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Abstract

Long-distance (>40km) dispersal from marine resersgoorly documented. Yet, it can
provide essential benefits such as seedling fisineds or connecting marine reserves into
networks. From a meta-analysis, we suggest thaggheal scale of marine connectivity is
underestimated due to the limited geographic exdiesampling designs. We also found that
the largest marine reserves (>1,008kare the most isolated. These findings have inaport
implications for the assessment of evolutionargl@gical and socio-economic long-distance
benefits of marine reserves. We conclude thatiegishethods to infer dispersal should
consider the up-to-date genomic advances and ajfsmnd the spatial scale of sampling
designs. Incorporating long-distance connectivitganservation planning will contribute to

increase the benefits of marine reserve networks.
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Benefits from marine reserves: where are we?

Marine resources are declining at an alarming [fBt], with more than half of the oceanic
area exploited by industrial fishing [3]. In resgenmarine protected areas (MPAS) have been
established in an effort to conserve biodiversitg austain fisheries [4-7]. Yet, only 3.7 % of
the ocean is presently covered by MPAs and legs 286 by no-take MP# (referred to as
marine reserves [8]) specifically (mpatlas.org) [Blespite the recent establishment of large-
scale MPAs (>100,000 Kin[10], the current trend of protection is not kimgppace with the
increasing human footprint on marine resources I2], In particular, the Aichi Biodiversity
Target 11 established by the Convention of Biolabiiversity to protect at least 10% of the
ocean by 2020 is unlikely to be achieved [9, 13, I consideration of the ever-growing
human population, fishing technological developraesmid per capita consumption rates, a
new target of 30% protected area by 2030 was pempas the 2016 International Union for
Conservation Nature (IUCN) World Conservation Casgrin line with scientific advice [6,
15]. There is thus an urgent need to better uraieisthe full range of benefits provided by

marine reserves to optimize future conservatioortsf

Theoretical and empirical studies support the pasiffects of marine reserves within their
boundaries and in their vicinity [16-19]. Indeedanme reserves unambiguously host more
and larger - and thus more fertile - individualartHished areas (e.g. [5, 20, 21]). They also
contribute to preserve genetic diversity [22], @age human wellbeing [23], alleviate poverty
[24] and facilitate adaptation to climate changg][2n addition, when properly designed and

enforced, they have the potential to increase eatdi commercial species in surrounding
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fishing grounds [26, 27] due to juvenile or adsgtllover (see glossary)28, 29]. However,
such direct benefits have been typically documergg¢dshort distances from reserve
boundaries, i.e. from a few hundred meters totless 40 km [16, 30 , 31]. In contrast, little
is known about the benefits of marine reservesa@asthat are 40 to hundreds of kilometers

away from their boundaries [32].

The concept of long-distance (>40 kdijpersal is not new in marine ecology and the oceans
have been assumed to function as mostly open, coalhected systems until the last two
decades [33, 34], when evidence of local recruitrstarted to accumulate [35, 36]. However,
the large-scale impacts of marine reserves reguftiom long-distance dispersal of larvae
[37], juveniles and adults [38] are still poorlyawnented. The potential for long-distance
dispersal is highest fqrelagic species, which is consistent with their widespread geobiap
distributions [39]. Yet, recent findings based tefemetry and genetic tools indicate that
benthic anddemer sal species (hereafter called benthos), including those indbep sea, can
also disperse up to hundreds of kilometers [3242)0-This recognition of high dispersal
capabilities calls for more studies on the effdatlispersal far from reserves and for a better

integration of long-distance dispersal in the desifjreserve networks.

Here we review the potential long-distance bendfitsmarine reserves, including those
provided by relatively rare long-distance dispeesants. We focus on the benthos since their
adult stages can be more easily assigned to peoteetrsus non-protected areas compared to
pelagic species which have large home ranges, déteyer than most MPAs [43]. First,
through an extensive literature screening, we ctarize the spatial scale of dispersal for the
benthos. We then discuss how existing methods eaerinanced to expand the scale of

connectivity analyses. Finally, we discuss the pidé long-distance benefits of marine
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reserves for both conservation and fisheries and dnavell-connected network can enhance

those benefits.

