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SUMMARY

Understanding plant adaptive responses to the space environment is a requisite
for enabling space farming. Spaceflight produces deleterious effects on plant
cells, particularly affecting ribosome biogenesis, a complex stress-sensitive pro-
cess coordinated with cell division and differentiation, known to be activated
by red light. Here, in a series of ground studies, we have used mutants from
the two Arabidopsis nucleolin genes (NUC1 and NUC2, nucleolar regulators of
ribosome biogenesis) to better understand their role in adaptive response mech-
anisms to stress on Earth. Thus, we show that nucleolin stress-related gene NUC2
can compensate for the environmental stress provided by darkness in nuc1
plants, whereas nuc2 plants are not able to provide a complete response to red
light. These ground control findings, as part of the ESA/NASA Seedling Growth
spaceflight experiments, will determine the basis for the identification of genetic
backgrounds enabling an adaptive advantage for plants in future space experi-
ments.

INTRODUCTION

Space exploration will soon include new human missions to the Moon as a first step in the human explora-
tion of Mars. Recent studies in human (i.e., NASA Twin Study, Garrett-Bakelman et al., 2019) and mamma-
lian systems (rodent missions, Beheshti et al., 2019; Ronca et al., 2019) are paving the way to understand the
effects of the microgravity environment on human physiology, but human life in space will rely on the essen-
tial role of plants in bioregenerative life support systems (Zabel et al., 2016), not only as a source of water,
food, and removal of CO; but also by providing a terrestrial-like environment for the psychological well-
being of astronauts.

Due to their sessile condition, plants have to promote adaptive responses to cope with changes in environ-
mental conditions. Light plays multiple roles in the mechanisms of these adaptive responses. On the one
hand, light is the source of energy by means of photosynthesis and regulates indirectly cell proliferation
and cell growth via the central regulator TOR kinase through the expression of S-phase genes, and also
ribosome biogenesis (Caldana et al., 2013; Xiong et al., 2013; Sablowski and Carnier Dornelas, 2014). In
addition, light is a major driver in the establishment of the patterns of plant growth and development,
by means of phototropism and photomorphogenesis. In playing this role, light is associated with gravity
as one of the major tropistic cues, such that gravitropism and phototropism (and the interaction between
them) are essential modulators of plant development (Vandenbrink et al., 2014). At the cellular and molec-
ular levels, plant development relies on the activity of cell growth and proliferation taking place in the mer-
istems, which supply differentiated cells and are influenced by the tropistic cues (Perrot-Rechenmann,
2010).

Darkness is indeed a stress condition for plants. Several articles describe that in the dark, apical meristem
proliferation is arrested in the G1 and G2 phases of the cell cycle (Lopez-Juez et al., 2008; Mohammed et al.,
2017), but in the root meristem, light induces the production of flavonols and other metabolites leading to
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the reduction of cell proliferation (Silva-Navas et al., 2016). This reduction could be related to the sugar
starvation that results from the inability to perform photosynthesis.

However, red light has a stimulating effect on ribosome biogenesis and cell proliferation. An increase in the
mitotic index, in the expression of some regulators of these processes at both gene expression and protein
levels, and in post-translational modifications of some protein factors has been described in plants irradi-
ated with red light (Tong et al., 1997; Reichler et al., 2001).

The absence of gravity (weightlessness, or microgravity, as it exists in free-fall, or in spaceflight) is also, by
itself, a stress condition for plants, and specifically for the functions of meristematic cells (Matia et al., 2010;
Boucheron-Dubuisson et al., 2016). An experiment performed in the International Space Station (ISS) in
which Arabidopsis thaliana seedlings grew for 4 days in darkness resulted in an increase in the rate of
cell proliferation and a decrease in the cell growth rate, estimated by the activity of ribosome biogenesis
in the nucleolus, compared with the 1g control (Matia et al., 2010). As the coordination of these two activ-
ities defines meristematic competence, the effect of the lack of tropistic stimuli, particularly of gravity sig-
nals, may result in serious alterations of the developmental pattern of the plant, as was also shown in simu-
lated microgravity experiments (Boucheron-Dubuisson et al., 2016).

The Seedling Growth (SG) experiments, recently performed in the ISS, aimed at unraveling the link between
phototropism and gravitropism, using the weightless environment of spaceflight (Vandenbrink et al., 2019,
Herranz et al., 2019). In the first SG experiment, A. thaliana seedlings corresponding to wild-type (WT)
ecotype Landsberg erecta (Ler) and two phytochrome mutants (phyA and phyB) known to be involved in
phototropism (Kiss et al., 2003; Molas and Kiss, 2008) were grown in space for 6 days and photostimulated
for the last 2 days, revealing differential blue and red light phototropism in space (Vandenbrink et al., 2016).
The analysis of the expression of regulatory genes of cell cycle and ribosome biogenesis showed that red
light irradiation produced a significant reversion of the uncoupling of cell proliferation and cell growth
caused by microgravity in darkness (Matia et al., 2010) and, consequently, a compensation of the loss of
meristematic competence (Valbuena et al., 2018).

