofactor WTAP (fly Fl(2)d). 
METTL3 and 14 physically interact with each other and their association has a 
synergetic effect on the complex catalytic activity (Liu et al. 2014). METTL3 is the 
catalytically active component while METTL14, which has a degenerate methyl-
transferase site, plays a scaffolding role that is critical for substrate recognition 
(Wang et al. 2016; Śledź and Jinek 2016). The animal writer complex contains other 
subunits: VIRMA (fly Virilizer), RBM15/RBM15B (fly spenito), Z3CeH13 (fly 
Xio/Flacc), and HAKAI (Ping et al. 2014; Yue et al. 2018; Haussmann et al. 2016; 
Lence et al. 2016; Guo et al. 2018; Knuckles et al. 2018; Patil et al. 2016). Zc3H13 
bridges the mRNA binding factor RBM15 to WTAP (Knuckles et  al. 2018) and 
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Fig. 11.2 The m6A modification regulatory system. The m6A mark is found in most, if not all, 
RNA polymerase II transcribed RNAs, including messenger RNAs (mRNAs), small RNAs 
(sRNAs), long noncoding RNAs (lnRNAs), and circular RNAs (circRNAs); except the latter, all 
contain the modified m7G nucleotide at the 5′-end and poly(A) tail at the 3′-end. A nucleotide 
consensus sequence RRACH (R = A/G, H = U > A > C) is mainly the site for the m6A writer com-
plex, which includes the subunit methyltransferase proteins MTA, MTB, FIP37, VIR, and HAKAI. 
m6A-RNA pol II RNA demethylation is carried by two eraser enzymes, ALKBH9B and 
ALHBH10B. So far only m6A readers carrying a YTH-RNA binding domain have been identified 
in plants, which include the recently characterized ECT2 protein. The molecular role of m6A mark 
depends on the reader protein that binds to the modified nucleotide, generally in animals, directing 
the RNA to alternative splicing, mRNA decay, mRNA export, translation initiation, or mRNA stor-
age. Question mark (?) indicates the unknown features of the plant m6A regulatory system
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VIRMA mediates preferential methylation by recruiting the METTL3/METTL4/
WTAP core complex to 3′-UTRs and near the stop codons (Yue et al. 2018).

Up to now, data on the plant writer complex comes from A. thaliana (Table 11.1; 
Zhong et al. 2008; Bodi et al. 2012; Ruzicka et al. 2017). Following the discovery by 
Bokar et al. (1997) that the methyltransferase activity of the writer complex was car-
ried by METTL3, further characterization of the complex remained incomplete. It is 
in 2008 that the team of Rupert Fray ran the first functional study of an MTA70 
protein and also identified FIP37 (the Arabidopsis homolog of WTAP) as a compo-
nent of the writer complex (Zhong et al. 2008). Further biochemical characterization 
of the Arabidopsis writer complex showed that it also contains MTB (the plant 
homolog of METTL14), VIRILIZER, and HAKAI (Ruzicka et  al. 2017). The 
Arabidopsis writer complex hence closely resembles the animal complex, but, 
whether it contains additional factors in particular homologs of RBM15 and 
Z3CeH13 remains to be explored. Every component of the Arabidopsis complex is 
found in the nucleoplasm. However, their nucleoplasmic distribution changes 
between root meristematic cells and cells in the root elongation zone. While showing 
a nucleoplasmic diffuse pattern in non-differentiated cells, they localize to nuclear 
speckles in dividing cells (Ruzicka et al. 2017). These observations support the idea 
that m6A deposition is likely co-transcriptional in plants, as in animals, and that the 
activity of the writer complex might be regulated. Total or partial loss of any of the 
five components, except for HAKAI, of the Arabidopsis writer complex drastically 
decreases the total levels of m6A in polyadenylated transcripts (Zhong et al. 2008; 
Ruzicka et al. 2017). HAKAI is not required for plant viability (see Sect. 11.2.3) and 
shows only a 35% reduction of m6A levels in loss-of-function mutants. Except for 
MTA70, which based on evolutionary analyses (Bujnicki et al. 2002) is a bona fide 
methyltransferase and homolog to METTL13, the molecular roles that other compo-
nents carry out inside the writer complex remain to be uncovered in plants.

