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Abstract

The CACOC (Chaotic Ant Colony optimisation for Coverage) algorithm
has been developed to manage the mobility of a swarm of Unmanned Aerial
Vehicles (UAVs). Using a specific chaotic dynamic obtained from the Rössler
system, CACOC provides waypoints for UAVs that aim to optimise the cov-
erage of an unknown area while having unpredictable trajectories. Since the
chaotic dynamics are obtained from a three differential equations system
with parameters, it is possible to tune one parameter to obtain another
chaotic dynamic, which will result in different UAV mobility behaviours.
This work aims at optimising this parameter of the Rössler chaotic system
to improve the coverage performance of CACOC. Since each evaluation of
a solution requires a full simulation, global optimisation techniques (e.g.,
population-based heuristics) would be very time-consuming. We therefore
considered a surrogate-based method to efficiently explore the parameter
space of the Rössler system for CACOC, i.e., Bayesian optimisation. Exper-
imental results demonstrate that this approach permits to improve the speed
of coverage of the UAV swarm. In addition an analysis of the dynamical
properties of the obtained chaotic system is provided.
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1. Introduction

Several works have recently demonstrated that replacing random pro-
cesses by chaotic dynamics can enhance the performance of optimisation
algorithms [1, 2]. This approach was recently used in the field of Unmanned
Aerial Vehicles (UAVs) with the CACOC (Chaotic Ant Colony optimisation
for Coverage) [3]. This algorithm uses a specific chaotic dynamic obtained
from the Rössler system [4] in order to optimise the coverage of an unknown
area by a swarm of UAVs. The Rössler system has three parameters (a, b
and c) leading to either periodic or chaotic solutions. A modification of these
parameters can deeply impact CACOC results. However each evaluation of
a solution requires a full UAV swarm simulation, which is computationally
expensive. Global optimisation techniques such as population-based heuris-
tics would require too many evaluations and are thus not applicable.

For that reason hyperparameter optimisation [5] has been considered,
i.e., the optimisation of the parameters of complex systems or models. Con-
trary to standard optimisation approaches, they attempt to minimise an ob-
jective function while taking into account the evaluation time. Indeed, many
theoretical models can be very time consuming to evaluate when changing
their parameters. Therefore, most of the hyperparameter optimisation ap-
proaches do not only optimise an objective function but also try to minimise
the number of steps required to reach a good solution.

Bayesian optimisation is one such methods, based on Gaussian processes
(GP) and an acquisition function. The GP regressive model aims at approx-
imating the unknown function by creating some surrogate function [6]. This
function is iteratively refined by optimising the acquisition function until we
are unlikely to find a new improving solution. The acquisition function is
an auxiliary function taking into account statistical information about the
presence of promising area. This function is computed using the current
posterior distribution.

This work thus considers the usage of a surrogate-based method, i.e.
bayesian optimisation, to efficiently explore the parameter space of the
Rössler system for CACOC, in order to improve the resulting area coverage
performance of the swarm.

In the remainder of this article, we first introduce the related work on the
usage of chaotic dynamics in metaheuristics and of metaheuristics to select
the best parameters of dynamical systems. Section 3 provides information on
the optimisation problem, namely the CACOC mobility model, its Rössler
system parameters and the evaluation function used. The bayesian optimisa-
tion approach is presented in Section 4. Section 5 provides the experimental
setup and results analysis while Section 6 introduces a dynamical analysis
to explain the numerical results. Finally, Section 7 proposes our conclusions
and perspectives.
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2. Related work

This section presents an analysis of the related work on the combination
of metaheuristics and chaotic dynamics. The first subsection focuses on the
usage of chaotic dynamics within metaheuristics as a way to replace random
components in these algorithms, as used in CACOC. The second subsection
provides a survey on the usage of metaheuristics to optimise chaotic systems,
as proposed in this work.