In view of these results from our previous space experiments, we decided to focus on the cellular process of
ribosome biogenesis for the successive spaceflight experiments of the SG project, with the purpose of
testing the separate and synergistic effects of the light and gravity tropistic signals on specific molecular
and cellular components of this process. Ribosome biogenesis, which takes place in the nucleolus, repre-
sents the most complex multi-step process that the cell must perform and is one of the most intricately
regulated and controlled (Sédez-Vasquez and Medina, 2008; Pelletier et al., 2018). Therefore, its regulation
must adapt to the environmental conditions in which the cell finds itself and coordinate with other cellular
processes, such as cell division and differentiation. Several studies have described and used the nucleolus
as a major stress sensor, using stress-induced changes in the organization and composition of this organ-
elle (Mayer and Grummt, 2005; Boulon et al., 2010; Lewinska et al., 2010; Kalinina et al., 2018).

Briefly, ribosome biogenesis consists of the transcription of 455 rRNA genes (45S rDNA) containing the
sequences of 185, 5.85, and 255 rRNAs, followed by the multi-step cleavage of 45S pre-rRNA to produce,
in association with 5S rRNA and ribosomal proteins (RPs), the mature ribosomal subunits, which are then
exported to the cytoplasm and assembled as mature ribosomes.

In addition to RPs, hundreds of non-ribosomal proteins (NRPs), or nucleolar proteins and small nucleolar
RNAs are required for ribosome biogenesis, playing regulatory roles (Séez-Vasquez and Delseny, 2019).
Among NRPs, nucleolin is the most abundant protein of the nucleolus, where it plays a key role in the
different steps involved in ribosome biogenesis, including RNA polymerase (Pol) | transcription, processing
of pre-rRNA (Ginisty et al., 1999; Roger et al., 2003), and assembly and nucleocytoplasmic transport of ribo-
some particles (Bouvet et al., 1998). Moreover, nucleolin has been even implicated in other functions, with
or without collateral relationship with ribosome biogenesis (Angelov et al., 2006; Ma et al., 2007; Monge-
lard and Bouvet, 2007; Stepinski, 2012).

Animal and yeast genomes encode a single nucleolin gene, whereas plants offer various examples of gene

multiplicity. In A. thaliana, two genes encoding nucleolin proteins have been described: NUCT and NUC2
(Pontvianne et al., 2007, 2010). The NUC1 gene is highly and ubiquitously expressed in normal growth
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conditions and NUC1 protein is required to inhibit NUC2 gene expression at the transcriptional level and
may also influence the accumulation of NUC2 protein. In contrast, NUC2 is a functional protein-coding
gene developmentally controlled in most plant tissues and organs (Durut et al., 2014). NUC1 and NUC2
proteins localize in the nucleolus.

Disruption of NUCT gene (nuc1-2 mutant) leads to severe defects in plant growth and development. At the
molecular level, this mutant produces NUC2 expression, nucleolus disorganization, rDNA (NOR) hetero-
chromatin decondensation, pre-rRNA accumulation, de-repression of specific rDNA variants, and de-
methylation of some sequences of rDNA (Pontvianne et al., 2010).

In contrast, disruption of NUC2 gene (nuc2-2 mutant) has much weaker effects. The nuc2-2 mutant seed-
lings grow quite similarly to WT plants, but flowering occurs later. Knockout of the NUC2 gene induces
expression of some rDNA variants and hypermethylation of some sequences of pre-rRNA. In addition,
NUC2 is required for the stability of rDNA variants’ copy number (Durut et al., 2014).

In this article, in a series of ground studies to complement space experiments, we have exposed A. thaliana
(ecotype Columbia) WT, nuc?-2 and nuc2-2 seedlings to two different illumination regimes at the begin-
ning of the plant development (6 days from germination). In addition to highlighting the importance of
Earth reference controls in spaceflight -omics experiments, our goal was to better understand the re-
sponses of nucleolin mutants to red light stimulation for further uses in space experiments under altered
gravity conditions. The differential adaptive responses to the light are shown, suggesting that stress-
related mutants may show a reduced response to environmental stress. In the long term, these results
may lead to more efficient agriculture if an exaggerated response may reduce plant development under
suboptimal environmental conditions.

RESULTS
Overall Transcriptional Profile Effects Confirm a Suitable Quality of Plant Material and
Clustering of the Replicates

Two environmental conditions (light) are compared here, both of them as part of the SG Earth control refer-
ence experiment using the European Modular Cultivation System (EMCS). Seedlings were germinated in
the same spaceflight hardware during 4 days with a day/night cycle of illumination, and then half of the sam-
ples were exposed to 2 days of darkness and the other group to 2 days of continuous red light (Figure 1A).
After 6 days growth in the culture chamber (CC), the experiment was completed and the phenotypes of the
three mutants were observed (Figure 1B, Supplemental Information, Figure S1). Seedling growth was
homogeneous within each cassette, with clearly smaller seedlings in the case of the nuc?-2 mutant. No
clear phenotypical differences were observed in the root system physiology between darkness- and red
light-stimulated samples (including the absence of red phototropism at 1g conditions). The phenotype
was compared with a previous experiment with the same duration and genotypes but in petri dishes
and with a 6-day photoperiod illumination profile (Manzano et al., 2020 submitted). Despite the effects
of the TROPI cassette volume, the overall phenotype of the seedlings is also very similar in both studies.

