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 24 

Abstract 25 

 26 

One of the current major scientific challenges to sustain social-ecological systems is to improve our 27 

understanding of the spatial and temporal dynamics of the relationships between biodiversity, 28 

ecosystem functioning and ecosystem services. Here, we analyze the bundles of ecosystem services 29 

supplied by three coastal ecosystems (coastal lagoons, coral reefs and sandy beaches) along a gradient 30 

of eutrophication. Based on a state-and-transition model, we analyses the dynamic responses of 31 

ecological communities to environmental change and management actions. Although few exceptions 32 

are highlighted, increasing eutrophication in the three ecosystem types leads to a degradation of the 33 

ecosystem service bundles, particularly for nutrient and pathogen regulation/sequestration, or for the 34 

support of recreational and leisure activities. Despite few obstacles to their full use, state-and-transition 35 

models can be very powerful frameworks to integrate multiple functions and services delivered by 36 

ecosystems while accounting for their temporal dynamics.  37 
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1. Introduction 47 

 48 

The demographic and economic growth of societies is increasingly facing the ecological limits of the 49 

planet (Meadows et al., 2004). This global ecological crisis, as illustrated by major changes in 50 

ecosystem states with decreasing availability of natural resources, is accelerated by climate change. The 51 

consequences of this crisis are already observable within societies and will most likely spread and 52 

generalize in future decades (Cardinale et al., 2012 ; Isbell et al., 2017). One of the major scientific 53 

challenges for biodiversity conservation is to improve the understanding of the relationships between 54 

biodiversity, ecosystem functioning and ecosystem services (ES) to analyse the compatibility and the 55 

interdependence between biodiversity conservation objectives and ES maintenance (Harrison et al., 56 

2014). 57 

 58 

The ES concept seeks to account for the dependence of human societies on ecosystems, commonly 59 

defined as the contributions of ecosystem structure and function to human well-being (MA, 2005). 60 

Originally, ES and its monetary valuation (see Costanza et al., 1997) were primarily intended to alert 61 

public opinion and governments about the importance of well-functioning ecosystem for societies and 62 

the risks associated with the ecological crisis. Scientific developments of this concept, encouraged by 63 

its institutionalization (Mongruel et al., 2016) i.e. the dissemination of the concept in the area of 64 

environmental management decision-making, have gradually clarified its scope. It also defined multi-65 

criteria analysis as the most robust way to evaluate ES, seeking to inform decision-making processes 66 

and the establishment of public policy and management policies (Keune and Dendoncker, 2013 ; 67 

Saarikoski et al., 2016). However, 50% of ES studies focus on a single service, or on a limited number 68 

of services, without considering interactions and feedback with other services (Lee and Lautenbach, 69 

2016). This monofocal vision can lead to an operational ecosystem management based on the 70 

maximization of a single ES and potentially to the detriment of the other ones (Couvet et al., 2016).  71 

 72 

Indeed, ES depend on complex interactions among species and their abiotic environment, complex use 73 

and utilization patterns and various perceptions by beneficiaries. ES bundles are defined as sets of ES 74 

that repeatedly appear together across space or time (Raudsepp-Hearne et al., 2010). It is thus a useful 75 

concept for improving the management of ecosystems and identifying common ES tradeoffs and 76 

synergies: trade-offs arise when the provision of one service is enhanced at the cost of reducing the 77 

provision of another service, and synergies arise when multiple services are enhanced simultaneously 78 

(Raudsepp-Hearne et al., 2010). Bundle analysis seeks to inform management and decision-making for 79 



4 

reducing the cost of both tradeoffs and synergies. For example, the maximization of food produced by 80 

agricultural ecosystems in the context of intensive agriculture has led to an erosion of supporting (e.g. 81 

soil fertility), regulating (e.g. regulation of nutrients) and cultural (e.g. homogeneous landscapes) ES 82 

(Power, 2010).  83 

 84 

More recent scientific developments indicate that separating, a minima, the supply and demand of ES 85 

helps to refine and clarify the bundle analysis (Villamagna et al., 2013 ; Burkhard et al., 2014 ; Levrel 86 

et al., 2016 ; Crouzat et al., 2016). The supply represents the ecosystem capacity to provide ES (also 87 

called potential), whereas the demand is the amount of services used, consumed but also desired by the 88 

society (Villamagna et al., 2013). Different approaches can be used to analyze trade-offs and synergies 89 

depending on whether the focus is on supply or demand for ES (Mouchet et al., 2014).  90 

 91 

Coastal habitats are among the habitats the most exposed to current direct and indirect drivers of 92 

change (Henson et al., 2017). Among them, sandy beaches, coastal lagoons and coral reefs are 93 

particularly vulnerable (Defeo, 2009 ; Kennish and Paerl, 2010 ; Pendleton et al., 2016). Among these 94 

drivers of change, eutrophication is particularly important, prevalent and at the origin of significant 95 

ecological and social changes (Diaz and Rosenberg, 2008 ; Wilkinson, 2017). Although the ecological 96 

impacts of eutrophication on these ecosystems are well studied today, its effects on ES bundles are little 97 

explored. The ES approach can provide an interesting perspective to understand the ecological impacts 98 

and associated risks of eutrophication to better inform decision-making processes and management 99 

strategies. Here, we assess the effects of eutrophication in sandy beaches, coastal lagoons and coral 100 

reefs on ES bundles. Our aim is to identify trade-offs and synergies between ES and the possible 101 

societal benefits associated to the recovery of the ecological functions for these ecosystems. 102 