Spatial scale of dispersal and connectivity in the marine realm: do we capture the full

picture?

We define marine connectivitgs the exchange of individuals among marine pojouisit
[44]. This exchange can take place through dispefsandividuals as larvae, juveniles, or
adults. When individuals reproduce successfullyraatter, demographic connectivity
translates int@enetic connectivity. Determining the spatial scale of marine connégtis
crucial for our understanding of the population ayncs, genetic structure and biogeography

of marine organisms, and accordingly for the desigmarine reserves.

To obtain a global estimate of the spatial scalenafine connectivity for the benthos, we
conducted an extensive — but non-exhaustive -atitee review over the last decade in the ISI
Web of Science (supplementary text S1, supplemefitarS1). Of the 460 papers identified,
130 were included in our meta-analysis as theyainnhformation about maximum sampling
geographic range and maximum inferred demographigeaetic connectivity for a total of

243 species.

The different methods used to estimate dispersstamite apply to different spatial and
temporal scales (Table | of Box 1). The median i dispersal distance averaged across
all studies based on biophysical models (226 kterguartile range = 160 - 415 km, number
of species = 56) was at least four times highen the demographic (realized and effective)

median dispersal distance (42 km, interquartil@ean 27 — 250 km, number of species = 55;
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Figure 1A; Box 1). These results indicate that Etsicare either overestimating potential
dispersal or underestimating demographic dispersith some exceptions where both
estimates are congruent (e.g. [45]). However, agsgdhe full spatial extent of dispersal is
challenging due to the inherent difficulty of trawdx or recapturing organisms over long
distances. With a few exceptions (e.g. [32, 41),4@jst empirical studies of demographic
connectivity were conducted at scales smaller #arkm [47]. Estimating demographic
connectivity at larger spatial scales and over ipleltgenerations would require sampling
significantly more individuals and in more distgmpulations, which would entail high,
possibly prohibitive, costs. Genetic assignmentr@pghes at the population level might be
scaled-up more easily than mark-recapture or pagenainalysis methods and constitute a
promising approach when populations are genetiddifferentiated [48, 49]. For example,
putative first-generation migrants between two pagons separated by 400 km were
detected in the Omani Clownfisirtiphiprion omanensis) using assignment tests [40]. If
populations are locally adapted, the use of gematitkers that are under divergent selection
can contribute to increase the power of such agpes and can even be used in the absence
of neutral genetic structure [50]. Geneatalation by distance at the population or individual
level [51] provides dispersal estimates that ar@esstent with demographic dispersal
estimates obtained from parentage analysis (Bo}52). When a reference genome and
haplotype data are available, the considerationadmmixture tracts [53] and blocks of
identity by descent [54] constitutes another promising avenue to detecent dispersal

events, that can also apply in isolation by distacuntexts [55].

Our literature review also reveals that geneticnemtivity, based on Wright's Fixation Index
(Fsr), tends to provide higher estimates than any atiethod (Figure 1A: median = 910 km,

interquartile range = 315 - 2346 km, number of @gmeec 126). Yet, genetic connectivity
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differs from demographic connectivity as it integsithe effects, not just off migration, but
also genetic drift, mutation and selection. Tratnstagenetic connectivity into demographic

estimates of dispersal is not straightforward [S5Bjis notably implies estimating effective

population sizes [57] or assuming specific popalatienetic models that are often unrealistic
in real-world situations [58]. Furthermorgene flow over large geographic distances might
result fromstepping-stone dispersal over multiple generations without necessarily i

direct long-distance dispersal events [59].