2.1. Chaotic dynamics used in metaheuristics

To solve continuous or discrete global optimisation problems with chaotic
dynamics, Tatsumi et al. [7] distinguish two types of methods. Most of the
litterature focuses on the usage of well known chaotic functions such as the
logistic map to replace random values in algorithms. The second type of
method are chaotic metaheuristics based on a gradient method. For the
latter, Toduka et al. [8] propose an algorithm to solve nonlinear optimi-
sation problems by the construction of dynamical system. They present a
global bifurcation scenario to realize a “chaotic search” where the bifurcation
parameter is updated during the simulation to obtain a dynamical system
that is able to minimise the objective function. Recently, Tatsumi et al. [9]
detail that chaotic metaheuristics with the gradient method with pertur-
bation have good performances for solving some benchmark problems and
it can be enhanced via quasi-Newton method. The latter method permits
to efficiently select parameters from their dynamical system in bifurcation
diagrams to address classical optimisation problems.

As stated previously, most of these metaheuristics use chaotic dynamics
to replace random numbers in evolutionary algorithms. However, the use of
a given dynamical system in a metaheuristic cannot be efficient for all prob-
lems as stated in the “no free lunch” theorem [10]. Gandomi et al. [1] thus
proposed to use several chaotic dynamics from discrete maps to accelerate a
PSO (Particle Swarm optimisation) algorithm. The attraction parameter of
the acceleration method is updated at each step using the value of various
discrete maps. They numerically show that CAPSO (Chaotic Accelerated
Particle Swarm optimisation) outperforms CPSO (Chaotic Particle Swarm
optimisation) for standard optimisation problems. Another method pro-
posed by Pluhacek et al. use ensemble learning to obtain the chaotic PSO
[2]. This method permits to select the best of six chaotic pseudo random
number generators (CPRNG) for each particle. They evaluate their method
on the IEEE CEC13’ Real-Parameter Single Objective optimisation bench-
mark set. However, the parameter values of the maps are defined a priori
and unchanged during the simulation.

For a given problem, instead of using chaotic dynamics for a system with
fixed parameters, Pluhacek et al. [11] choose to vary the parameters of the
Lozi map [12]. The values of this discrete map are used in an algorithm to
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generate a Chaotic Pseudo Random Numbers (CPRNG) in order to replace
the Random Number Generator (RNG) used in a PSO algorithm. We re-
cently tune the Lozi map parameter values, as well as the Rössler system
parameters to determine the best parameter values for a given optimisation
problem: the graph traversal problem [13].

2.2. Metaheuristics for chaotic dynamics

The two previous articles [11, 13] compare all the results for parameters
in a given range of values; this approach is time consuming and can be
repetitive since the dynamics are the same for various parameter values (see
[14] for details on the chaotic dynamics of the Rössler system). To obtain
the parameter values of a chaotic system, Senkerik et al. [15] propose to use
a combination of evolutionary algorithms: Differential Evolution (DE) and
Self-Organizing Migrating Algorithm (SOMA). The aim of their study is to
obtain faster convergence to specific periodic orbits for a given dynamical
system. Gao et al. [16] also use Differential Evolution to select periodic
orbits by finding the best parameter.

To accelerate the finding of specific parameters of a dynamical system
Carbajal-Gómez et al. [17] also use Differential Evolution. This method
is used to obtain multi-scroll attractors where the positive Lyapunov ex-
ponent value is maximised. De La Fraga et al. [18] use a multi-objective
optimisation algorithm to obtain attractors that maximise the Lyapunov ex-
ponent value and minimise the dispersion of the phase space portraits. This
optimisation is performed by the well-known multi-objective metaheuristic
NSGA-II (non sorting genetic algorithm-II) [19]. Bayesian optimisation has
been used once on chaotic dynamics: Abbas et al. [20] tune parameters of
a chaotic system (Lorenz 95) to underline the capabilities of Bayesian op-
timisation method on complex system. Indeed Bayesian optimisation has
been successfully employed to optimise Machine Learning parameters [21]
and multi-level optimisation problems [22].

Based on the aforementioned state-of-the-art analysis, this work is, to
the best of our knowledge, the first to use bayesian optimisation to tune the
parameters of the Rössler chaotic system.