 103 

2. Materials and Methods 104 

 105 

2.1. State-and-transition model 106 

 107 

State-and-transition models are an operational and conceptual framework for organizing and providing 108 

information about ecosystem dynamics and management outcomes describing how communities 109 

respond to pressures and management (Briske et al., 2005 ; Bestelmeyer, 2015). It has been developed 110 

by Westoby et al. (1989) for rangeland ecological sites in southern Arizona. While its scientific 111 

application is widespread for some terrestrial habitats (e.g. McIntyre and Lavorel, 2001 ; Quétier et al., 112 
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2007 ; Tarrason et al., 2016), its application in the marine environment remains almost non-existent.  113 

 114 

We apply here the two first steps of the operational framework described by Lavorel et al. (2015) - as 115 

the aim of our paper is slightly different and isn't to identify and manage adaptation services - to three 116 

marine ecosystems to explore the evolutions of communities and ES bundles supply along a gradient of 117 

eutrophication. Eutrophication and management measures (e.g. nutrient flow, ecological restoration) 118 

are seen as drivers determining the ecosystem state, i.e. specific biodiversity and functioning, at a 119 

particular time and place. The first step aims to characterize the ecosystem dynamics under 120 

eutrophication through state-and-transition models: alternative states may be represented by dominant 121 

species and associated biodiversity based on empirical and prospective studies. For each ecosystem 122 

state, i.e. eutrophication level, bundles of ecosystem services supplied are identified. The second step 123 

aims to describe and, if possible, to quantify ecosystem responses to eutrophication levels. This 124 

involves changes affecting ecosystem functions and supply of ES.  125 

 126 

We used the classification of the Common International Classification of Ecosystem Services (CICES) 127 

and the list of marine ES defined by Liquete et al. (2013) to defined the ES constituting bundles 128 

(TABLE 1). The main distinction between these classifications concerns supporting services or 129 

ecological functions. These latter are the underpinning structures and processes that ultimately give rise 130 

to ecosystem services - sometimes defined as ‘intermediate services’. They are not covered in CICES 131 

which seeks to only identify the final services that link to the goods and benefits that are valued by 132 

people (i.e. demand). Since we focus here on the ES supply, main ecological functions are considered 133 

as recommended by Liquete et al. (2013). 134 

 135 

Each step involved a literature review regarding ecosystem responses to eutrophication that was 136 

supplemented with expert-knowledge. The literature review encompassed knowledge obtained and 137 

disseminated on a global scale, while expert knowledge focused on data observed on a more local 138 

scale, based on their field studies. However, experts had a good understanding of these ecosystems 139 

which allowed them to pronounce in a qualitative way where data gaps were identified. All information 140 

were compiled within a matrix. Information was then coded and analyzed to produce spider plots 141 

summarizing the variation of ES supply between states. Five levels of ES supplied were considered : 142 

"0: inexistent", "1: very low", "2: low", "3: medium", "4: high", "5: very high". 143 

 144 

TABLE 1: Correspondence between CICES and selected ES 145 
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CICES Liquete et al. (2013) Selected ES for the study 

Section Division   

Provisioning  

Nutrition  
Food provision 

 
P1. Food through fisheries  

Materials  Biotic materials and biofuels 
P2. Material  

P3. Molecules 

Energy   - 

Regulation & 

Maintenance  

Mediation of waste, toxics and other nuisances   - 

Mediation of flows   R1. Coastal protection 

Maintenance of physical, chemical, biological 

conditions  

Water purification 

Air quality regulation 

Coastal protection 

Climate regulation 

Weather regulation 

Biological regulation 

R2. Nutrient regulation/sequestration 

R3. Pathogen regulation/sequestration  

R4. Climate regulation  

Cultural 

Physical and intellectual interactions with 

biota, ecosystems, and land-/seascapes 

[environmental settings]  

Recreation and tourism 

Cognitive effects 

C1. Support of recreational and leisure 

activities  

C2. Contribution to a pleasant landscape  

C3. Contribution to culture and territorial 

identity 

Spiritual, symbolic and other interactions with 

biota, ecosystems, and land-/seascapes 

[environmental settings] 

Symbolic and aesthetic 

values 
C4. Emblematic biodiversity 

- - 
Ocean nourrishment 

Life cycle maintenance 

F1. Habitat 

F2. Trophic networks 

F3. Recruitment 

 146 

2.2. Driver of transition : eutrophication 147 

 148 

Eutrophication occurs when the nutrient enrichment process (especially nitrogen and / or phosphorus 149 

compounds) leads to an increase in primary production, growth and biomass of phytoplankton and / or 150 

macroalgae, as well as a change in the equilibrium of organisms and a degradation of water quality 151 

(Cloern, 2001; Ferreira et al., 2011). It is a natural phenomenon and ecosystems have a level of 152 

resilience that allows them to resist against the high variability of nutrient enrichment. This resilience 153 

may be insufficient when excessive nutrient enrichment occurs from human activities. In Europe, the 154 

volume of nitrogen transported to the coastal areas is now four times higher than that of natural origin 155 

(Voss et al., 2011). This eutrophication, with an anthropogenic origin is a real issue worldwide because 156 

of its important socio-economic consequences: loss of tourist potential and water use for recreational 157 

activities, unfit seafood or increased maintenance costs associated with algal removal (Lefebvre, 2011). 158 

From a strictly ecological point of view, the eutrophication manifestations are classically distinguished 159 

into two types, namely the development of opportunistic macroalgae and the development of 160 

phytoplankton blooms. By modifying environmental conditions, these macroalgal and phytoplankton 161 
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developments will impact the entire ecosystem and ES. 162 

 163 

2.3. Three coastal case studies: sandy beaches, Mediterranean coastal lagoons and coral reefs 164 

 165 

The state-and-transition model is applied to sandy beaches, Mediterranean coastal lagoons and coral 166 

reefs, three ecosystems with different biophysical characteristics related to contrasted ES supply. 167 