The quality of the replicates and overall similarities among the illumination regimes and different plants
used is shown by principal-component analysis (PCA, Figure 1C and Supplemental Information, Data
S1). First, a clear difference between the transcriptional profile of the WT, nuci-2, and nuc2-2 plants
exposed to darkness or red light photostimulation during the last 2 days of growth is shown by principal
component 1 (PC1). Second, the differences between the genotypes can be observed in principal compo-
nent 2 (PC2), where the nuc1-2 genotype has the most disrupted nucleolus phenotype, in that the nuc2-2
mutant is closer to the WT. The effect is clearer in the dark samples, because the red light stimulation pro-
duces more similarities among the three genotypes. Last, all the biological replicates included in the study
cluster together according to the experimental condition, strengthening the statistical validity of the study.
The use of three biological replicates (including up to 10 seedlings each) is enough considering the diffi-
culties in increasing this number due to the availability of spaceflight research capabilities.

Global Effect of Red Light Photostimulation Differs in Each Arabidopsis thaliana Line

To understand the effect of the two lighting regimes (red light and darkness) on the transcriptional status,
we compared seedlings with the differential illumination during the last 2 days of the plant growth period
for each of the lines used (WT, nucl-2, and nuc2-2).
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Figure 1. The Seedling Growth 2 Ground Reference Experiment

(A) Experimental design including the illumination profile for each sample including color code used as key.

(B) Images of 6-day-old seedlings (WildType, nuc1-2, and nuc2-2, under the two illumination options) inside the CC just
before collection for freezing (additional photos are provided as Supplemental Information Figure S1). Scale bar, 1 cm
(the gridded membrane has clearly defined grid lines spaced at 3.1 mm). The labels on the membrane represent the
cassette # in the ground control.

(C) Principal-component analysis (PCA) of the 18 samples (three replicates per condition) using read counts data from
FeatureCounts. This diagram gives an overview of the similarities and dissimilarities between samples and the
experimental conditions’ overall effects (see Data S1 for an RNA quality report on the red light samples). All replicates are
consistently grouped according to their experimental conditions, and two clear PC1 (for illumination conditions during
the last 2 days of growth: darkness and red light) and PC2 (for genetic background: WT, nuc1-2, and nuc2-2) are observed.

The number of differentially expressed genes (DEGs) in the WT is 1,428 genes, of which 1,067 have their
expression activated and 361 have it repressed. In the nuc1-2 mutant, the total number of DEGs is lower
(1,001), mainly at the expense of the up-regulated genes (633 are over-expressed and 368 are repressed).
The number of DEGs from the comparison (red light versus darkness) in the nuc2-2 mutant is very similar as
in the WT: a total of 1,017 up-regulated genes and 339 down-regulated genes, making a total of 1,365
DEGs (Figure 2).

Venn diagrams illustrate the group of DEGs that is affected in a single genotype or shared by others (Fig-
ure 2). Red light up-regulated genes affected only 298 genes in the WT, 134 genes in nuc-2 mutant, and
199 genes for nuc2-2mutant. On the other hand, the WT has 34 up-regulated genes in common with nuc1-2
but a large collection of 353 genes in common with nuc2-2 (note that the total number of up-regulated
genes common for the three genotypes is 382), and only 83 genes for both nucleolin mutants (Figure 2B).

Among DEGs down-regulated by the red light compared with the dark, there is a similar number of unique
DEGs for each of them; 139 genes for the WT, 142 genes for the nuc1-2 mutant, and 104 genes for the
nuc2-2 mutant. In this case, the number of DEGs down-regulated in the three lines is 125 genes, without
any of the pair comparisons reaching that level (the nuc1-2 and nuc2-2 mutants have 44 and 53 genes in
common with WT, respectively, whereas the two nucleolin mutants share 57 down-regulated genes,
Figure 2C).

In summary, the line with the least number of DEGs, when we compare plants illuminated with red light with
those kept in darkness, is the nucl-2 mutant. As the down-regulation response seems similar in all
genotypes, the global effect is mainly due to a higher number of up-regulated DEGs in both nuc2-2 and
WT genotypes. In fact, we can easily extrapolate from Figure 2B and compare the gene lists, including
the common responses to red light (382 genes) and the list of up-regulated genes not detected in the
nuc1-2 phenotype (353 genes). The main difference between these lists is shown by the functional analysis
"GO Enrichment” included in Figure 2. All genotypes show the obvious photosynthesis/light-harvesting
response together with increased Calvin cycle activity, but the nuc?-2 genotype is the only one lacking
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(A) Venn diagram comparing all DEGs and the five most significant gene ontology (GO Enrichment) categories in the common DEG in the three genotypes.

(B) Venn diagram comparing up-regulated DEGs and the five most significant gene ontology (GO Enrichment) categories in the common DEGs in the WT

and nuc2-2 genotypes and in the three genotypes, respectively.

(C) Venn diagram comparing down-regulated DEGs and the five most significant gene ontology (GO Enrichment) categories from common DEGs in the

three genotypes.

an increased secondary metabolism, together with a response to stress elements (cold) observed in both
WT and nuc2-2. These results suggest that the presence of the NUC1 protein is necessary for the known
effect of red light in the stimulation of cell proliferation, but the NUC2 protein is not an important player
in that response.