Globally, the data show a universal positive catieh between the geographic sampling
scale of the study and the maximum dispersal onectivity averaged across all studies and
organisms (R 0.7, p <0.001; Figure 1B). The relation holdetwhen analyzing the data per
type of dispersal estimate (potential vs. demogap$. genetic). In 45 % of the studies, the
dispersal distance was equal to the maximum gebgraxtent of the sampling. This reached
48 % when data were restricted to coastal fishe8p4or invertebrates and 41 % for deep sea
organisms (Figure 1C). These results suggest timates are limited by the spatial scale of
the sampling, resulting in a global underestimatibithe extent of demographic and genetic

connectivity.

For genetic connectivity, an absence of populasittacture can also result from a lack of
statistical power to detect subtle population gerstucture when a small number of genetic
markers are used. With the advent rmédxt-generation sequencing technologies, this
limitation can now be overcome by typing hundreds ntillions of single nucleotide

polymor phism markers [60, 61].
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A variety of mechanisms can contribute to longathse dispersal in marine ecosystems
(Figure 2). Foremost, the hydrodynamic forces atypin the marine environment are
expected to have a strong influence on the dispefgaelagic larvae [62]. In addition, the
conditions encountered in the pelagic environmerghtinfluence growth, survival and
pelagic larval duration, all of which can in tumduce extreme values in spatial and temporal
connectivity patterns. Active larval behavior cdsoaplay an important role for the benthos
[63, 64]. Extreme events, such as tsunamis [6%],areanographic eddies and fronts [66] are
also important, but overlooked potential dispevsaitors over long distances. They can favor
the survival and establishment of individuals beytmeir usual dispersal range. Furthermore,
marine debris of natural or anthropogenic origim c@nstitute effective oceanic rafts for
dispersal [67, 68]. These debris provide refugesldovae and adults odessile species,
allowing the movement and potential establishmeintaovariety of species over large
distances. For instance, mussels from Japan arauettie west coast of the US after nearly
six years at sea on debris produced by the 201fl Jagan earthquake [65]. Ice blocks also
allow invertebrates to disperse across distancedbofit 20 km per day [69]. Anthropogenic
vectors such as international vessel traffic, gty from aquaculture [70], and species
translocation (Box 2) also have the potential todifyothe natural spatial and temporal
patterns of marine connectivity [71]. Overall, tleecurrence of long-distance dispersal
events, even if rare, suggest that marine resecass have an effect far beyond their

boundaries, which calls for a re-evaluation ofgpatial extent of their potential benefits.

L ong-distance benefits of marine reserves
We consider a long-distance benefit of marine resemy change in biomass, biological
processes (e.g. recruitment) or biodiversity (idolg genetic diversity as raw material for

adaptation) at distance greater than 40 km fronerves boundaries that contributes to
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improve ecosystem function or human livelihoods.(&sheries, tourism, culture) (Figure 2).
Long-distance benefits from reserves can occur if¢rent spatial and temporal scales
depending on the vector of dispersal (Box 1, Figeixeand this includes both direct and

stepping-stone dispersal processes.

Parentage analyses have demonstrated dispersairfasime reserves at more than 40 km [32,
46]. For example, Almangt al. [46] revealed connectivity patterns with diregtleanges of
larvae over up to 150 km among reefs with varyiegels of protectionLarval dispersal
from reserves towards exploited areas located aé rifan 100 km has also been suggested
by biophysical models [37, 72]. Yet, empirical saslshowing an effect of marine reserves
on fished areas are largely restricted to spatiales smaller than 40 km (e.g. [26, 73, 74]).
Scaling-up these studies is challenging for a war@f logistic reasons, including the

difficulty to sample and monitor individuals overdge spatial scales.

Even if long-distance dispersal events from maniaserves are rare, a few successful
migrants can be sufficient to re-colonize areasrevti@cal populations have been extirpated
or to expand species distributions in responsddbad) change [75]. Long-distance dispersal
between populations that are genetically diffeegat or locally adapted can moreover
contribute to limit inbreeding, increase genetivedsity and facilitate adaptation to a

changing environment [25, 76]. However, in caséooél adaptation, long-distance dispersal
can also reduce fitness of recipient populatiomsugh immigration of locally maladapted

alleles [77].