Present at several latitudes, these ecosystems undergo changes proven in various parts of the world, 168 

linked to a multitude of pressures among which eutrophication is particularly important. Beyond their 169 

ecological functioning, these ecosystems underlie many uses and have important cultural and heritage 170 

values. We believe that an increased awareness - by society - of the changes could favor the levers of 171 

action to reverse the negative trend they are undergoing (Marzano et al., 2015). 172 

 173 

Sandy beaches are defined as accumulations of non silty fine sediment along coastlines (Davis 2015) 174 

including the entire foreshore since the level of the Mean High Water Springs until the level of the 175 

Mean Low Water Springs. It constitutes a highly dynamic ecotone mainly influenced by its physical 176 

environment. Indeed, the composition of species assemblages and the organism abundances are 177 

correlated with physical factors such as wind, beach slope, tidal amplitude or sediment granulometry 178 

(McLachlan and Dorvlo, 2005). Unfairly characterized as lifeless deserts (McDermott 1983), sandy 179 

beach ecosystems harbor many organisms that are highly specialized and adapted to life in mobile 180 

sediments leading to specific ecological functions (McLachlan and Brown 2006). Where conditions are 181 

favorable to the development of opportunistic macroalgae, eutrophication will generate deposits on the 182 

sandy beaches, the anaerobic decomposition will evolve toxic reducing substances, including hydrogen 183 

sulfide. Sandy beaches are present worldwide constituting 70% of the ice-free coastline (McLachlan 184 

and Brown 2006). Eutrophication occurs in many parts of the world (Smetacek and Zingone, 2013). In 185 

France, green tides punctually occur along the Channel-Atlantic coast during spring and summer.  186 

 187 

Mediterranean coastal lagoons are semi-enclosed ecosystems spread along the European coasts 188 

(Fiandrino et al., 2017). They are expanses of shallow coastal water, of varying salinity and water 189 

volume, partially separated from the sea by sand banks or shingle, or, less frequently, by rocks (Hill et 190 

al., 2004). Salinity may vary from oligohaline to hyperhaline ranges depending on rainfall, freshwater 191 

inland and underground water supplies, evaporation and through the addition of fresh seawater from 192 

storms or tidal exchange. These ecosystems support habitats with or without macroalgae and 193 

phanerogams vegetation. Eutrophication particularly occurs in many French mediteranean coastal 194 
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lagoons with a strong gradient from oligotrophic to hypertrophic states (Souchu et al., 2010 ; Bec et al., 195 

2011 ; Leruste et al., 2016 ; Le Fur et al., 2017). Where conditions are favorable to eutrophication, the 196 

development of opportunistic macro- and micro-algae is observed with a marked change of primary 197 

producers (Schramm, 1999 ; Leruste et al., 2016 ; Le Fur et al., 2017). 198 

 199 

Coral reefs are developed on the immersed bottoms of volcanic islands in the intertropical zone. The 200 

reefs are constructed from a mineral substrate (calcium carbonate) secreted primarily by the polyps of 201 

scleractinian corals. This habitat is made of a reef surface and a non-reef surface (lagoon and 202 

sedimentary terraces). Despite striving in nutrient-poor waters, coral reefs belong to the most 203 

productive ecosystems on Earth due to efficient retention and recycling of carbon and nutrients 204 

(famously referred to as the "Darwin's Paradox”). Eutrophication has long-term negative impacts on the 205 

structure and functioning of coral reef ecosystems. Increasing nutrient levels can: i) increase the 206 

number and prevalence of coral diseases (Vega Thurber et al., 2013) and the susceptibility of corals to 207 

temperature and light-induced bleaching (Wiedenmann et al., 2013), ii) reduce coral reproduction and 208 

skeletal growth (Tomascik and Sander, 1987; Koop et al., 2001), iii) stimulate the growth of algae, 209 

heterotrophic sponges and benthic cyanobacterial mats, which in turn can reduce coral recruitment, 210 

alter the coral microbiome and drive reef decline further (Mumby and Steneck, 2008; Brocke et al., 211 

2015; Pawlik et al., 2016; Ford et al., 2018), iv) enhance periodic outbreaks of the corallivorous crown-212 

of-thorns starfish Acanthaster planci (Brodie et al., 2005), and v) promote higher bioerosion rates by 213 

favouring the activity of filter-feeders such as endolithic bivalves and bioeroding sponges (Fabricius, 214 

2005). Coral reefs are present worldwide in the intertropical zone. They are one of the most emblematic 215 

tropical ecosystems because of its size, geomorphological diversity, biodiversity and high endemicity 216 

(Gardes and Salvat, 2008). In France, eutrophication occurs in coral reefs located along the most 217 

inhabited volcanic islands (e.g. Martinique, Guadeloupe, La Réunion). 218 

 219 

 220 

3. Results 221 

 222 

3.1. State and transition description 223 

 224 

For each ecosystem, ecological functioning is described by dominant species and associated 225 

biodiversity for three to four levels of eutrophication (FIGURE 1). 226 

 227 
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3.1.1. Sandy beaches 228 

 229 

First ecological state of sandy beaches is described by groups of species defined as reference species 230 

living in a non-eutrophic ecosystem, where no green tides occur (state I). In some French Atlantic 231 

sandy beaches, these reference species, for marine benthic macrofauna, are part of Tellinidae, 232 

Spionidae, Amphiuridae and Nephtyidae families (Quillien et al., 2015). The continuous supply of 233 

nutrients (exogenous inputs or release from sediments) (transition 1) causes a slight excess and leads to 234 

the gradual development of green algae. As a response, dominant species change in this eutrophic 235 

ecosystem (state II) with an appearance of new dominant species (Donacidae, Oweniidae, 236 