A complementary functional analysis has been done using the full lists of up- or down-regulated genes in
each genotype, obtained by means of a Heatmap GO Enrichment. Up-regulated gene lists reveal that red
light photostimulation versus darkness mainly leads to an unequivocal activation of genes involved in
different phases of photosynthesis, together with processes that involve external encapsulation, secondary
metabolism, and drug catabolism in all three A. thaliana lines examined (Supplemental Information, Fig-
ure S2A). Other significantly affected categories are the GO involving cell wall modification, pathogenesis,
responses to insects, and defense mechanisms to bacteria. In addition to the mentioned GO groups, red
light activates different biosynthetic processes (ketone, cutin, and small molecules) and the response to
stimuli, such as cold and UV light, in the WT and nuc2-2 mutant lines. Solely in the WT line, an enrichment
in cell division-related genes (microtubule-based movement, cell cycle, meiotic cell cycle) is produced. In
the case of down-regulated GO groups, red light photostimulation reduces expression of genes involved
in the response to different stimuli (temperature, hypoxia, light, abscisic acid, oxidative stress) as well as the
circadian rhythm of plants (Supplemental Information, Figure S2B). Additional down-regulated genes
involved in the response to stress appear in WT and nuc2-2 comparison (heat and osmotic stress), in the
WT and nuc?-2 comparison (cold acclimation, response to karrikin, hormone metabolism, and cell wall
modification), or nuc1-2 only (response to gibberellin). The two nucleolin mutant lines share a repression
of the amino acid metabolism (alpha-amino acid catabolic process and leucine degradation).

iScience 23, 101686, November 20, 2020 5
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Figure 3. Differentially Expressed Genes (DEG p adj<0.05, in the Three Genotype Pair-Comparisons among WT,
nuc1-2, and nuc2-2) within the Same Experimental Condition

(A) Venn diagram comparing all DEGs between plants exposed to darkness the last 2 days.

(B) Venn diagram comparing all DEGs between plants exposed to red light stimulation the last 2 days.

Dissecting Transcriptional Status for Each Genotype for lllumination Conditions at Normal
Earth Gravity

To better understand the differences in the transcriptional status of each genotype that could be attributed
to the illumination conditions designed to be used in the SG spaceflight experiment, we performed a series
of comparisons between the different lines, namely, nuc?-2 versus WT, nuc2-2 versus WT, and nucl-2
versus nuc2-2, when they are either photostimulated with red light or kept in darkness for 48 h, after a
growth period of 4 days under a 16 h/8 h white light photoperiod regime (regular growth condition).

The total number of DEGs when comparing the severe mutant nuc1-2with the WT is remarkable, with thou-
sands of genes affected in the different illumination conditions. A similar result was obtained in the com-
parison of nucT-2 with nuc2-2. This number was much higher in the comparisons of the nuc7-2 mutant with
both the Col-0 and nuc2-2 mutant in darkness: 3,363 genes and 2,121 genes, respectively. Under red light
stimulation, the numbers dropped to half: 1,499 genes compared with the WT and 1,069 compared with
nuc2-2, respectively. In contrast, the small number of DEGs between the WT and nuc2-2 mild mutant
(just 149 genes in darkness conditions) peaked to 225 when red light photostimulation was provided (Fig-
ure 3). The up- and down-regulated genes showed similar trends in this case (Supplemental Information,
Figure S3).

The differential numbers in DEGs can be assigned to particular GO groups. Ontology analysis shows that
both comparisons involving the nuc? mutant in the darkness produced an increase in the expression of
genes mainly involved in cell division, such as cell cycle, meiotic cell cycle, microtubule cytoskeleton, nu-
clear chromosome segregation, cytokinesis, and cell cycle-G2/M transition (Supplemental Information,
Figure S4A). Furthermore, in the nuc1-2 versus WT and nuc1-2 versus nuc2-2 comparisons, categories of
responses to different stimuli, namely, responses to auxin, red light, gravity, and UV and ionizing radiations,
also appeared overrepresented. In the comparison nuc1-2 versus nuc2-2 in darkness, most functional cat-
egories (GO terms) appearing up-regulated in the nucl-2 mutant are related to the cell wall (cell wall
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macromolecule catabolic process, pectin biosynthetic process), the cuticle (cuticle development and cutin,
suberin, and wax biosyntheses), and the plasma membrane (anchored component of plasma membrane,
very-long-chain fatty acid biosynthetic process, transmembrane receptor protein kinase activity).

The up-regulated processes when red light is applied are quite different (Supplemental Information, Fig-
ure S4B). In the nuc1-2 versus WT and nuc1-2 versus nuc2-2 comparisons, DEGs appeared involved in cell
wall (structural constituents of cell wall) and in development (positive regulation of growth, post-embryonic
plant morphogenesis, cellular response to ethylene stimulus). In the nuc?-2 versus nuc2-2 comparison,
many genes with a red-light-activated expression were involved in ribosome biogenesis (preribosome,
maturation of SSU-rRNA, 90S preribosome, maturation of 5.85 RNA, ribosomal large subunit biogenesis).