3. Problem Description

This section presents in detail the problem optimised in this work, i.e.
the CACOC mobility model which chaotic parameters will be optimised
using bayesian optimisation. Section 3.1 first presents the CACOC model
before providing details on the chaotic system parameter to optimise in
section 3.2. Finally the coverage metric used to evaluate the performance of
the model is introduced in section 3.3.
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3.1. Chaos based UAV swarm mobility model

Pheromone-based mobility models [23] have shown promising results to
optimise the coverage of an area by a swarm of UAVs. Such models use move-
ment probabilities defined by the pheromone levels as presented in Tab. 1. In
order to improve the performance of these approaches, our previous work [3]
proposed to combine ACO with the chaotic behaviour of a dynamical system
resulting in the CACOC mobility model: Chaotic Ant Colony optimisation
for Coverage. More precisely, CACOC replaces the random components of
the pheromone-based mobility model by a chaotic behaviour such that the
exploration capabilities of the UAV swarm is improved.

Before presenting CACOC in detail, we introduce a simpler mobility
model which only includes chaotic dynamics (Chaotic Rössler Mobility Model
- CROMM) before introducing CACOC that combines both chaotic dynam-
ics with an Ant Colony exploration algorithm.

Table 1: Pheromone action table for ACO UAV mobility model. left is the amount of
pheromone sensed on the left of the UAV, ahead is the amount of pheromone sensed in
front of the UAV and right is the amount of pheromone sensed on the right of the UAV;
total = left+ ahead+ right.

Probability of action
Left Ahead Right

pL = total−left
2×total pA = total−ahead

2×total pR = total−right
2×total

3.1.1. CROMM

In CROMM the UAVs are considered to have a constant speed and
choose a movement direction at each discrete time step: A for ahead, R for
45◦ right and L for 45◦ left. The next direction choice is given by the first
return map (Fig. 1). This map underlines the dynamical signature of the
Rössler system giving ρn+1 versus ρn. Thus, the next action depends on the
previous one:

• if ρn < 1/3 then direction is right (R);

• if 1/3 ≤ ρn < 2/3 then direction is left (L);

• else the direction is ahead (A).

This basic mobility model is named CROMM and its pseudo code is detailed
in Alg. 1.

In that case, the good exploration performance of the UAVs is due to
the periodic orbits of the Rössler system that lead to patterns. The periodic
orbits with low periods are considered as skeleton of the chaotic dynamics
and are often visited during the simulation process using a Runge-Kutta (4th
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Algorithm 1 CROMM mobility model

1: procedure CROMM
2: current state← “ahead”
3: loop:
4: ρ← next value in the first return map (Fig. 1)
5: if ρ < 1

3 then current state← “right”
6: else if ρ < 2

3 then current state← “left”
7: else current state← “ahead”
8: end if
9: move according to the current state

10: end procedure

order) algorithm. As illustrated in Fig. 1 the period 1 orbit leads to sym-
bols AAAAA. . . (straight line trajectory); the period 2 leads to the pattern
ARARA. . . (circular trajectory) and the period 4 leads to the serpentine
pattern RALARALA. . . A random initial condition is given to the Rössler
system to ensure different trajectories for each UAV of the swarm.
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Figure 1: First return map of the Rössler attractor (Figure 2). This map is partitioned
in three parts indicating the UAV directions for the CROMM mobility model: L (left), A
(ahead) and R (right). Orbits of period 1, 2 and 4 respectively illustrate the patterns A:
straight line, AR: turn and RALA: serpentine trajectory transition taking place between
the periodic points highlighted in dark grey.
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3.1.2. CACOC

CACOC combines a pheromone-based model with chaotic dynamics. If
there is no virtual pheromones to guide the UAV (pheromones are deposited
by each UAV to indicate areas they already visited), CROMM is used. The
UAVs share a map of virtual pheromones that indicates recently visited
areas when high pheromone concentrations are present. The UAVs then
have a higher probability to move to the least recently visited areas. The
pheromones have repulsive properties and the next choice of direction de-
pends on the total amount of pheromones sensed around the UAV. We also
used the Rössler first return map values to choose the next direction with the
pheromones’ perception instead of a random number. Consider that pL, pA
and pR are inversely proportional to the total amount of pheromones sensed
respectively to the left, ahead and right of the UAV and that pR+pL+pA = 1
(Tab. 1). Thus, with ρn taken from the first return map (Fig. 1), the next
direction is chosen according to these rules:

• if ρn < pR next direction is right;

• if pR ≤ ρn < pR + pL next direction is left;

• else the direction is ahead.