Magelonidae) and the decrease, even the disappearance, of some reference species (Tellinidae, 237 

Spionidae, Amphiuridae) (Quillien et al., 2015). Where hydrodynamic conditions are favorable, the 238 

massive supply of nutrients (transition 2) leads to the massive and rapid development of green algae 239 

forming green tides. Species of reference have disappeared in favor of species (Donacidae, Oweniidae) 240 

better adapted to eutrophic conditions (state III). Abundance and biomass are higher in this new 241 

eutrophic ecosystem, but the species richness is lower (Quillien et al., 2015). 242 

 243 

3.1.2. Mediterranean coastal lagoons  244 

 245 

First ecological state of primary production of Mediterranean coastal lagoon is characterized by a 246 

dominance of reference species that are typical of a lagoon environment in oligotrophic conditions 247 

(state I). For French Mediterranean coastal lagoons, the reference genus are the marine phanerogams 248 

Zostera and Ruppia which form seagrass beds, and perennial benthic macroalgae (eg. Cystoseira sp., 249 

Acetabularia sp.). The continuous supply of nutrients (transition 1) causes a slight excess and leads to 250 

the gradual disappearance of the reference species and the slow and sustainable development of algae 251 

(Schramm, 1999). State II is dominated by a dominance of opportunistic and epiphytic macroalgae. 252 

Most are red or brown algae, which can form drifting populations or seasonaly bloom on substrates or 253 

other macrophytes. The massive supply of nutrients (transition 2) leads to the massive and rapid 254 

dominance of free-floating blooming opportunistic algae (state III). These algae have a shorter lifetime 255 

and a higher growth rate than state II algae. Their ability to absorb nutrients is higher, making them 256 

more competitive than other species in highly eutrophic environments. In case of proliferation, they can 257 

cover and eliminate seagrass beds. In case of massive development of these species, they fill the whole 258 

column of water and reach the surface, forming green tides. In the most eutrophicated systems, 259 

phytoplankton community dominates the water column (transition 3, state IV). The proliferation of 260 

macroalgae and phytoplankton can contribute to triggering the phenomenon of anoxic crisis. 261 
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 262 

3.1.3. Coral reefs 263 

 264 

Combining anthropogenic and natural stressors lead to changes in the ecological functioning of coral 265 

reefs (Jackson et al., 2014; de Bakker et al., 2016). First ecological state of coral reefs is characterized 266 

by the dominance of hard corals. In the Caribbean reefs of Curaçao and Bonaire, hard coral represented 267 

two thirds of the benthic community cover in this initial state. Other benthic communities present were 268 

algal turfs, crustose coralline algae, sponges and benthic cyanobacterial mats (de Bakker et al., 2017). 269 

The increasing pressure (transition 1) leads to the development of algal turfs and fleshy macroalgae 270 

which are fast-growing organisms and a gradual decline of coral cover (e.g. Hughes et al., 2018), in 271 

particular from competitive losses against algae under conditions of reduced herbivory (Vermeij et al., 272 

2010) (state II). Algal turfs are multispecies assemblages of diminutive, mostly filamentous algae, 273 

including cyanobacteria. Due to their opportunistic life-history characteristics, they are able to rapidly 274 

occupy newly available substratum. Besides, they inhibit coral recruitment. Fleshy macroalgae are 275 

commonly defined as more upright and anatomically complex algae with frond extension > 1 cm (e.g., 276 

Dictyota spp. and Lobophora spp.). They are frequently superior competitors against corals, inhibiting 277 

coral growth, reproduction, and recruitment (Nugues and Bak, 2006). With a continuous and increasing 278 

pressure (transition 2), benthic cyanobacterial mats increase and become dominant at the expense of 279 

algal turfs and macroalgae while sponges showed a more limited but significant increase. Benthic 280 

cyanobacteria mats benefit from increased levels of nutrient (Brocke et al., 2015) but also from high 281 

grazing pressure and elevated water temperature (Bender et al., 2014). In the Caribbean reefs of 282 

Curaçao and Bonaire, hard coral and algal turfs represented both around 10% of the benthic community 283 

cover in this state III while benthic cyanobacterial mats represented more than 20% (de Bakker et al., 284 

2017). 285 

 286 

 287 
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FIGURE 1: Main characteristics of the ecosystem states and transitions (sources: Quillien et al. (2015) 288 

for sandy beaches; Schramm (1999) for Mediterranean coastal lagoons; de Bakker et al. (2017) for 289 

coral reefs) and relative levels of ES supplied by the ecosystem in each state of eutrophication 290 

(0 = inexistent ; 1 = very low ; 2 = low ; 3 = medium ; 4 = high ; 5 = very high ; R1 = Coastal protection (vegetal or animal reef 291 
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supplying a protection against erosion and submersion) ; R2 = Nutrient regulation/sequestration (ecosystem capacity to supply a "good 292 

quality water", limiting the risk of eutrophication, encouraging shell fish farming…) ; R3 = Pathogen regulation/sequestration (ability of 293 

ecosystems to purify the environment through hyperfiltration processes) ; R4 = Climate regulation (through GES sequestration/storage) ; 294 

P1 = Human food through fisheries and aquaculture ; P2 = Material (Animal oil, sponges, algae… for domestic uses, industry, 295 

agriculture, aquaculture…) ; P3 = Molecules (marine organisms from which are extracted molecules potentially useful for medicine) ; C1 296 