The m6A epitranscriptomic mark was proposed to be dynamic following two 
reports that identified mammalian FTO (fat mass and obesity) and ALKBH5 (the 
alkylation repair homolog protein) as specific RNA m6A demethylases, both in vitro 
and in vivo (Jia et al. 2011; Zheng et al. 2013). They both belong to the AlkB sub-
family of Fe(II)/ α-Ketoglutarate-dependent dioxygenases superfamily that has 9 
members (ALKBH1-8 and FTO) in humans (Xu et  al. 2014a). Enzymes of the 
ALKB family excise the methyl group through a two-step oxidative alkylation pro-
cess and can act on DNA or RNA. Both FTO and ALKBH5 are found in nuclear 
speckles, suggesting that erasing of mRNA m6A is mostly nuclear (Jia et al. 2011; 
Zheng et al. 2013). In mice, loss of FTO leads to increased m6A levels and is associ-
ated with several metabolic disorders and cell differentiation (Zhoa et  al. 2014), 
while loss of ALKBH5 also affects m6A levels and is characterized by impaired 
fertility resulting from spermatocyte apoptosis (Zheng et al. 2013). These findings 
indicate that these two demethylases function in different physiological processes 
and strongly suggest that they are crucial for the development and reproduction.

The Arabidopsis genome codes for thirteen proteins of the ALKB family, among 
which, based on sequence alignment, five (ALKBH9A, 9B, 9C, 10A, and 10B) are 
potential homologs of the mammalian ALKBH5  m6A-RNA demethylase 
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(Table 11.1; Mielecki et al. 2012; Duan et al. 2017). The Arabidopsis genome codes 
for a sixth putative homolog of human ALKBH5 (AtALKBH10C), but it is most 
likely not an active demethylase as it has a degenerate catalytic site (our unpub-
lished data). Besides Arabidopsis, these enzymes can be found in agronomically 
important plants, for instance, the presence of ALKB demethylase orthologues was 
detected in Nicotiana sylvestris (Li et al. 2018), Zea mays, Oryza sativa, Marchantia 
polymorpha, and Solanum lycopersicum. No homolog of the FTO demethylase was 
found to exist in plant genomes (our unpublished data). Based on transcript level 
measurements, ALKBH9B, 9C, and 10B are the most expressed of all five 
Arabidopsis ALKBH5 genes. Across development, it is always one (or few) of these 
three genes, whose transcript levels show the highest expression. In seedlings and 
leaves (juvenile, adult, and cauline), ALKBH9B, 9C, and 10B mRNAs show similar 
levels and are by far the most highly expressed genes. In buds and young siliques, 
9B and 10B are almost the sole demethylases to be expressed and they show similar 
levels. Finally, 9B is nearly the only demethylase expressed in the apical meristem 
and 10B is by far the major eraser gene to be expressed in flowers and matured 
siliques. Recently, in vitro assays showed that ALKBH9B and 10B have m6A-
demethylase activities on RNA (Duan et al. 2017; Martínez-Pérez et al. 2017) and 
10B was shown to have a demethylase activity in planta on polyadenylated tran-
scripts (Duan et al. 2017). ALKBH10B-mediated mRNA demethylation is required 
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Table 11.1 The Arabidopsis m6A modification regulatory system

Function Name
Arabidopsis 
locus

Mammalian 
homolog Biological role References

mRNA 
m6A 
writer

MTA AT4G10760 METTL3 Embryo 
development

Zhong et al. 
(2008)
Bodi et al. 
(2012)

MTB AT4G09980 METTL14 Embryo 
development

FIP37 AT3G54170 WTAP Meristem 
maintenance

Shen et al. 
(2016)

VIRILIZER AT3G05680 KIAA1429 Embryo 
development

Ruzicka et al. 
(2017)

HAKAI AT5G01160 HAKAI Embryo 
development

mRNA 
m6A eraser

aALKBH9A AT1G48980 ALKBH5 – Duan et al. 
(2017)

ALKBH9B AT2G17970 ALKBH5 Viral infection 
response

Martínez- 
Pérez et al. 
(2017)

aALKBH9C AT4G36090 ALKBH5 – Duan et al. 
(2017)aALKBH10A AT2G48080 ALKBH5 –

ALKBH10B AT4G02940 ALKBH5 Flowering
Name Arabidopsis 

locus
YT512-B 
domain
YTH-type

Biological role References

(continued)
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for the proper transition from vegetative to reproductive stage. This is at least in part 
linked to the role of ALKBH10B in demethylating, in a timely manner, transcripts 
required for the floral transition and as a result stabilizing them (Duan et al. 2017). 
Arabidopsis ALKBH9B, was so far not found to affect m6A levels in vivo, but one 
cannot exclude the possibility that it works redundantly with other ALKBH5 ortho-
logues, such as ALKBH9C. ALKBH9B was found to influence m6A abundance on 
the viral genome of Alfalfa mosaic virus (AMV) and regulate its infectivity 
(Martínez-Pérez et al. 2017).