Active translocations from marine reserves can atsatribute to restore locally depleted or

extinct populations [78]. For example, the Bumph®@adrotfish Bolbometopon muricatum)
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is highly targeted by spear fishers due to itsdasge and therefore population densities tend
to be low in areas close to human populations [FBis species is only abundant in reserves
and on the most protected reefs such as in Palarewith aggregates to spawn. These
populations have been used as a source of eggeaae for active translocations (Box 2).
Nearly 500 translocation projects of 242 marinecsgsehave been recorded [78]. However,
still few projects take advantage of large stocksmarine reserves. It should also be
emphasized that translocations entail a numbelistt r(e.g. disease, invasion, gene pool
mixing). Overall, marine reserves could supportidewariety of long-distance benefits that
are potentially underestimated and that should tesidered for the design of reserve

networks.

Implications of long-distance dispersal for marine reserve design

An underestimate of dispersal ability can profoynidfluence the design of marine reserve
networks. Long-distance dispersal can potentiatignect distant and isolated reserves, and
sustain biodiversity and biomass in exploited aleaated at more than 40 km from their

boundaries. In this respect, long-distance dispgrsides a fresh perspective on two long-

lasting and active debates in the marine reseteature.

First, long-distance dispersal has implications fioe unresolved single-large-or-several-
small (SLOSS) marine reserve debate. Simulatioggest that a network of well-connected
reserves on a scale of 10-100 km can meet bothepaatton and fisheries goals [7, 80].
However, the idea that a network constituted of ynemall reserves spaced within species
maximum dispersal distance [4] maximizes reserveefis to fisheries has been recently
revisited and challenged. Based on a spatiallyigikphodel of population dynamics, De Leo

& Micheli [81] show that for larval dispersal >10nk one or two large reserves are more

1C
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efficient in terms of fisheries gains than 10 ors2@all reserves covering the same area. This
is notably due to the fact that large (>1002}§rmld (>10 years, [5]) and well-managed
reserves tend to increase fish density and biorflas82], and that large females over-
contribute to reproduction since the relation betwdemale body mass and reproductive
output is hyperallometric for the vast majority fishes (i.e. a 2-kg female has a higher
reproductive output in terms of egg number, voliand energy, than two 1-kg females [83]).
We can therefore expect large, old and well-manageskrves to disproportionately
contribute to larval seedling within a network wheispersal distances are greater than ten
kilometers. Using a rigorously calibrated metapapah model with empirical data from the
Great Barrier Reef, Hopf et al. [84] also show ttesterves are unable to compensate for the
increased mortality outside reserve boundaries whey are small or at the periphery of the
metapopulation [84]. In contrast, the establishnana single large reserve, that is able to
seed overexploited areas through dispersal, isctgdo result in higher population growth
within reserve boundaries and shorter recovery giraéier overexploitation outside the
reserve. Finally, a global analysis indicates thla¢n larval dispersal distances are long (>40
km), the magnitude of biomass increase within laegerves is expected to be sufficient to

compensate for the redistributed fishing presssse@ated with reserve establishment [85].

The median nearest-neighbor distance between maaseeves is estimated at 12 km globally
(interquartile distance: 4 to 40 km) (Supplementsyt S2). This geographical pattern is
highly variable, with some reserves being veryasad (e.g. the Parque Natural Obo do
Principe in S&o Tomé and Principe at 4130 km frhen riearest reserve, the Monumento
Natural do Arquipelago de Sao Pedro e Sao Pald@km off the coast of Brazil) (Figure

3A, supplementary text S2). Fortunately, 76 % aferees are found closer to the nearest

reserve than the median demographic dispersahdistastimated in our literature review (42

11
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km) (Figure 3B). It implies that three-quarters aiarine reserves are potentially
demographically embedded in a connected networkiging spatial insurance. The median
nearest-neighbor distance in the 24 % remainingrves is estimated to be 129 km, with a
very skewed distribution (Figure 3B). Notably, 838 large reserves (> 1000 Kmare
isolated (>42km) (Figure 3C). The mean nearesthig of this subset of large marine
reserves is 359 km away, decreasing their potewtakribution to the global network.
Therefore, the largest marine reserves, allowimgelapillover of individuals and providing
benefits for both biodiversity and human populatiere the least connected. However, we did
not consider how sea surface currents could maalityassessment of connectivity among

isolated reserves.