= Support of recreational and leisure activities ; C2 = Contribution to a pleasant landscape ; C3 = Contribution to culture and territorial 297 

identity ; C4 = Emblematic biodiversity (i.e. protected or rared species) ; F1 = Habitat (nursery, reproduction area…) ; F2 = Trophic 298 

networks ; F3 = Recruitment) 299 

 300 

3.2. ES bundle description (FIGURE_1) 301 

 302 

3.2.1. Sandy beaches 303 

 304 

Coastal protection is provided by both the physical structure of the beach and specific fauna and flora. 305 

As ES only considers the roles played by biodiversity, coastal protection (R1) focuses on the latter, 306 

ables to reduce the hydrodynamics or to stabilize the substrate. Indeed, bioturbating organisms 307 

contribute to the stabilization of the substrate and the tide mark also limits the erosion phenomenon by 308 

trapping the sand. But the presence of Ulva mats (states II and III) impacts the hydrodynamics 309 

(Tambroni et al., 2016), thus affecting the sediment transport and ultimately the ES. Nutrient regulation 310 

(R2) decreases along the gradient of eutrophication: beach ecosystems are important in processing 311 

large quantities of organic material and recycling nutrients back to coastal waters (Schlacher et al., 312 

2008) but the release of excess nutrients and the presence of green macroalgae mats probably saturate 313 

the filtering function and the ES as well. The capacity of beach ecosystems to provide a service of 314 

pathogen regulation (R3) is not well-documented but in the same way as for nutrient regulation (R2) 315 

the alteration of the filtering function can affect this ES. Climate regulation (R4) is constant between 316 

state I to III as sequestration through the phytoplanktonic, microphytobenthic and green algae activity 317 

is a short term function. 318 

 319 

Human food (P1) is highly decreasing along the eutrophication gradient because of the changes in 320 

species assemblages affecting the shellfish fishing activities. Indeed, sandy beaches support 321 

professionnal fisheries of the bivalve Donax trunculus, which is of commercial importance (McLachlan 322 

and Brown, 2006) but at eutrophication states (states II and III), a decrease in its density has been 323 

shown (Quillien et al., 2015). Materials (P2) is slightly provided by driftwood and seashell which can 324 

be collected but highly increase in state III because of the capacity of green algae to be collected and 325 

used in industry (pet food, cosmetics...). Molecules (P3) is potentially provided in states I and II as the 326 

diversity that is harboured by sandy beaches is high, specialized and unique and effectively provided 327 
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through Arenicola marina, which is collected and bred to get hemoglobin for medical uses. In state III, 328 

molecules are effectively extracted from Ulva but the eutrophication impacts the other organisms, and 329 

more specifically affects the overall diversity thus decreasing the potential pool of molecules. 330 

 331 

Cultural ES (C1 to C4) decrease along the eutrophication gradient as the landscape, the leisure 332 

activities, the territorial identity and the emblematic biodiversity are affected by green tides 333 

(McLachlan and Brown, 2006 ; Schlacher, 2008 ; Levain, 2013). 334 

 335 

The habitat function (F1) is altered as green tides affect nurseries of various species (McLachlan and 336 

Brown, 2006 ; Quillien et al., 2016 ; Le Luherne et al., 2017). Trophic networks (F2) in state I is high 337 

because the food web is complex, showing several potential carbon pathways and diverse trophic 338 

niches while in eutrophication states, the trophic network is homogenized/simplified and shows less 339 

niche differentiation (Quillien et al., 2016). Recruitment (F3) is high in state I for many species and 340 

increases between states I and II as the presence of Ulva mats influence local hydrodynamics, which in 341 

turn influence the recruitment of some species. For example, in Brittany, the presence of heterogenous 342 

cover of Ulva enhances the recruitment of the bivalve Donax vittattus (Quillien et al., 2015). However 343 

when the Ulva biomass is high, macroalgae affect the recruitment, community structure and production 344 

of benthic fauna, including meiofauna, macrofauna and flatfish (Quillien, 2016). 345 

 346 

3.2.2. Mediterranean coastal lagoons 347 

 348 

On Mediterranean coastal lagoon ecosystems, coastal protection (R1) is estimated to decrease with the 349 

alteration and decline of seagrass meadows which have the capacity to attenuate waves and to slow 350 

down currents (Paquier et al., 2014). In a logical way, nutrient regulation (R2) decreases along the 351 

gradient of eutrophication. Seagrass beds play an important role in regulating benthic nutrient fluxes in 352 

lagoons as they increase the ability to store nutrients sustainably. The flow of nutrients from the 353 

sediment to the water column and, at the same time, eutrophication levels are thus greater in lagoons 354 

without seagrass (Viaroli et al., 2008 ; Ouisse et al., 2013). Pathogen regulation (R3) is more provided 355 

in states I and II than in states III and IV because of the algicidal effects of Zostera marina L. and 356 

Zostera noltei Hornem. on Alexandrium catenella (Laabir et al., 2013). More generally, seagrass 357 

ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates (Lamb et al., 358 

2017). However, emergence of toxic dinoflagellate is observed in oligotrophic conditions (Collos et al., 359 

2009) which leads to weighting the pathogen regulation service in state I. Climate regulation (R4) is 360 
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particularly high in state I and II because of the potential long-term capacity to sequestrate greenhouse 361 

gases in the sediment through perennial macrophytes. 362 

 363 

Human food (P1) is the most important provisioning service for Mediterranean coastal lagoons 364 

(Newton et al., 2018) and is mainly based on shellfish farming. The quantity or the state of the suitable 365 

areas for shellfish farming indicate the state of this ES. As shellfish farming needs a high rate of 366 

primary productivity to feed shellfish, the state II meets the most optimal conditions. On the one hand, 367 

oligotrophic conditions can lead to an under-capacity of production and on the other hand, a massive 368 

supply of nutrients can lead to anoxic crisis and the death of shellfish stocks (Cloern, 2001). Molecules 369 