The pseudo-code of the CACOC algorithm is detailed in Alg. 2.

Algorithm 2 CACOC mobility model

1: procedure CACOC
2: current state← “ahead”
3: loop:
4: ρ← next value in the first return map (Fig. 1)
5: if no pheromone sensed in the neighbourhood then
6: current state← CROMM(ρ) # see Alg. 1
7: else
8: if ρ < pR then current state← “right” # see Tab. 1 for pR
9: else if ρ < pR + pL then current state← “left” # see Tab. 1 for
pR and pL

10: else current state← “ahead”
11: end if
12: end if
13: move according to the current state
14: end procedure

The coverage performance of the CACOC mobility model has been em-
pirically demonstrated against the original pheromone based mobility model
from Kuiper & Nadjm-Tehrani [23] and mobility models based on other
chaotic systems [3].
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Figure 2: Sample trajectories generated with the CACOC model

3.2. Rössler parameters

CACOC uses chaotic dynamics from the Rössler system which relies on
a three differential equations system (see Equation 1). Depending on its
parameterisation, the Rössler system can produce periodic, quasi-periodic
or chaotic dynamics. The dynamics will therefore impact the mobility model
and thus the performance of CACOC.

Studying nonlinear dynamics requires dedicated tools to explore these
behaviours. The bifurcation diagram is one tool that displays the solutions
in a topological period depending the variation of one selected parameter. It
underlines the transitions for parameters leading to periodic or chaotic so-
lutions. We already proposed a detailed analysis of the bifurcation diagram
[14] that permits to have the templates (tool to details the topological struc-
ture of the chaotic solution) and chaotic mechanisms of attractors solution
of the Rössler [4] system for α ∈]− 2; 1.8[

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c) ,
where


a = 0.2 + 0.09α

b = 0.2− 0.06α

c = 5.7− 1.18α .

(1)

The reader is referred to [14] for details on the use of the α parametri-
sation introduced by [24]. Here we focus our study on the attractors with a
template with only two branches, that is to say, when α ∈]− 0.8; 0.4[. The
upper part of Fig. 5 details the partition of the two branches on the variable
yn and its linear regression depending on α. Thus, for this range of values
for α, the first return map to the Poincaré section is only composed of two-
branches: an increasing branch and a decreasing branch. However, varying
the α parameter will impact the periodic orbits populating the maps which

8



are used in CACOC [3]. For that reason, this work focuses on optimising
the α value of the Rössler system in order to improve CACOC algorithm’s
area coverage performance detailed in the next section.

3.3. Metric for optimisation: slope of coverage and slope of fairness

The performance of the mobility model is evaluated in terms of area
coverage [3]. The coverage is the percentage of cells of the area that is
visited during the simulation. More precisely, UAVs evolve on a square grid
of 100 × 100. As soon as a UAV attains a cell, it is considered as visited for
the whole simulation period. This metric measures the ability of the swarm
to quickly perform a first complete scan of the whole area:

coverage = min
t

max
trajt(x)

Scan(trajt(x)) (2)

where t is the number of steps, x = [(x1, y1), . . . , (xn, yn)] the position of
the n UAVs, trajt(x) the trajectories of the UAVs from 0 to t and Scan the
percentage of 100 × 100 area covered based on the trajectories of the UAVs.
In this work, we evaluate the first steps of the CACOC model to optimise
its initial behaviour. For this purpose the first 500 steps are used to extract
the slope of a linear regression a × x. Consequently, CACOC efficiency for
initial spreading of the UAVs is optimised using this slope of coverage.