Second, long-distance dispersal has also implicatior prioritizing the conservation of
human-impacted versus non-impacted areas. Intlyitieme can see little benefit in placing
reserves in isolated areas which are difficult coemss and therefowde facto protected [86].
On the other hand, reserves close to dense hunmrgbions can mitigate but not eliminate
the high anthropogenic pressure outside but akidertheir boundaries [87]. It has therefore
been suggested that reserves located at an intetimdelvel of human pressure might offer
the maximum benefits in terms of fish biomass wattiieir boundaries [87]. For top predators
like sharks, only isolated marine reserves with lawman pressure can be effective [87]. The
realization of long-distance dispersal would alsakena case for the protection of such areas
isolated from human pressure. More generally, iildcsuggest to reconsider the design of
marine reserve networks with fewer but larger nes®rincluding isolated ones, to sustain
large populations of large individuals, even of fedators, that can massively seed larvae
towards fishing grounds. Tools that integrate sgedlispersal in conservation planning are

now available to reach both conservation and fisesemanagement objectives in a
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multispecies framework [88]. The consideration @fid-distance dispersal would certainly

modify the outputs of conservation plans.

Concluding remarks

Marine dispersal has been extensively documentesh@t distance (mostly <40 km). We
suggest that this has been due, at least in partpdistic constraints and a restricted
geographic extend of the sampling design (e.g.ntkeelian sampling distance in parentage
analyses is only 33 km, interquartile range = 280-km, number of species = 22). While a
significant fraction of dispersal indeed occurssatall spatial scales, the fraction of the
dispersal kernel that we are missing is largely unknown (see Onthtey Questions). A few
recent empirical studies have demonstrated dispef$izh at larger spatial scales (up to 400
km), but even these estimates were limited by tagimum sampling distance [40]. Dispersal
estimates from biophysical modelling studies agédarspatial scales suggest even longer
dispersal distances (median sampling distances 0= kB9, interquartile range: 237-1400,
Figure 1A). Such long-distance connectivity patterremain challenging to validate
empirically, but have potentially important conseqeces in terms of reserve design and
benefits. The more isolated reserves are, the grdreal long-distance dispersal becomes to
maintain source-sink dynamics between protected exploited populations. Thus, long-
distance benefits imply a more regional and netviiaked perspective, which entails specific
challenges. Long-distance dispersal will often sr@®untries as well in-shore-offshore
boundaries. The designation of marines reserviasgsly carried out by individual countries
and they rarely able coordinate efforts with otbeuntries and high-seas authorities [89].
Furthermore, the focus on marine reserves is diyaranstrained by the perspective of local
stakeholders [15], which is perfectly justified itould nonetheless not obliterate a broader

perspective.
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We suggest scaling-up dispersal studies at regiotsdéad of local scale. We can now
genotype a large number of genetic markers, whigviges the opportunity to apply
population-level assignment tests at large spatiagles and in a context of low spatial
structure [90]. Such studies can be guided by hégiolution biophysical models to target the
specific populations among which long-distanceadlise dispersal occurs. A large number of
single nucleotide polymorphism markevdl also provide the statistical pow&s detect very
subtle population structure, which will allow rafig genetic connectivity estimates [90, 91].
Finally, approaches based on admixture tracts §68] blocks of identity by descent [54] are
largely untapped. The combination of genetic, cloaimnd biophysical approaches within an
integrative statistical framework also appears @éocabpromising approach to estimate long-
distance dispersal [92] and guide the design of resgrve networks to keep pace with ever

increasing threats on marine ecosystems.
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Figure Legends