The two nucleolin mutant lines relative to WT (nuc1-2 versus WT and nuc2-2 versus WT comparisons) in
conditions of red light photoactivation have up-regulated genes involved in different response processes,
such as the responses to hypoxia, drug, antibiotic, salicylic acid, and wounding. The number of response
processes was increased in the nuc2-2 versus WT comparison with the GO categories: responses to cold,
bacterium, and abscisic acid.

The identification of common gene categories down-regulated in both darkness and red light conditions
was more challenging (Supplemental Information, Figures S4C and S4D). In darkness, nuc1-2 versus WT
and nuc1-2 versus nuc2-2 comparisons were very similar and mainly related to developmental processes
(regulation post-embryonic development, meristem development, regulation of seed development, plant
organ senescence), mRNA quality (mRNA surveillance pathway), response to temperature (response to
temperature stimulus, endopeptidase Clp complex, heat shock protein), and immune system (immune
response, response to toxic substance, glutathione metabolism). In the comparisons indicated above,
genes involved in long-day photoperiodism, flowering, rhythmic process, and response to light intensity
were also less represented. In the same way, cellular responses to light stimulus category was over-repre-
sented in both nucleolin mutants with respect to WT and responses to light stimulus was a common GO
category in all three comparisons. The gene categories repressed only in the nucT-2 versus nuc2-2 compar-
ison were involved in the spliceosome, protein demethylation, chromatin organization, nRNA binding, and
histone acetyltransferase activity.

The gene categories with repressed expression under red light for any of the comparisons (nuc1-2 versus
WT and nuc1-2 versus nuc2-2) were related to mRNA splicing (alternative mRNA splicing via spliceosome),
light responses (response to light stimulus, photoperiodism flowering, circadian rhythm), photosynthesis
(chlorophyll biosynthesis process, chloroplast envelope), and the immune system (immune system process,
defense response to bacterium, regulation of salicylic acid metabolic process, Supplemental Information,
Figure S4D).

Protein-Protein Interaction Networks Helps to Visualize the Differential Transcriptional State
of nuc1-2 Genotype in 1g Control References

Enrichment-PPI analysis (protein-protein interaction network) also showed that, in darkness, the mutant
nuc1-2 has up-regulated the expression of genes involved in the regulation of G2/M transition of the
mitotic cell cycle, mitotic spindle assembly checkpoint, and auxin-activated signaling pathway, with
respect to both the WT and the mutant nuc2-2 (Figure 4). In the down-regulation side, nuc?-2 mutant,
when compared with WT, showed down-regulated genes involved in transcription regulator activity,
sequence-specific DNA binding, defense response, and regulation of developmental process. In addition,
the nuc1-2 mutant has genes with repressed expression in darkness condition related to negative regula-
tion of circadian rhythm, responses to light stimulus, and responses to jasmonic acid, when compared with
WT and nuc2-2 mutant (Figure 4). These results were in agreement with functional GO analysis (Supple-
mental Information, Figures S2 and S4).

DISCUSSION

Results from Spaceflight Experiments Can Have Several Limitations that Are Not Often
Present in Other Biological -Omics Works

Major constraints of spaceflight experiments are the reduced amount of material and reproducibility, but
other issues include the storage of samples before and after the experiment execution in space, causing
staggered preparation and processing of the samples (Millar et al., 2010; Correll et al., 2013). In this
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Figure 4. Protein-Protein Interaction Network of Nuc1-2 Differential Response under Darkness Conditions

Enrichment network visualization for results from the over-represented gene lists in Nuc1-2versus the other genotypes. Gene in each node is represented by
a chart indicating the functional category to which each one belongs (following the color legend). The networks show that processes such as cell cycle (left
part or up-regulated genes), circadian rhythms, and stress responses (right part or down-regulated genes) are already affected in the 1x g control conditions
as a reference for the Seedling Growth spaceflight experiments.

work, we have shown that, using the spaceflight hardware and procedures, we can perform a transcriptomic
analysis with enough reliability to describe the differential transcriptional state of the nucleolin mutants un-
der different light conditions. Three replicates could be considered low for current standards for animal
-omics studies in Earth, but in our experiment each replica already represents the average of 10 plants.
We show here that the replicates expected to be collected from the spaceflight experiment can be esti-
mated to be sufficient for performing a sequencing study that allows clustering of the different genotypes
and environmental conditions (Figure 1).

Due to logistical considerations, a specific constraint for plant space biology is the limited number of
different mutants/genotypes that can be used in a spaceflight experiment in true microgravity. We have
to be sure that the mutants of choice will provide valuable information. In that sense, the use of nucleolin
mutants is a promising choice to provide insight into both the cell cycle and stress response mechanisms,
apart from the ribosome biogenesis in which this protein is directly involved. These processes are known to
be recurrently affected in space -omics experiments with plants (Choi et al., 2019; Ferl et al., 2015; Herranz
et al., 2019; Johnson et al., 2017; Kruse et al., 2017; Paul et al., 2013, 2017). The analysis performed here
allows us to know the specific functions assumed by the two nucleolin proteins of A. thaliana (NUC1 and
NUC2) in different environmental conditions, such as red light photostimulation and darkness, affecting
tropistic stimuli. This information can be considered as the 1g reference control required to obtain the
best possible understanding of the changes produced by the spaceflight conditions on plant
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development, and how the gravitational stress could be counteracted by changing phototropic stimuli. A
longer-term goal is to use this knowledge for plant cultivation into bioregenerative life support systems.