(P3) exist as a potential but no successful exemple can be cited nowadays. 370 

 371 

Emblematic biodiversity (C4) is varying along the eutrophication gradient. In states I and II, protected 372 

and rare species like Zostera sp., Hippocampus sp., avifauna (e.g. Anas penelope, Cygnus olor, Egretta 373 

garzetta, Ardea cinerea) are able to contribute to human well-being because of their mere existence, but 374 

also because of their role in supporting of some recreational and leisure activities (C4) like scuba-375 

diving, snorkeling and nature watching. In states III and IV, the presence of these protected and rare 376 

species decreases for the benefit of a more restrictive number of other protected species like flamingos 377 

(de Wit et al., 2015). The contribution of Mediterranean coastal lagoon ecosystems to a pleasant 378 

landscape (C2) is mainly based on avifauna, and in a lesser extent, on other living components 379 

including underwater seascape (Chazée et al., 2017). Avifauna is present from state I to IV even if the 380 

assemblage of species varies between them. However, the capacity of Mediterranean coastal lagoons to 381 

provide pleasant underwater seascape can be considered altered with the degradation and decline of 382 

Zostera meadows. Biodiversity of coastal lagoons also contributes to culture and territorial identity 383 

(C3) as they are a socialization area, sometimes assimilated to a urban park (Chazée et al., 2017). 384 

 385 

The habitat function (F1) is altered with degradation and decline of Zostera meadows since they are a 386 

habitat for many species. Indeed, the leaf canopy and the network of rhizomes and roots create hiding 387 

places to avoid predation. Mediterranean coastal lagoons also provide higher temperature during 388 

growth and food to some fish species like Sparus aurata, which allow good lipid reserves, and large 389 

sizes of juveniles, which may be very important to their survival over winter (Tournois et al., 2013 ; 390 

Isnard et al., 2015). Trophic networks (F2) in state I is high because of its high complexity, which then 391 

decreases along the eutrophication gradient until low complexity in degraded states (Pearson and 392 

Rosenberg, 1978). As a consequence, if enrichment of food webs in lagoons is altered, the 393 
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consequences for fishery resources could be important with an impact on recruitment (F3). However, 394 

the carrying capacity for juvenile oysters of oligotrophic lagoons is questioned (Lagarde et al., 2017) 395 

and leads to weighting the recruitment function in state I. 396 

 397 

3.2.3. Coral reefs 398 

 399 

Coastal protection (R1) is an important service provided by coral reefs as they can dissipate 97% of the 400 

wave energy that would otherwise impact shorelines (Ferrario et al., 2014). As eutrophication leads to 401 

the loss of corals, water depth between the reef crest and the surface increases and should result in a 402 

less effective, or even nonexistent, ES. Nutrient regulation (R2) decreases along the gradient of 403 

eutrophication. This ES is intensively performed by zooxanthellae in living coral reefs (state I). The 404 

risk of hyper-eutrophication is thus greater in altered or dead coral reefs. Moreover, cyanobacterial 405 

mats and sponges who are also able to produce the ES in state III can be easily washed away by storms. 406 

Pathogen regulation (R3) also decreases along from state I to III. Turf algae and macroalgae (state II) 407 

alter the coral microbiome and elevate putative pathogen loads (Vega-Thurber et al., 2013 ; Zanefeld et 408 

al., 2016 ; Pratte et al., 2018). Living coral reefs (state I) also widely contribute to climate regulation 409 

(R4), stocking greenhouse gases through the production of carbonates (Roberts et al., 2017). 410 

 411 

Human food (P1) is mainly based on reef fisheries. Coral-dominated reefs (state I) are the most 412 

productive (Hughes et al., 2017). Depending on structural complexity, multi-species fisheries can shift 413 

towards herbivorous fish species (state II). However, overfishing of herbivorous fishes prevents the 414 

return to state I (Hicks et al., 2016). Bottoms lacking structural complexity (state III) become very poor 415 

in target species. Coral ecosystems are particularly rich in molecules (P3) because of the wide 416 

competition between species that leads to a diversity of chemical defense by organisms (Banaigs et al., 417 

2016). State I supports a high diversity of organisms and thus potential biomolecules. Cyanobacteria 418 

and sponges (state III) are also chemically rich. However, chemical defense could lessen in absence of 419 

consumers. For example, sponge communities have become dominated by fast-growing species that 420 

lack chemical defenses on reefs where sponge-eating angelfishes and parrotfishes have been removed 421 

by overfishing (Loh and Pawlik, 2014). 422 

 423 

In many tropical societies, relations to nature are often very different from those related to the Western 424 

lifestyle and the distinction between culture and nature is sometimes blurred. In these tropical contexts, 425 

the difficult resilience and adaptive capacity to abrupt changes in coral reefs (eutrophication and other 426 
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pressures) can alter cultural ESs (C1 ; C2 ; C3) from state I to state III (Sterling et al., 2017).  427 