Figure 1: The spatial scale of sampling constraints disper sal estimates

(A) Boxplot representing the maximum dispersalatise and the sampling geographic extent
across all studies. Central lines represent mediares and whiskers first and third quartiles.
(B) Mean maximum dispersal distance increases with maximal sampling geographic
extentand (C) the pattern remains consistent among grdighs invertebrates and deep-sea
organisms (>200 m). In (B) and (C), the color gead displays the difference between
maximal dispersal estimate and sampling geogragiient, with warmer colors (red)
indicating that the maximum dispersal distancdaser to the maximal sampling geographic
extent. The methods used to estimate connectivigfude tracking, parentage analysis,

assignment tests and isolation by distance (= desppbir dispersal) described in Box 1 (see
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B and C), biophysical models (potential dispersai)d genetic connectivity estimated from
Fixation Index (kr). See supplementary method S1 and supplementargtifor details on

the data used to generate the figure.

Figure 2: Potential long-distance dispersal processes and marine reserve benefits from

The main processes that contribute to long-dispeistance are indicated with numbers and
the main benefits due to long-dispersal distanedraticated with letters. The marine reserve
is represented by a circle. (1) Active dispersal dave larvae or adults far from the reserve
boundaries, independently of the sea currentsLg®ae are pelagic and disperse passively
due to currents. (3) They can associate with fimptind drifting debris. (4) Translocation
involves deliberately moving organisms from one giproductive” reserves) to another (e.g.
overexploited population). Thus, long distance éispl can (A) increase biomass in fished
areas far from the reserve, (B) potentially mamtapecies and genetic diversity across
reserves, (C) maintain commercially and culturaiiyportant species that were the target of

protection in the reserve.

Figure 3: Connectivity patternsin the global network of marinereserves.

(A) Map showing the neighbor distance for each neanieserve, i.e. the distance to the
nearest marine reserves. To improve the visibdlitthe figure, we used both size and color of
the circles to indicate the nearest-neighbor deaof each marine reserve. Small yellow
circles indicate the most connected marine resg@gs Scandinavian region or Australia)

while large blue circles indicate the most isolateserves (e.g. Western African coast). (B)
Distribution of nearest-neighbor distances betweemine reserves. The median and mean

nearest-neighbor distances are 12 km and 65 kipecésely. The dashed red line indicates
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620 the demographic median dispersal distance estinfiatedl organisms from the meta-analysis
621 (42 km). (C) The nearest-neighbor distance incieasth the no-take surface area of marine

622 reserves (from 752 no-take marine reserves).
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Box

Box 1. Methods for estimating long-distance disper sal in marine ecosystems

Methods to estimate marine dispersal [93-95] capdrétioned into three categories:

A. Potential dispersal (inferred from biophysical models)

Biophysical models can be used to simulate larisgeatsal trajectories over large spatial and
temporal scales (Table 1) [96]. These models uguntiorporate three elements: a physical
model that simulates the ocean hydrodynamics, ecleatracking model that simulates the
passive movement of virtual larvae, and optionallyoupled model that simulates the activity
of the larvae when information on their ecologyhdéor and physiology is available [97].
This third element is often lacking and it is tHere important to better understand the
biology of marine larvae. Biophysical models arecdeing increasingly complex and

realistic, yet they always need to be validatedh winpirical data [98].