It is important to note that the dynamic nature of m6A on mRNAs (e.g., the eras-
ing of the m6A marks on mature cytoplasmic transcripts) is still highly debated in 
the scientific community (Rosa-Mercado et al. 2017). Nonetheless, mRNA demeth-
ylases were found to exist and to be evolutionarily conserved, their downregulation 
and overexpression shown to significantly alter the pattern of m6As on the polyad-
enylated transcriptome, and their loss to have drastic physiological impacts. Hence, 

Table 11.1 (continued)

Function Name
Arabidopsis 
locus

Mammalian 
homolog Biological role References

YTH m6A 
readers

aECT1 AT3G03950 YTHDF Calcium-mediated 
signaling

Ok et al. 
(2005)

ECT2 AT3G13460 YTHDF Leaf and trichome 
morphogenesis

Scutenaire 
et al. (2018)
Wei et al. 
(2018)
Arribas- 
Hernández 
et al. 2018

ECT3 AT5G61020 YTHDF Leaf and trichome 
morphogenesis

ECT4 AT1G55500 YTHDF Leaf morphogenesis Arribas- 
Hernández 
et al. 2018

aECT5 AT3G13060 YTHDF – Ok et al. 
(2005)
Scutenaire 
et al. (2018)

aECT6 AT3G17330 YTHDF –
aECT7 AT1G48110 YTHDF –
aECT8 AT1G79270 YTHDF –
aECT9 AT1G27960 YTHDF –
aECT10 AT5G58190 YTHDF –
aECT11 AT1G09810 YTHDF –
aECT12 AT4G11970 YTHDC – Scutenaire 

et al. (2018)
aCPSF30-L AT1G30460 YTHDC bNutrient uptake/

oxidative stress 
response

Scutenaire 
et al. (2018)
Li et al. 
(2017a, b)

aThese uncharacterized genes are potential players of m6A regulation
bCPSF30-L isoform contains most of the short form polypeptide fused at its C-terminus with a 
canonical YTH domain of the DC-type; however, it is unknown if the biological role involves the 
m6A and the CPSF30-L reader function
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they have roles to play in m6A-based post-transcriptional regulation, however, 
where and how do they intervene remains to be understood.

11.2.3  m6A Physiological, Cellular, and Molecular Roles

The biological consequences of m6A methylation are multiple, but a common fea-
ture of most organisms is that it has pleiotropic physiological functions and is neces-
sary for reproduction, differentiation, growth, development, biotic and abiotic stress 
responses. Arabidopsis is no exception to this. Except for HAKAI, loss-of- function 
and hypomorphic mutants of any of the constituents of the plant writer complex 
show total to drastic decrease of the levels of m6A on the polyadenylated transcrip-
tome and display identical phenotypes (Ruzicka et al. 2017). Complete loss of the 
m6A mark results in embryogenesis defects leading to lethality of the embryos, 
whose development is arrested at the globular stage (Vespa et al. 2004; Zhong et al. 
2008; Bodi et al. 2012; Shen et al. 2016; Ruzicka et al. 2017). Downregulation of 
N6-methyladenosines at post-embryonic stages has drastic pleiotropic consequences. 
Plants show delayed growth and development with reduced apical dominance (Bodi 
et al. 2012; Shen et al. 2016; Ruzicka et al. 2017). Seedlings with reduced levels of 
m6A show an over proliferation of the vegetative shoot apical meristem (SAM), 
accompanied by a dramatic delay in leaf emergence and aberrant leaf morphology 
(Shen et al. 2016; Arribas-Hernández et al. 2018). Plantlets, with very low levels of 
m6A, fail to develop a reproductive SAM and eventually die (Shen et  al. 2016). 
Hypomethylated plants also show trichome morphogenesis defects, with leaves 
accumulating overbranched trichomes, due to abnormally high ploidy levels (Vespa 
et al. 2004; Bodi et al. 2012; Scutenaire et al. 2018). Root growth and development 
also require normal m6A levels. Indeed, hypomethylated mutants show reduced root 
growth, aberrant gravitropic responses, abnormal root cap formation, and deficient 
vascular development (linked to defective protoxylem development).