 428 

Coral-dominated reefs (state I) are richer in habitat (F1), trophic networks (F2) and recruitment  (F3) 429 

than algal dominated reefs and cyanobacterial mats. Corals provide shelter and food for a large 430 

diversity of benthic organisms and allow the creation of complex trophic networks. Algal-dominated 431 

state can benefit some herbivorous fishes, but large fleshy macroalgae and cyanobacterial mats are 432 

often unpalatable to fishes. Mesopredators can switch prey, shortening food chains, in response to coral 433 

reef degradation (Hempson et al., 2017). The three dimensional structure of corals are important to fish 434 

recruitment, which can, in turn, increase herbivory and favor coral dominance via positive feedback 435 

mechanisms (Mumby and Steneck, 2008). 436 

 437 

4. Discussion 438 

 439 

4.1. Evolution of bundles of ecosystem services 440 

 441 

ES bundles are very important in state I for each ecosystem, determined in part by their ability to 442 

provide the three ecological functions (habitat, recruitment, food networks) that support the ES set. The 443 

bundle is thus particularly strong for coral reefs but also very important for sandy beaches and coastal 444 

lagoons. Changes along the eutrophication gradient are essentially a shrinking of ES bundles. Indeed, 445 

for all ecosystems, nearly all ES decrease, nutrients and pathogen regulation/sequestration or the 446 

support of recreational and leisure activities being especially impacted. This contrasts with some results 447 

published in terrestrial context regarding different drivers of change. For instance in floodplain 448 

ecosystems, supply of provisioning ES decrease (e.g. water for irrigation) while regulating and cultural 449 

ES increase (e.g. salinity control) between current situation and climate change (Colloff et al., 2016a). 450 

In the same way, higher intensity fire in some forests can lead to increase several ES (e.g. groundwater 451 

storage and erosion prevention) (Colloff et al., 2016b). In this study, only few ES increase. For 452 

instance, the capacity of coral reefs to provide molecules for medicine decreases between the two first 453 

states but increases again in state III, dominated by chemically rich cyanobacteria and sponges. The 454 

capacity of sandy beaches to support recruitment function increases with the proliferation of green 455 

algae as the latter can reduce hydrodynamics intensity allowing the fixation of larvae. When green tides 456 

occur, sandy beaches also increase their capacity to provide material as algae might be collected and 457 

used in industry for pet food and cosmetics. Finally, the capacity of Mediterranean coastal lagoon to 458 

provide food through shellfish farming increases between states I and II as nutrient flows increase 459 
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shellfish productivity. However, excessive nutrient flows occurring in states III to IV can lead to 460 

shellfish mortality thus decreasing ES supply. Thus, for each of the three coastal ecosystems, ES 461 

favored by eutrophication may be of interest for specific uses and industries (medicine, industry for pet 462 

food and cosmetics, shellfish farming). However, there are some trade-offs between these few 463 

increasing ES and all other decreasing ES supplied in eutrophicated states. Potentially, increasing ES 464 

can be likened to “adaptation services” i.e. the benefits to people from increased social ability to 465 

respond to change, provided by the capacity of ecosystems to moderate and adapt to climate change 466 

and variability (Lavorel et al., 2015) but have to be explored through the concept of ES demand as it 467 

refers to a societal choice. 468 

 469 

4.2. Potential impacts on ES demand 470 

 471 

ES demand is not explored here, but we can easily imagine that a deterioration of almost all ES in 472 

increasing eutrophic would no longer meet the societal demand for use and consumption of these ES, 473 

thus turning into an expression of a societal demand for the conservation of these ecosystems. For 474 

example, in Brittany (France), local environmental protection associations have been created and 475 

mobilized against green algae after the the deaths of a horse, dogs and wild boar linked to gas 476 

emissions generated by green tides was broadcasted into local and national medias (Levain, 2013). 477 

Another example is the French NGO Coral Guardian, created in 2012 in response to the multiple 478 

pressures these ecosystems are undergoing and their impacts on local communities.  479 

 480 

In the few cases where increased eutrophication can favor a given ES, some stakeholders can express a 481 

new demand, positioning themselves in favor of a slight or a significant eutrophication because an 482 

economic activity could result of it. This could be the case for shellfish farmers in Mediterranean 483 

lagoons, for companies cleaning and transforming green algae along the French Atlantic coast, or for 484 

pharmaceutical industries towards molecules of cyanobacterial mats and sponges in tropical 485 

environments. Cyanobacteria and macroalgae can also potentially generate research and development 486 

interest in bioenergy production due to increasing and contextual demand for bioenergy (Mohan et al., 487 

2016). Otherwhise, even if the cleaning process of macroalgae is still costly (Morand and Merceron, 488 

2005), industrial utilization of this macroalgal biomass is in full growth worldwide (Abd El-Baky et al., 489 

2009 ; Khan et al., 2016 ; Qiu et al., 2017) and could bear these costs for economic purposes which 490 

would not solve the problem of eutrophication at source. Hence the interest of communicating at the 491 

scale of the ES bundles so that society and decision-makers can make their own trade-offs, balancing 492 
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the gains obtained from enhancing a specific ES with the loss of other ES of the bundle. Another 493 

example: in the case of the Water Framework Directive, cost-benefit analysis of achieving the good 494 

environmental status can lead to the argument that costs to restore ecological functions and ES are 495 

disproportionate regarding the benefits associated to this restoration. This is due to methodological and 496 

conceptual issues regarding the assessment of benefits focusing on few ES (Feuillette et al., 2016). To 497 

avoid this situation, decision-makers could really use state-and-transition models to better understand 498 

the consequences of eutrophication on the ES bundle as a whole and better analyse the cost and 499 

benefits. 500 

 501 

4.3. State-and-transition models : pros and cons 502 

 503 

The use of state-and-transition models to explore the dynamics of ecosystems and ES is slightly 504 

growing (Briske et al., 2005 ; Bestelmeyer, 2015), but its application to marine and coastal ecosystems 505 

remained almost non-existent. The lessons learned from this exploratory application are multiple. State-506 

and-transition model can be a very powerful framework to work in an interdisciplinary perspective 507 

taking into account all functions and services delivered by the ecosystem and avoiding the conclusions 508 

focused on single service. It meets the challenge of strengthening the links between biodiversity, 509 

ecological functioning and ecosystem services (Harrison et al., 2014).It is also relevant to take into 510 