B. Realized dispersal (dispersal took place, but dispersers can or casnotessfully
reproduce)

Specific dispersal events can be inferred usingtien Parentage analyses identify dispersal
events by using individual genotypes to assignnigs to their parents [99]. This approach
provides a snapshot of dispersal events over onerggon. It requires considerable effort to
sample and genotype a large number of juvenilespatehtial parents. Similarly, population
genetic assignment tests use individual genotypessign individuals to their population of
origin [48]. This approach relies on the occurrenéegenetic structure among populations
[100], but can also be applied in the absence plifadion genetic structure if populations are
locally adapted [50]. Various tracking methods edso identify dispersal events. Acoustic
telemetry can be used to observe the movementdifiduals, often adults, providing the

opportunity to directly observe dispersal [101]e&tonic and physical tags can provide
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information on the movement of individuals. Som@whver, have the drawback that
individuals need to be recaptured to retrieve théa.dOtolith analyses can also provide
evidence of dispersal when the microchemistry ablstisotope composition of populations
differ [102, 103]. When these approaches are agptiemany individuals, it is possible to
derive empirical distributions of dispersal kerft€d4]. Yet the fact that individuals disperse

does not necessary imply that they will successfeproduce.

C. Effectivedispersal (dispersal took place and dispersers successepisoduced)

In the presence djenetic isolation by distance [105], it is possible to estimate dispersal at
ecological timescales (tens of generations, [10®})is approach can be applied at the
individual or population level. Another interestingenue to infer dispersal éine analysis
[50]. Additional approaches based avalescent theory [57] or thesite frequency spectrum
[107] go deeper back in time (tens to thousands of géapsd and are therefore less relevant

at ecological timescales.

Table |: Spatial extent and temporal resolution of theiotess methods used to estimate

individual dispersal and connectivity in marine amgms.

Spatial Temporal
extent resolution
Dispersal | Method Low Mediurr Large | Within trans-
category (2-40 (40-100 (=>100 | generation generation
km) km) km) al
Potentia | Biophysica X X X
Realizet | Parentag X X X X
Assignment| X X X X X
Tracking X X X X
Otolith X X X X X
Effective | Isolation by x X X
distance
Cline X X X X
analysis
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Box 2

Translocation is the process by which living orgams are deliberately removed from one site
for release in another. This definition excludeptis@ or cultivated organisms, sometimes
genetically modified, that are massively releasetb ithe wild to support agriculture,
fisheries, aquarium trade or pest control. Thesi@ration process begins with the capture of
wild organisms in a donor site and ends with petase monitoring in the receiving site.
Translocation has only recently become prominenthi& oceans, particularly in coastal
environments, where human impacts are the higledgt Translocations are equivalent to

long-dispersal events.

Translocation in terrestrial environments is histlty more common from non-protected to
protected areas in order to prevent vulnerable risgas from being killed (e.g. African
megafauna). In this scenario, protected areasa&dered a sink, so the benefit is limited to
individuals that are more likely to survive undeotection. However, following the IUCN
recommendations, conservation translocation met i measurable conservation benefit at
the level of the population, species or ecosystemtected areas thus need to shift their role
to become a source of translocated organisms apdotade long-distance benefits through
human assistance. Marine reserves host more abuad@rarger individuals, thus producing
more larvae and juveniles than exploited aread 9§, The challenge is now to capture these
small larvae and juveniles, which are under higkdption risk, to seed locally depleted or
extinct populations elsewhere. This recently bungeg strategy seems extremely promising.
For instance, Palau, a small island nation createsl of the largest marine reserves on the

planet in 2015. Palau is now a sanctuary for maaimenals that are globally endangered or
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under severe threats like the Bumphead Parrotishb@metopon muricatum) which has
critical and unique ecological functions in corakf ecosystems [68]. The extremely high
density of Bumphead Parrotfish in Palau inducessimasspawning aggregations from which
eggs can be collected and juveniles can be growariks and then released at other sites
where this species has been depleted (Figure linads protect individuals through the
period of high mortality and then release sub-adinltother reserves where populations have
been exploited or are still being exploited to oesta certain density. This example highlights
how marine reserves can play a pivotal role in {disgance translocations and broaden the

geographic extent of their benefits in the neaurtit

Figure I. The translocation process for the thmeadeBumphead ParrotfisiBdglbometopon
muricatum) species from Palau. This island nation hostshigiest density of Bumphead
Parrotfish worldwide (A) due to severe fishing resions. Massive spawning aggregations
produce eggs (B) that can be caught without damaipg nets (C). Larvae are then grown in
optimal conditions to avoid mortality and juvenil) can be released to restore depleted or
extinct local populations on overexploited reefsl§it also revitalize a key functional role on

coral reefs by bio-eroding dead corals (F). Phtms Tom Bowling (Biota Palau).
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Glossary

Admixturetracts. Continuous blocks of the genome inherited from @mi&ed population.