The m6A mark and its control is also most likely necessary not only for the 
response of the plant to viral infection (Martínez-Pérez et al. 2017; Li et al. 2018) 
but also for environmental growth conditions and stress exposure (Luo et al. 2014; 
Anderson et al. 2018). In Arabidopsis, the viral RNA of AMV was found to have 
m6A residues upon infection and to be demethylated in vivo by ALKBH9B 
(Martínez-Pérez et al. 2017). Loss of ALKBH9B provokes a hypermethylation of 
the viral RNA and downregulates AMV replication and infectivity. The current 
model suggests that m6A could control AMV viral infection by signaling the viral 
transcript to the nonsense mediated decay (NMD) pathway. This m6A-based 
response to viral infection is likely not restricted to AMV (Martínez-Pérez et al. 
2017), nor to Arabidopsis. Recently, a report by Li et al. (2018) correlated endoge-
nous m6A-levels to tobacco mosaic virus (TMV) infection in N. tabacum. Upon 
infection, global m6A content decreased and the levels of transcripts coding for 
putative homologs of ALBKH5 and MTA70 were, respectively, up- and downregu-
lated. These observations support a putative m6A-mediated control of viral infection 
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in tobacco as well. Methylome profiling of the transcriptomes of two Arabidopsis 
accessions [Can-0 (from Canary Islands) and Hen-16 (from Northern Sweden)] 
shows that most methylation peaks are shared by both ecotypes, supporting the 
crucial role of m6A-mediated regulation in development. Nonetheless, a portion of 
the detected methylated sites are specific to each ecotypes, and the presence of m6A 
correlates with highest expression levels of the marked genes. Considering the 
Can-0 and Hen-16 are originally from very distinct climates, one can postulate that 
m6A could play a role in plant acclimation to the environment (Luo et al. 2014). 
Along the same idea, a recent work by the Gregory lab (Anderson et al. 2018), pro-
filed m6A on the transcriptome of salt treated Arabidopsis leaves and found that 
upon stress, transcripts coding for salt and osmotic stress response proteins gain 
m6A and are stabilized. This supports a role of m6A in promoting the plant response 
to stress, at least salinity.

Our understanding of the molecular and cellular bases of m6A physiological 
functions in plants is so far quite modest and limited to their role in the control of 
cytoplasmic mRNA stability (Luo et al. 2014; Shen et al. 2016; Duan et al. 2017; 
Wei et al. 2018; Anderson et al. 2018). At the global transcriptome scale, m6A acts 
to stabilize transcripts by preventing their endonucleolytic cleavage (4–5 nt upstream 
to the mark) and subsequent 5′-3′ digestion by XRN4, the plant homolog of XRN1 
(Anderson et al. 2018). This is coherent with previous observations showing that the 
m6A mark correlates with elevated transcript levels (Luo et al. 2014). However, this 
is opposite to the situation in animals where the m6A mark is an mRNA-decay trig-
gering signal at the global level (Ke et  al. 2015, 2017). This transcriptome-wide 
observation does not stand for all Arabidopsis mRNAs, as there are cases where the 
presence of m6A directs a signal to turnover. Shen et al. (2016) found that the lack 
of m6A on two key SAM regulators (WUSCHEL and SHOOTMERISTEMLESS) 
prevents the timely degradation of their transcripts and proper regulation of SAM 
proliferation. Furthermore, ALKBH10B-mediated demethylation was found to sta-
bilize transcripts of FLOWERING LOCUS T (FT), SPL3, and SPL9, which are key 
regulators of the floral transition (Duan et al. 2017).

In animals, m6A also acts as a translation stimulatory signal, at transcriptome- 
wide level, and is known to control a handful of alternative splicing events (Lence 
et al. 2016; Haussmann et al. 2016), directs primary miRNA transcripts to process-
ing (Alarcon et  al. 2015), and acts directly on chromatin, where it contributes to 
DNA repair (Xiang et al. 2017) and to the XIST-dependent gene silencing (Patil et al. 
2016). Whether m6A also acts on these processes in plants remains to be explored.