The Transcriptomic Baseline for Nucleolin Mutants Is Different under Red Light
Photostimulation and Darkness

Red light illumination mainly produces the activation of genes involved in photosynthesis, cell wall modi-
fication, drug catabolism, pathogenesis, and biotic stress response. Conversely, different abiotic stimuli
responses (temperature, hypoxia, light, abscisic acid, oxidative stress) are down-regulated by the photo-
stimulation treatment, as well as the circadian rhythm of plants. This transcriptional effect is similar in
the three lines studied (Col-0 WT, nuc1-2, and nuc2-2), suggesting that it may be independent of the nu-
cleolin protein functions. Therefore, the interpretation of transcriptional effects on plants’ grown during
spaceflight will be straightforward. In contrast, red light illumination produces a down-regulation of genes
involved in the response to karritin, cold acclimation, and hormone metabolism in WT and nuc?-2, indi-
cating that the NUC2 protein, and/or other proteins up-regulated in nuc1-2 (Pontvianne et al., 2007), could
participate in these functions. In addition, in the nuc1-2 mutant, genes coding for response to gibberellin
with the red light appear repressed. Gibberellin is a hormone involved in seed germination, bud and fruit
formation, shoot longitudinal growth, and axial organ elongation (Hedden and Sponsel, 2015), which could
support the relationship of defective plant growth and development with NUCT gene disruption.

Exposure to the dark during the last 2 days of cultivation of seedlings promotes gene categories mainly
involved in processes of cell division and in the response to different stimuli (red light, UV, ionizing radia-
tion, gravity, auxins). They are common in nuc1-2 versus WT and nuc1-2 versus nuc2-2 comparisons and
unique in nucl-2 versus WT comparison. These observations could indicate that, in a stress condition
such as darkness, the NUC2 protein is capable of rescuing functions that the NUC1 protein performs under
normal growth conditions. Indeed, a role of nucleolin in mitosis has been reported (de Carcer and Medina,
1999; Ma et al., 2007). Therefore, in the nuc? mutant, the NUC2 protein would be capable of performing
functions necessary for plant survival, such as ribosome biogenesis regulation (Pontvianne et al., 2007),
cell proliferation, and DNA repair. It is important to note that cell division GO was only significantly up
represented in the WT when red light was provided (Figure 2B). In contrast, the gene categories
down-regulated in darkness are mainly related to developmental processes, mRNA quality, response to
temperature, and immune system. This may indicate that in the dark stress condition, the NUC2 protein
is not capable of supplying the function of the NUC1 protein in these processes. These results, together
with those previously described, indicate that the functional rescue of NUC1 by NUC2, when NUC1 is
not expressed, would be only partial, which may be due to the structural difference between both proteins,
including longer N-terminal acidic domain and less-conserved GAR domain | in the C terminal (Durut and
Séez-Vasquez, 2015).

Differential Role of Nucleolin Mutants’ Transcriptomic Baseline May Offer New Insight in
Spaceflight Experiments

Differential transcriptional response is observed when comparing the two nucleolin mutants. The cate-
gories of genes activated differentially in both mutants (nuc?-2 versus nuc2-2 comparison) are mainly
involved in the cell wall and membrane systems. This finding is potentially interesting in space -omics to
discriminate gravitropism from graviresistance mechanisms (Herranz and Medina, 2014) and could be
related to the phenotype described in the nuc?-2 mutant, in which a reduction in the cell number and a
disorganization in every cell layer is observed in transversal sections of primary leaves (Pontvianne et al.,
2007). Moreover, the gene categories repressed only in the above-mentioned comparison are involved
in the spliceosome, protein demethylation, chromatin organization, mRNA binding, and histone acetyl-
transferase activity, which could be related to the described antagonist activity of these two proteins in
pre-rRNA methylation and with their role in chromatin remodeling, RNA Pol | transcription, mRNA stability,
and RNA/DNA metabolism (Pontvianne et al., 2010; Durut et al., 2014).

In the nuc?-2 versus nuc2-2 comparison under red light photostimulation, the ribosome biogenesis GO
shows the most significant enrichment within the up-regulated genes (Supplemental Information, Fig-
ure S4B). This result indicates that the described activating effect of red light in this process depends
more on the expression of NUC2 protein than on the NUC1 expression. Ultimately, the two nucleolin
mutant lines, compared with WT, have genes up-regulated by red light involved in different response
processes, such as the response to hypoxia, drug, antibiotic, salicylic acid, and wounding. These response
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processes are extended in the nuc2-2 versus WT comparison, including response to cold, bacteria, and
abscisic acid. These results indicate that even though both nucleolar proteins, NUC1 and NUC2, are
involved in response processes, the implication of NUC2 is higher as to the number of processes.
Therefore, NUC2 has a greater response capacity to environmental signals, such as illumination with red
light, thus being more sensitive.