The fairness evaluates if all cells are regularly and equally visited. This
is measured by the standard deviation of their respective number of visits
[? ]:

fairness =

√√√√∑
c∈C

(nbScanc − nbScanc)2
|C|

(3)

with nbScan : C → N the function returning the number of times a
given cell has been scanned. To evaluate the fairness during the whole
simulation, we perform a linear regression (a × x + b) using the last 4500
steps. This balances the coverage initial slope that only evaluates the initial
UAV trajectories.

In order to obtain meaningful results for these metrics, simulations of the
CACOC mobility model must be conducted for a minimum number of UAVs
and simulation steps. Such simulations are thus computationally demanding
and prevent from using global optimisation methods that require a large
number of function evaluations. This motivates our choice of a surrogate-
based optimisation approach where the number of objective function calls
is limited.

4. Bayesian Opimisation

Bayesian optimisation is a model-based approach which aims at solving
black-box or very time-consuming problems. It can be assimilated as an
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optimisation algorithm where the formal expression of the objective function
may be unknown or very difficult to obtain. To overcome this issue and
reduce computation cost, Bayesian optimisation generates a surrogate model
of the unknown function using Gaussian processes [6]. It samples promising
zones in the feasible region by computing a distribution of the objective
function (see Figure. 3). This distribution gives prior knowledge on the
location of the optimal solution. Bayesian optimisation is thus characterised
by two important mechanisms:

• a probability measure describing prior beliefs on the optimal solution
location;

• the acquisition function which allows to gain information on the loca-
tion of the minimum value of the objective function.

Figure 3: Bayesian optimisation for function approximations

Considering a cost function F (x), Gaussian processes determine the
probability distribution of the function F (x) at each x. These distributions
are Gaussian and thus characterised by a mean value µ(x) and a variance
σ2(x). Hence a probability distribution over functions can be defined as
follows:

P (F (x)|x) ∼ N (µ(x), σ2(x)) (4)

The parameters µ(x) and σ2(x) have to be estimated by fitting the Gaus-
sian processes to the data. Using several observations, we obtain a sample
of a multivariate Gaussian distribution [26], determined by a mean vector
and a covariance matrix. In fact, Gaussian processes generalise the notion
of multivariate Gaussian distribution. For complex nonlinear functions, the
covariance matrix is defined using a kernel function k(x, x′). This covari-
ance matrix defines the correlation between data. Two distant data x and x′
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should not influence each other while two close data are strongly correlated.

F (x) ∼ GP(µ(x), k(x, x′)) (5)

where GP stands for Gaussian process. The squared exponential kernel is
often used and defined as follows:

k(x, x′) = l · exp

(
−‖x− x

′‖2

2σ20

)
(6)

with parameters l and σ20.
To fit the Gaussian process to the data, the likelihood is optimised from

the evaluations of each observation. Each time a new point is added to
the model, a re-optimisation is performed to maximise the likelihood. The
question is to determine a new point. This is achieved by optimising an
acquisition function which statistically models our confidence to find the
location of the optimal value. Several acquisition functions exist such as the
Maximum Probability of Improvement (MPI), the Expected Improvement
(EI), or the Lower-Confidence Bounds (LCB). They are computed as follows:

• acqMPI(x) = Φ(γ(x)).

• acqEI(x) = σ(x)(γ(x) Φ(γ(x)) + φ(γ(x))).

• acqLCB(x) = µ(x)− kσ(x).

where γ(x) = F (xbest−µ(x))
σ(x) , Φ is the standard cumulative distribution func-

tion, φ the standard normal probability density function and k is a parameter
allowing to balance exploration-exploitation.

Finally, Alg. 3 depicts the different steps of the standard Bayesian op-
timisation algorithm. The algorithm is initialised with a random sample of
points (line 2). These points are then evaluated with the true but expensive
black-box objective function (line 3). At this point, the GP model is fitted
to the set of points and their corresponding objective value (line 5). An
acquisition function is selected (line 7) and optimised in order to determine
the next guess or sample point (line 8). This new point is evaluated with
the black-box objective function (line 9) and the GP model is updated ac-
cordingly (line 10). The algorithm iterates over the aforementioned steps
until convergence.