11.2.4  The Plant m6A Readers: YTH-domain-Containing 
Proteins

So far, only one type of m6A readers has been recognized in plants: those containing 
YTH domains. The YT521-B Homology domain (YTH) is a highly structured con-
served RNA binding domain among eukaryotes. After being first identified as a 
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human splicing factor, YT521-B proteins carrying a YTH domain (now called 
YTHDC1) were further identified and classified as DC type (YTH-domain- 
containing protein) and DF type (YTH-domain family proteins), depending on the 
subcellular localization (Imai et al. 1998; Hartmann et al. 1999; Stoilov et al. 2002; 
Zhang et al. 2010). A recent analysis of YTH domains from yeast, metazoan and 
Viridiplantae, found that they are of two evolutionary types: the DC-type group 
comprising YTH domains of human YTHDC1 and 2 and the DF-type group con-
taining human YTHDF1-3 (Scutenaire et al. 2018).

The structural resolution of YTH domains from yeast and animal proteins showed 
that both DC- and DF-type motifs adopt a conserved canonical fold of three 
α-helices and six β-strands that creates an aromatic pocket (formed with three highly 
conserved tryptophan residues) that tightly accommodates m6A (Li et al. 2014a, b; 
Luo and Tong 2014; Theler et al. 2014; Xu et al. 2014b; Zhu et al. 2014; Xu et al. 
2015). Sequence comparisons support that the m6A-binding mode of the YTH 
domains is largely conserved across eukaryotes (Scutenaire et al. 2018).

In plant genomes, genes coding for YTH-domain proteins experienced a large 
expansion with thirteen genes in Arabidopsis (Table  11.1). Viridiplantae YTH- 
proteins also carry DC- and DF-type domains that are further subdivided into two 
(DCA and DCB) and three (DFA, DFB, and DFC) subgroups, respectively. This 
observation suggests that plant YTH domain likely underwent neo-functionalization 
and that they are not fully redundant (Scutenaire et al. 2018).

In plants, all the functional work done on YTH-domain m6A readers is from 
Arabidopsis. Arabidopsis YTH domain was initially identified in two proteins found 
to directly bind the CIPK1 (Calcineurin B-like-interacting protein kinase 1) calcium- 
dependent kinase. Eleven proteins were found to share the YTH domain at their 
C-terminus and called ECT1 to 11 (for evolutionarily conserved C-terminal region) 
(Ok et al. 2005). Subsequent searches identified two additional proteins, which are 
of the DC-type (while ECT1-11 is of DF-type): ECT12 of unknown function and 
CPSF30-L, which is encoded by the long isoform of the gene encoding CPSF30, the 
cleavage and polyadenylation subunit factor 30 (Addepalli and Hunt 2007).

The physiological and molecular roles of ECT proteins have been just recently 
explored with the first functional analysis of a plant m6A reader, the Arabidopsis 
ECT2 protein. In vitro and in planta assays showed that ECT2 binds to m6A- 
containing RNAs and requires an intact aromatic pocket (Scutenaire et al. 2018; Wei 
et al. 2018). ECT2 transcript is the most abundant and ubiquitously expressed of all 
ECTs, nonetheless, the pattern of expression of its protein is distinct (Scutenaire 
et al. 2018; Wei et al. 2018; Arribas-Hernández et al. 2018). Consistently with its 
expected role as m6A reader, ect2 loss-of-function mutants, although not displaying 
dramatic phenotypes, recapitulate some of the defects observed in hypomethylated 
plants. First, ECT2 and its m6A-reading activity were found to be required for 
proper trichome morphogenesis (Scutenaire et al. 2018; Wei et al. 2018; Arribas- 
Hernández et al. 2018). In the absence of ECT2, or the sole presence of a mutant 
allele coding for a protein with a mutated aromatic pocket, trichomes are over-
branched—a phenotype that arises from increased ploidy levels. ECT3 was also 
found to be required for normal trichome morphogenesis, acting together (but not 

AU6

C. G. Litholdo and C. Bousquet-Antonelli

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381



redundantly) with ECT2. ECT2 and ECT3 were also found to act redundantly to 
ensure the timely emergence and proper leaf formation. This role also requires their 
m6A reading activities (Arribas-Hernández et al. 2018). Leaf morphogenesis also 
requires ECT4 but solely in backgrounds where both ECT2 and ECT3 are absent.