account the temporal dynamics of ES (Colloff et al., 2016b) which are too often ignored . Otherwise, it 511 

could help identify knowledge and data gaps. In this study, a significant heterogeneity thus remains 512 

regarding the available knowledge and data according to the considered ecosystems, ecosystem 513 

services, states and transitions : (i) there are more quantitative data on coral reefs than on sandy 514 

beaches as the former are much more explored ; (ii) there is thus a lack of studies exploring the climate 515 

regulation function of sandy beaches, as well as their role in pathogen sequestration, or in harboring 516 

species showing interesting molecules for medicine ; (iii) there are more data concerning the supply of 517 

provisioning ES than cultural ES since the latter is more studied in the light of the societal demand, 518 

based on socio-economic indicators ; (iv) the transition from coral-dominated to algae-dominated reefs 519 

and its associated states are much more documented than the state and transition to cyanobacterial 520 

mats. To fulfill these gaps, state-and-transition approach can be used as a mean to structure study 521 

designs and sampling strategies. The latter would provide new eutrophication response indicators and 522 

would validate or not the expected ES changes. This would ultimately improve understanding of the 523 

trade-offs in ecosystem values (McIntyre, 2008).  524 

 525 
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The most difficult and challenging step for experts involved in state-and-transition models is to 526 

quantify each ES based on qualitative and heterogeneous quantitative data. To create a consensus 527 

regarding the level of supply granted to each ES, the analytical framework could be complemented by 528 

the use of focus groups or by expanding the size of the panel of experts complemented by the use of the 529 

Delphi method for example (Filyushkina et al., 2018).  530 

 531 

4.4. How to reverse the situation? 532 

 533 

The transition from eutrophic states to initial states depends on the ecosystem resilience. While 534 

Mediterranean coastal lagoons have already proved a resilience after years of efforts to reduce nutrient 535 

inputs (Leruste et al., 2016), reef recovery to a coral-dominated state is rare (but see Adjeroud et al., 536 

2018). The transition from coral-dominated to macro-algal dominated reefs can be a regime shift, 537 

making it difficult to reverse to the previous state because of strong feedback processes (Hugues et al., 538 

2017). In addition, the eutrophication management must be carried out taking into account also the 539 

multiple stressors context (global change, overfishing, urbanization, etc.). 540 

 541 

In 2016, the eutrophication management costed € 272 million in metropolitan France distributed as 542 

follows: € 6.6 million of monitoring and information costs; € 262 million of avoidance costs targeting 543 

both reduction of agricultural inputs (41%) and domestic inputs (59%); € 2.5 million of restoration and 544 

mitigation costs (Henry et al., 2018). Specifically, the eutrophication management can be carried out at 545 

two levels: upstream by focusing on the causes (control of pollution flows from domestic, agricultural 546 

or industrial sources) in order to restore the ecosystem; or downstream by tackling these symptoms 547 

(dilution action via mixing water, water reoxygenation, green algae cleaning…) (Charlier et al., 2006). 548 

The latter does not orient the ecosystem towards an initial state so we believe that upstream strategies 549 

for the restoration of eutrophic ecosystems are essential, before any other remedial measures. However, 550 

depending on the source type of pollution it may be challenging to control the pollution flows. Since 551 

they are easily identifiable, point sources of pollution (e.g. domestic pollution) are easier to control, to 552 

monitor and to effectively regulate than non-point source or diffuse pollution (e.g. agricultural 553 

pollution) characterized by random and intermittent occurrence, and influenced by different drivers 554 

(e.g. land use, soil type, management practices) (Duncan, 2017). For example, the considerable efforts 555 

made to water depuration systems on the watershed have induced a significant decrease of nutrient 556 

pollution since the 1970s and the late 2000s and have gradually led to a good environmental status of 557 

the Thau lagoon according to the Water Framework Directive (WFD) (Derolez et al., 2017). On the 558 
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other hand, even if agricultural pollution has been identified as the main source of eutrophication since 559 

several decades, green tides are still occurring in Brittany since effective tools are more difficult to 560 

implement and should be more based on a redesigned agricultural practices (Molénat et al., 2002). Thus 561 

a strong political will is needed to effectively regulate the sources of pollution and needs to better 562 

interconnect the management of coastal ecosystems with the management of terrestrial ecosystems. For 563 

example, the creation of protected areas implemented in conciliation with pre-existing uses (Donia et 564 

al., 2017) could be strengthened. 565 

 566 

An alternative would be the establishment of hybrid markets to regulate eutrophication such as water 567 

quality trading in which participants can voluntarily exchange their water pollution rights taking into 568 

account the respect of certain biophysical criteria related to the water quality. Even if they are still 569 

facing obstacles to be effective (Heberling, 2010), these markets are expected to act as win-win 570 

solutions as they reduce the costly regulatory burden on the state while mobilizing new sources of 571 

private funding to address water quality problems. They can also provide new sources of revenue to 572 

farmers through direct payments for nutrient credit offsets and offer greater flexibility to the farmers in 573 

how to achieve environmental goals (Ribaudo et Gottlieb, 2011).  574 

 575 

In addition to these management strategies, supra-local and supra-national actions are neededscales. 576 

For example, land use and climate change in northern Africa can influence the seasonal deposition of 577 

dust in the Caribbean, adding other types of nutrients (e.g. iron) and potential coral pathogens, with 578 

negative effects on Caribbean corals. Thus, local mitigation efforts need to be coupled with actions 579 

from nations far from the coastal areas where reefs are found. This eutrophication management can also 580 

mitigate the effects of global warming and climate change by decreasing coral susceptibility to disease 581 

and bleaching.  582 
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