Benthic species. Species that live and feed in or on the seabed.

Blocks of identity by descent: Continuous blocks of the genome that share the sdieles

inherited from a common ancestor

Cline analysis: A framework that uses the relation between the wemariation and the

geography or environment to estimate dispersalsafettion.

Coalescent theory: A model that traces back gene variants from popuigtio their common

ancestor.

Demer sal species. Species that live and feed near the bottom of elaeflsor.

Dispersal: In this context, any movement of individuals oopagules from a source location

followed by successful immigration into a noveldtion with potential for gene flow.

Demogr aphic connectivity: The process by which the dispersal of propagulesrjiles or

adults affects population growth and vital rates.

Dispersal kernel: Probability function describing the distributiohdispersal distances.
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Genetic connectivity: A measure of gene flow and other evolutionary psees among

populations.

Geneflow: The exchange of genetic information among (sub)jadioms.

Haplotype: A combination of physically linked genetic vamts on a single chromosome.

Isolation by distance: A pattern whereby genetic distance increases wilographic
distance. It can be used to estimate dispersalraistfrom population or individual genotype

data and regression analysis.

Larval dispersal: The dispersal of larvae from a spawning site setlement site.

Next-generation sequencing: Sequencing technologies that allows millions oNA

fragments to be sequenced in a single run.

Pelagic larvae: Larvae that spend time in the water column aftéctag.

Pelagic species: Species living mainly in the water column.

Sessile species: Species that are fixed to a substratum for mogtheir life. Many sessile

species, however, have other stages in theiryifdec usually as eggs or larvae, that allow for

active or passive dispersal.
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Spillover: The net movement of (adult and juvenile) orgamsismeross the boundary of a

reserve into a fished area.

Stepping-stone dispersal: A dispersal process involving intermediate step®sx several

generations.

Single nucleotide polymorphism markers. Molecular markers used to detect genetic
variation among individuals that correspond to féedence in a single DNA building block,

called a nucleotide.

Highlights and Outstanding questions inserted f@arpurposes of editorial markup.

Highlights

Marine dispersal estimates are limited by the spatiale of sampling

design and therefore biased downwards;

Active larval behavior, oceanographic eddies armhtf, tsunamis,
marine debris and translocations are potentiallypartant, but

overlooked, dispersal vectors over long distances;

The largest marine reserves have the highest paitéot massive and

long-distance benefits, but are the most isolatezsp
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Long-distance dispersal has important consequeiocabe design of

marine reserve networks;

Box 3: Outstanding questions Box

What proportion of the dispersal kernel of mariqgeces are we

missing when we do not consider the long-distard® km) dispersal?

Is the restricted spatial scale of sampling desityes only or main

cause of the limited geographical dispersal repadrieghe sea?

What are the quantitative effects of marine resematelong distances

(>40 km)?

Is the unknown long-distance dispersal sufficiemtcbnnect large

isolated marine reserves?

To which extent future marine reserve networks khbe composed of
few but large reserves instead of many small whercensider species

long-distance dispersal?
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A B All substrate—associated benthic and demersal marine species
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PROCESSES BENEFITS

1. Active dispersal A. Increase of biomass (Fisheries)
2. Passive dispersal by current B. Maintenance of biodiversity
3. Drifting or floating debris C. Maintenance of cultural species

4. Translocation ;
Q Marine Reserve
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