The loss of ECT2 induces the rapid downregulation, through degradation, of 
three trichome-morphogenesis transcripts (TTG1, ITB1, and DIS2) that carry 
m6A. This observation is consistent with the role of ECT2 as m6A reader, as in its 
absence, the m6A-signal is likely improperly decoded and transcripts targeted for 
degradation. Furthermore, it also suggests that aberrant trichome morphogenesis 
could be, at least in part, the consequence of the improper expression of these three 
transcripts (Wei et al. 2018).

In planta, ECT2 accumulates mostly in the cytoplasm, but is also found in the 
nucleus. Upon stress-induced downregulation of translation initiation (heat and 
osmotic stress), ECT2 relocalizes to stress granules, which are messenger ribonu-
cleoprotein particles (mRNPs) triage and storage centers, also containing factors of 
the translation machinery. The formation of cytoplasmic foci upon stress is also a 
feature of ECT4, but not ECT3, which is coherent with the presence in ECT2 and 
ECT4 (but not ECT3) of YPQ-rich regions, reminiscent of that found in human 
YTHDF proteins and aggregation-prone factors. The dynamic and complex subcel-
lular distribution of these readers suggests that they might decode the m6A signal in 
several post-transcriptional processes, such as splicing/maturation and/or nucleocy-
toplasmic export step.

11.3  The m5C Epitranscriptomic Mark in Plants

Compared to m6A modification, m5C is less abundant and much less research has 
been conducted so far. Transcriptome-wide m5C represents 0.4% of the total num-
ber of cytosines on human polyadenylated transcripts (Squires et al. 2012), whereas 
m6A represents 1–1.5% of the adenosines on mRNA (Ke et al. 2015). This cytosine 
methylation mark is widespread and mainly detected in tRNAs and rRNAs, affect-
ing RNA conformational structure and translational process (Chow et  al. 2007; 
Motorin and Helm 2010; Squires and Preiss 2010), but it was also identified in 
mRNAs and noncoding RNAs (Squires et al. 2012). Consensus sequence for m5C 
sites has been distinguished in Archaea, and until recently, none were found in ani-
mal and plant species (Edelheit et al. 2013). However, two enriched sequence motifs 
around m5C sites were recently detected in Arabidopsis, with the most significantly 
enriched motif at the consensus HACCR (where H = U > A > C and R = A/G) (Cui 
et al. 2017). Additionally to the consensus motif, David et al. (2017) suggested that 
RNA secondary structure may also be important to confer methylation at m5C sites, 
by demonstrating that a 50-nucleotide sequence flanking at m5C site is essential for 
methylation in a transient expression system in N. benthamiana (David et al. 2017).

The Arabidopsis transcriptome-wide profiling of m5C-containing RNAs has been 
recently mapped by two distinct approaches. First, David et  al. (2017) identified 
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more than a thousand m5C sites in mRNAs, lnRNAs, and sRNAs by RNA bisulfite 
sequencing, using several tissues and RNA methyltransferase mutants. Quantitative 
differences in methylated sites between roots, shoots, and siliques revealed a 
dynamic pattern to suggest a tissue-specific function of m5C modification (David 
et al. 2017). The second approach, using RNA immunoprecipitation followed by 
deep-sequencing, also revealed a tissue-specific regulation of m5C in various tissues 
and at different developmental stages (Cui et al. 2017). Thousands of m5C sites were 
found to be enriched around start and stop codons of thousands of expressed genes 
in young seedlings (Cui et al. 2017).

Two classes m5C writer proteins were identified in eukaryotes, the transfer RNA 
aspartic acid methyltransferase 1 (TRDMT1) [also known as DNA methyltransfer-
ase 2 (DNMT2)] found in yeast, plants, and animals (Goll et al. 2006; Burgess et al. 
2015), and the yeast tRNA specific methyltransferase 4 (TRM4) [also known as the 
human NOP2/Sun domain protein 2 (NSUN2)] (Motorin and Grosjean 1999; 
Auxilien et  al. 2012). The Arabidopsis genome encodes eight potential m5C 
 methyltransferases, two are the TRM4-like proteins, TRM4A and TRM4B (Chen 
et al. 2010; Cui et al. 2017), from which the latter has been already characterized in 
plants (David et al. 2017; Cui et al. 2017). Further analysis was undertaken, using 
loss-of- function mutants for the tRNA-specific m5C methyltransferase (TRM4B), 
revealing that m5C modification is required for proper root development and oxida-
tive stress responses. David et al. (2017) observed defects in primary root elonga-
tion due to impaired cell division at the meristematic tissue, and showed that loss of 
TRM4B increases sensitivity to oxidative stress and decreases tRNA stability. 
Accordingly, Cui et al. (2017) showed that TRM4B loss-of-function mutants exhibit 
downregulation of key genes of root development, namely SHORT HYPOCOTYL 2 
(SHY2) and INDOLE ACETIC ACID-INDUCED PROTEIN 16 (IAA16), which is 
positively correlated with the stability and m5C modification in their transcripts (Cui 
et al. 2017).