5. Experiments

This section contains the details about the experimental settings and
results. The configuration of the CACOC simulations and of the bayesian
optimisation algorithm are given in Section 5.1. Experimental results are
then presented and analysed in Section 5.2
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Algorithm 3 Bayesian optimisation

1: function Solve(problem,n,k)
2: X =initRandom(n);
3: Y =problem.evaluate(X)
4: model=GP(X,Y )
5: model.update()
6: while not has converged() do
7: acq = getAcquisition(k);
8: xnew =acq.optimise();
9: ynew =problem.evaluate(xnew);

10: model.update(xnew,ynew);
11: end while
12: return model.best;
13: end function

5.1. Experimental Setup

In order to find the best chaotic parameter of the CACOC mobility model
that optimises the area coverage performance of a UAV swarm, the frame-
work presented in Figure ?? is used. Solutions provided by the bayesian
optimisation algorithm are evaluated using a graph-based UAV swarm sim-
ulator in which CACOC has been implemented.The setup used for the UAV
swarm simulation and the bayesian optimisation experiments are detailed in
the next two sections.

5.1.1. CACOC simulation parameters

The UAV simulation area is a 100 m × 100 m square, divided in square
cells of 1 m × 1 m. 10 autonomous UAVs are used, all with a constant speed
of 1m/s. All depart from a base station located in the middle of the bottom
edge of the area, i.e. position (50,0). At each simulation step, each UAV can
do one of the following three actions: (1) go ahead: the UAV keeps the same
direction; (2) go left: the UAV turns left with a 45◦ angle; (3) go right: the
UAV turns right with -45◦ angle. To prevent collisions between the UAVs
they all have non equal flight altitudes [23]. Each simulation is run for 500
steps. The α parameter of the Rössler system can be set in the interval
[-0.8:0.4]. CACOC simulation parameters are summarised in Tab. 2. We
manage the border of the area as follows: when the obtained position of the
UAV is outside the environment we compute the symmetrical point where
the symmetry axis is the border.

5.1.2. Bayesian optimisation parameters

Table 3 describes all parameters used by the Bayesian optimisation al-
gorithm. The initial design consists of 10 randomly selected points in the
parameter search space. The covariance matrix has been defined using the
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Bayesian Optimisation

CACOC SimulationRandom initialisation

Optimise acquisition 
function

Evaluate F(x)

Best value

Stopping 
criterion

Generate chaotic 
sequences

Generate CACOC 
mobility traces

Evaluate CACOC slope 
of fairness / coverage

Update Gaussian 
Process model

Yes

No

Figure 4: Experimental framework

Table 2: Parameters for the CACOC simulation.
Parameter Name Parameter Value

Simulation area
Geographical Area 100 m × 100 m
Number of cells 100 × 100
UAV Autopilot
UAVs speed 1 m/s
Possible UAV actions ahead, 45◦ left, 45◦ right
Initial UAVs position middle of the bottom of the map
Experiments
Number of UAVs [10]
α range [-0.8:0.4]
Simulation steps 500
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“Mattern” kernel function. This covariance matrix defines the correlation
between data. The acquisition function is the Lower-Confidence Bounds
(LCB). Since we wish to maximise the coverage, we consider the opposite
target value. The optimisation of the acquisition function is done using a lo-
cal search algorithm which is restarted 20 times. The acquisition function is
an auxiliary non-linear function. It can be difficult to find its global optimal
solution. Nevertheless, we are not absolutely looking for a global optimal
but only for a local optimal that would improve our knowledge about the
true objective function. Therefore, a local search approach with multiple
restart can provide a “good enough” local optimal solution. The maximum
number of iterations (newly added points to the model) has been set to 45.
Finally, the Bayesian optimisation stops if the newly added points to the
model have an absolute deviation lower than 1.0e−5. Finally, we did not
add any time limit.