A major challenge to be overcome in spaceflight -omics research is to differentiate and characterize which
of the spaceflight environmental conditions (including not only microgravity and cosmic radiation but also
the constraints imposed to the upload/download and storage processes in orbit, the gaseous atmosphere,
among other factors) are responsible for each of the observed alterations in the transcriptome. According
to our results, space -omics researchers need to pay special attention to the analysis of ground reference
controls on Earth before conclusions can be made on the results obtained in spaceflight. In our particular
example, the two nucleolin mutants are the perfect complement to the WT genotype to study how the
NUC2 protein can replace the essential functions of NUC1 in orbit, and how light can modulate it, even
rescuing WT transcriptional profiles in the nuc?-2 mutant. The fact that nuc2-2 mutant shows an increase
in stress response GO when exposed to red light connects the red light stimulus with the modulation of
the stress response. In parallel, the cell cycle and ribosome biogenesis functions required to be restored
in microgravity are also light dependent in both the nuc?-2 mutant (in Earth, as shown here) and the WT
plants in orbit (Valbuena et al., 2018).

Limitations of the Study

Due to logistical constraints, this study lacks a continuously illuminated control set of samples performed
simultaneously due to the absence of those samples in the spaceflight experiment as well as the reference
experiment. The next step in this research is to analyze the samples from the space experiment in micro-
gravity and the partial gravity conditions produced by the centrifuge in the EMCS on the ISS. We anticipate
confirming that the duplicated nucleolin gene system works during spaceflight will lead us to discover
novel mechanisms for plant adaptation to spaceflight conditions. Thus, this research will be eventually
translated into better crops for life support systems in the human spaceflight ventures of the 21st century.

Resource Availability
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Further information and requests for materials should be directed to and will be fulfilled by the lead
contact, Raul Herranz (r.herranz@csic.es)

Materials Availability

Materials generated in this study are available from the lead contact with a completed materials transfer
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Data and Code Availability
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METHODS
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SUPPLEMENTARY INFORMATION

Transparent Methods

Seedling growth conditions

Seeds of Arabidopsis thaliana wild-type (WT) ecotype Columbia (Col 0) and two mutant
lines of nucleolin protein, nucl-2: Salk_002764 (Pontvianne et al., 2010) and nuc2-2:
GABI178D01 (Durut et al., 2014), were surface sterilized with 70% (v/v) ethanol
(Sigma#270741) for 4 min, rinsed twice with 95% (v/v) ethanol for 1 min and dried in a
laminar flow cabin. Then, 28 selected seeds were affixed onto a sterile nitrocellulose
membrane (VWR#28149-472) with 1% (w/v) Guar Gum (Sigma#G-4129) and the
membranes with seeds were affixed in turn on blotter paper (Whatman 17 CHR, Fisher
Scientific#3017-915) previously soaked in 1/2 MS (Murashige and Skoog’s medium,
Duchefa Biochemie#M0221) growth medium and placed on the cassette (culture chamber,
CC) base. The culture chamber volume is around 6-8 mL.

These samples belong to the ground reference control (1ggr) at nominal Earth gravity to
be used as baseline for a larger spaceflight experiment (Seedling Growth). The seedlings
grew in the European Modular Cultivation System (EMCS) Engineering Reference Model
(ERM), located in the Norwegian User Support and Operations Centre (N-USOC) of the
European Space Agency (ESA) at Trondheim, Norway. The EMCS was an incubator on the
ISS that was able to hydrate the seeds and control atmospheric conditions as humidity, Oz,
CO2 and ethylene levels, also providing videorecording and image capture facilities
(Brinckmann, 1999, 2005; Brinckmann and Schiller, 2002). Standard EMCS Experiment
Containers (ECs) need to be complemented with an Experiment Unique Equipment (EUE)
providing specific experimental requirements. In our case, we used the “Tropi” EUE,
developed by NASA, consisting of culture chambers (CC), or cassettes, providing
semiautomatic hydration and three independent LEDs systems: White LEDs in the top, or
lateral 1:1 Red/Blue LEDs that can be operated independently (Correll et al., 2005; Kiss et
al., 2007). Each EC could accommodate five “Tropi” cassettes.

Ground control began with the hydration of the cassettes, and the seedlings grew for 6
days at 22 9C and in a controlled atmosphere. The first 4 days (96 h) of growth all seedlings
were illuminated with a photoperiod regime (16 h white light, 30-40 pmol/m2s and 8h



darkness) and the last 2 days (48 h) half of them were kept in darkness and the other half
were photostimulated with unidirectional red light (19 umol/m?2s, a lower intensity was
used for lateral photostimulation only, to ease the comparison with samples in darkness).
This experimental timeline followed the one we used in our spaceflight experiments
(Vandenbrink et al. 2019; Herranz et al. 2019) After the growth period, the seedlings were
collected from the cassettes and frozen in tubes with RNAlater (Ambion#AM7020) at -80

0C. Once frozen (stable state), they were transported to Madrid (Spain) for processing.

RNA extraction and Sequencing

Total RNA was extracted independently in three replicates (pooling 8-10 seedlings from
two different CC) per each experimental condition using a commercial kit and following
manufacturer's instructions (MACHEREY-NAGEL, 740949.250). This kit includes one
digestion step with DNAse for 15 min at room temperature. The quantity and quality RNA
was measured in the Bioanalyzer 2100 expert_Plant_ RNA nano with Agilent RNA 6000
Nano Kit (Agilent Technologies#5067-1511). Data S1 includes the RNA quality report for
the red-light photostimulated samples labelled as 21-29 corresponding to Col-0-RL, nucl-
2-RL and nuc2-2-RL. Similar RNA extraction yields and quality indicators as RIN/RQI
index were obtained in other experiments performed in Ground Based Facilities without
the constraints of spaceflight hardware (Manzano et al., submitted). Samples comprise
the same genotypes Col-0, nucl-2 and nuc2-2 in 1g control and microgravity simulation
conditions.