Together, these studies identified the m5C modification as another important 
methylation mark on RNA that has an impact on plant development and adaptive 
responses. Further research is needed to elucidate the mechanisms and functional 
roles of m5C-mediated regulation of protein-coding genes, and to perhaps identify 
potential m5C readers and erasers. A recent study showing that an Arabidopsis RRM 
motif-containing ALY protein preferentially binds to an m5C-modified RNA (Pfaff 
et  al. 2018) has encouraged future research efforts on this potential m5C reader. 
Arabidopsis ALY protein family functions on mRNA export, and aly mutant plants 
exhibited various defects in vegetative and reproductive development, including 
shorter primary roots, altered flower morphology and reduced seed production 
(Pfaff et al. 2018). Altogether, it seems that the m5C modification may influence 
protein-coding genes with widespread consequences for the development and stress 
responses.
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11.4  Concluding Remarks

The advances of new technologies, such as sequencing-based transcriptome-wide 
mapping, revolutionized the field of RNA chemical modifications and permitted to 
unveil a novel layer in the control of gene expression that is now known as epitran-
scriptomics or RNA epigenetics. Advances on animal epitranscriptomic regulation 
have been dazzling in the past years and several epitranscriptomic marks (including 
m1A, m5C, m6A, m6Am, ac4C, or h5mC) have been mapped transcriptome-wide in 
different cell types and environmental conditions. We learned from animal studies 
the crucial importance of these regulatory marks that control constitutive cellular 
processes and allow their reprogramming to permit organism development and 
acclimation. In plants, our current understanding of epitranscriptomics is limited to 
the m6A and m5C-based regulations in a single model plant. Nonetheless, Arabidopsis 
studies revealed that in plants also these modifications are crucial to growth and 
acclimation. It is hence now a necessity to foster more knowledge on this novel field 
of biology in model, but also in cultivated plants.

A first step is to get a global vision of the nature and patterning of chemical 
modifications on the polyadenylated transcriptome of plants. With the advent of 
global approaches such as LC-MS/MS or next-generation sequencing, one is now 
capable of not only knowing the nature and relative abundance of mRNA modifica-
tions but also to decipher their distribution on each expressed genes. Such reper-
toires might easily be obtained from diverse species, organs, environmental 
conditions, and even populations. We anticipate these data to give insights on the 
role and agronomical importance of RNA epigenetics, as did, for example, the 1001 
Arabidopsis epigenomes. Analyses and comparisons of these repertoires will give 
us clues regarding the interplay that exists between the various marks or their 
respective importance in acclimation and growth.

Of course, several fundamental questions remain to be addressed in model plants 
that will contribute to our understanding of the importance of RNA epigenetics in 
crop development and resistance to stressful conditions, encountered in cultivated 
fields. What are the actors (writers, readers, and erasers) of the different epitran-
scriptomic mark-based regulations? Understanding the molecular, cellular, and 
physiological roles of these actors will help comprehend the role of the mark and 
the interplay between marks. As an example, data already obtained from Arabidopsis 
studies on the features and role of the m6A mark can be exploited to understand the 
importance of this mark in cultivated species. With the advent of genome editing 
technologies, reverse genetic approaches on proteins of the writer complex, m6A- 
readers, and erasers can easily be conducted.

RNA epigenetics in animals is no longer an emerging field but a fast growing 
new topic of biology that appeals to more and more scientists. Of course, several 
deficiencies in the epitranscriptomic control of gene expression were linked to can-
cers and diseases. In plants, the m6A mark controls development at the embryonic 
and post-embryonic stages, and very likely required for defense against viral infec-
tions and stress responses. The community of plant scientists interested in RNA 
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epigenetics is so far quite small and must grow to foster sufficient knowledge to 
understand this novel extremely complex field of biology.
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