Table 3: Experiment parameters for Bayesian optimisation.

Parameters Value

Initial design 10 random points
Kernel Mattern
Acquisition LCB
Exploration weight 2
Acquisition (restart) 20
Maximum iteration 45
Tolerance 1.0e−5

Maximum time None
Independent runs 30

5.2. Experimental Results

Fig. 4 illustrates the main advantage of the Bayesian optimisation to re-
duce the computation time. Indeed, we can easily observe that the approach
acquires points in promising areas without exploring the ones which are sta-
tistically less valuable in terms of objective value. Most of the periodic
parts of the bifurcation diagram are excluded due to their least performing
results in terms of speed of coverage. Thus the algorithm focuses on the
most promising areas in the chaotic regions of the bifurcation diagram.

The first lower part of Fig. 5 details the slope of coverage values obtained
for the 30 independent runs of the Bayesian optimisation algorithm. All
these runs give a slope of coverage value higher than 7.9e−4. These 30 values
are better than the average value of CACOC slope of coverage for α = −0.25
that is equal to 7.5e−4 (see Figure 13 of [3]). On top of that, during the
experiments conducted to validate the CACOC approach, we did not obtain
any slope of coverage higher than 8e−4, and in Fig. 5, we mostly obtain
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Figure 5: Bifurcation diagram of the Rössler system (periodic region are characterized
with lines and chaotic regions are black area illustrating the non periodicity of the chaos).
Bayesian optimisation for 3 different runs. The last one shows the interest of the Bayesian
optimisation which focuses on chaotic regions of the bifurcation diagram and avoiding
periodic ones. The Bayesian optimisation can follow the chaotic region in order to avoid
periodic ones where the performance of CACOC are reduced.

values higher than 8e−4. These values underline the exploration capabilities
of the CACOC algorithm by better spreading the UAVs in the environment.

The bottom part of Fig. 5 details the slope of fairness values. The slope
of fairness contribute to the evaluation the algorithm on a long term. The
values obtained with the Bayesian optimisation are in the range of values
already obtained in our previous work [2.5e−3; 4e−3] (see Figure 13 of [3]).
Thus the optimisation of the parameter using this metrics do not permit to
discriminate significant improvements. For the remainder of this article, we
will only consider results of the Bayesian optimisation regarding the slope
of coverage.

For the 30 runs, the results can be organized in groups depending on
their α value:

• 7 values are in α ∈ [−0.35;−0.25];

• 3 values are in α ∈ [−0.12;−0.073];

• 20 values are in α ∈ [−0.073; 0.042].
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Figure 6: Bifurcation diagram detailing the chaotic and periodic solution depending on
the value of α. The partition between the symbols “0” and “1” indicates that the same
chaotic mechanism characterise the topological properties of the attractor for these value
of α. The values for the slope of coverage and for the fairness are the 30 best values
obtain after the Bayesian optimisation. Thus we can briefly conclude that not only the
chaotic mechanism is important for CACOC but also the associated orbits it contains.
For the slope of coverage, this is due to the absence of best solution out of the range
α ∈ [−0.4; 0.05]. For the fairness, values of alpha below −0.4 give the best results.

Unfortunately, with the partition of the first return map in three equal
portions, the solution with α ∈ [−0.12;−0.073] cannot be considered as
valid because it leads to a regular pattern in terms of mobility model (see
Fig. 1 for details on the partition). Thus, we obtain two groups of values
giving the best known value of α for CACOC. Also out of these range of
values, even for the same chaotic mechanism, CACOC is not able to achieve
such good performance in terms of slope of coverage.

From Fig. 5 we can conclude that with α ∈ [−0.4; 0.05], the specific
properties of the orbits constituting the chaotic mechanism are better, even
if they have the same chaotic mechanism (two branches). Thus, we can
explore the dynamics to deeply understand the properties related to the
periodic orbits and the performance of CACOC. In the next section, we will
study the dynamical properties of the attractors to details their influence
on the performance of the CACOC mobility model.
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Table 4: Comparison of the first return map shapes (see Fig. 6 for the first return maps)
using f(0) (ρn+1 = f(ρn) with ρn = 0) and their impact in term of transitions allowed for
CROMM mobility model (included in the CACOC mobility model).

α f(0) transitions from R

−0.47 0.67616 A
−0.25 0.48856 A and L

0 0.34562 A and L
0.034 0.33387 A and L
0.1 0.319912 A, L and R

6. Dynamical analysis

In a previous paper [14], we provide a detailed analysis of the topolog-
ical properties of the attractor solution to the Rössler system. This first
paragraph summarises these first steps of the topological characterisation
method necessary to obtain comparable first return maps. The chaotic at-
tractors are bounded by a genus–1 torus for the considered values of α. As a
consequence, a Poincaré section with only one component is required. Fur-
ther to the orientation convention introduced in [27], a ρn value represents
the Poincaré section with an orientation from the inside to the outside.

Further to the results obtained by the Bayesian optimisation, we select
values of α. We now present the first return maps of five attractors with
different values of α selected to illustrate the dynamics occurring in this
bifurcation diagram. First of all, the five first return maps are made with
an increasing branch followed by a decreasing branch. However, the initial
value of the increasing branch f(0) (ρn+1 = f(ρn) with ρn = 0) is not
the same. As illustrated in Tab. 4, the increase of α concords with the
increase of the length of the first increasing branch. The latter has an
impact on the possible transitions allowed in the CROMM mobility model
(by extension, in the CACOC mobility model as well). We remind that the
first return maps are equally partitioned using three symbols independently
of the branch orientation with L, R and A to give a direction to the UAVs.
As a consequence, the problem cannot have better results for values above
α = 0.034 because these mobility models allow transitions from R to R
and this is not profitable (Fig. 6): it leads to small turns (see Tab. 3 in
[3] for details). On the other hand, when α is lower than −0.47 transitions
from R to L are removed. This also explains why the Bayesian optimisation
method does not find better results for α values lower than −0.34: not
enough transition from L to R are allowed to obtain an efficient mobility
model.

Considering the groups of points giving the best results, the third group
with α ' 0 gives the best results in terms of slope of coverage: it is higher
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Figure 7: First return maps for α values of Tab. 4. The partition indicate the transitions
when there is no pheromones to guide the UAVs (CROMM mobility model used in the
CACOC mobility model).

than 8.1e−4 for nine out of twenty values. We can conclude that better
results are obtained when α = 0.034. Compared to the first group of points,
the chaotic dynamic is the same (same chaotic mechanism described by a
first return map with two branches) for α = −0.25 and α = 0.034 (Fig. 6).
However, for the latter the dynamic is developed in a sense that with the
first branch going from 1/3 up to 1 leading to supplementary periodic orbits
for transition from R to L. This permits to have transitions from R to L and
A without transition from R to R as it is the case for α = 0.1 (Fig. 6).

7. Conclusion

The CACOC (Chaotic Ant Colony optimisation for Coverage) algorithm
has been developed for a swarm of UAVs which purpose is to cover an
area. This mobility model uses the Rössler system to introduce chaotic
dynamics. In this article, we used Bayesian optimisation to obtain the best
parameters for the Rössler system. Our experimentations underline that
this method permits to explore efficiently a bifurcation diagram by-passing
periodic regions. The results provide two groups of points providing excellent
results in terms of slope of coverage for the swarm. Using first return maps,
we compare the chaotic dynamics to select the best parameter. This best
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solution corresponds to a first return map with a fully developed first branch
according to our partition in three equal parts.

For future works, we plan to analyse the performance of the obtained
CACOC parameterisation on different area coverage scenarios, e.g. varying
the number of UAVs as previously done in [? ], the size and topology of the
area. We also plan to explore more Rössler system dynamics by increasing
the number of parameters in our Bayesian optimisation model. We will also
consider other dynamical systems leading to chaotic dynamics bounded by
a higher genus torus such as Lorenz and Chen systems with techniques used
to perform their topological analysis [28].
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