Once we determined that we had sufficient quantity, the samples with a RNA Integrity
Number (RIN) >7 were sequenced on the Illumina HiSeq2500 sequencer from Genomics
Unit at the Centre for Genomic Regulation (CRG core facilities, Spain) with stranded RNA
read type and 50bp read length. Eighteen total RNA samples were used to generate
eighteen sequencing libraries using the Illumina TruSeq RNA Library Preparation Kit
(Illumina, USA). Samples were individually indexed. The samples then were combined at
equimolar proportions into two pools. Each pool was loaded onto two lanes of a flow cell.
Sequencing was performed until the 25 million reads per sample objective were reached

(27,51 millions of sequence obtained).



RNASeq samples processing was made using Galaxy (https://usegalaxy.org/) (Afgan etal.,

2018). Reads quality was check with FASTQC and fragments were filter using Trim Galore!
(Krueger, 2015) with default settings. Reads were aligned to Arabidopsis TAIR10 genome
(https://www.arabidopsis.org) using RNA STAR (Galaxy Version 2.7.2b) (Dobin et al,,

2013) and gene counts were obtained with FeatureCounts (Galaxy Version 1.6.3) (Liao et
al., 2014). This transcriptional dataset has been submitted to NASA’s GENELAB database
(Ray et al.,, 2019), and it will be released with the reference GLDS-313 (https://genelab-
data.ndc.nasa.gov/genelab/accession/GLDS-313, DOI: 10.26030/0g0m-dj21).

Functional analysis

Statistical analyses of differential gene expression were conducted utilizing DESeq2 (Ray
etal, 2019) as part of the Galaxy Version 2.11.40.2 tool (Love et al., 2014). A multiple-test
corrected p-value (q-value; Benjamini and Hochberg, 1995) of 0.05 was employed. In
order to observe the replicates dispersion and the general differences between samples
Principal Component Analysis was performed using iDEP.91 (Ge et al., 2018). Once the
Fold Change (FC) and the corrected p-value for each of the comparisons were obtained,
we identified the number of genes that are common by various comparisons or unique to
each of them using Venn diagrams (Bardou et al., 2014). The filters used to determine the
differentially expressed genes (DEG) that give us information on the effect of red light
versus darkness in each of the genotypes comparisons (WT-RL_WT-DN, nuc1-2-RL_nucl-
2-DN, nuc2-2-RL_nuc2-2-DN) were corrected p-value <0.05 and FC>1.5. In contrast, the
filter applied to the comparisons that show us the differences between genotypes for both
illuminations (darkness: nuc1-2-DN_WT-DN, nuc2-2-DN_WT-DN, nuc1-2-DN_nuc2-2-DN
and red light: nucl-2-RL_WT-RL, nuc2-2-RL_WT-RL, nucl-2-RL_nuc2-2-RL) was p-
adj<0.05.

The next step was to determine in which biological processes the common and non-
common genes are involved by utilizing the Metascape multi-gene-list meta-analysis tool
by selecting Custom Analysis with GO Molecular Function, GO Biological Processes and GO
Cellular components in Enrichment Analysis. The same criteria used for DEG p values were

used for the list comparisons in Venn diagrams. Metascape provides a clustered heatmap
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with top enriched clusters and their enrichment patterns across multiple gene list (Zhou
etal, 2019).

In addition, an enrichment analysis to visualize protein-protein association network was
performed using STRING v.11. This tool uses a non-parametrical test (Aggregate Fold
Change), that consist in calculate the average of all values provided by the user for the
constituent genes and compare it against averages of randomized gene sets of the same
size. Then, a multiple testing correction is applied separately within each functional
classification framework (GO, KEGG, In- terPro, etc.), according to Benjamini and
Hochberg (1995). In addition to the functional classification frameworks, it performs a
hierarchical clustering based on a confidence diffusion state distance matrix computed on

the full organism-wide STRING network (Szklarczyk et al., 2019).
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Figure S1. Photos from the twelve CC from the Seedling Growth
Ground Reference Test used in this study (related to Figure 1)
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Images of the seedlings (WildType, nucl-2 and nuc2-2) were taken on the last day of
cultivation during the experimental run under darkness (infrared videocapture provide not
enough contrast to see all seedlings) or red light photostimulation. See Figure 1 for the final
growth of the seedlings just before sampling for freezing. The scale bar in figure is 1 cm size
(the gridded membrane has clearly defined grid lines spaced at 3.1 mm that were not

observable in these photos).



Figure S2. Heatmap showing the top GO enrichment clusters for DEG in
the WT and nucleolin mutants (nucl-2 and nuc2-2, related to Figure 4)
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Figure S3. Differentially expressed genes (DEG p adj<0.05, in the three
genotype pair-comparisons among WT, nucl-2 and nuc2-2, related to Figure 3)
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A) Venn diagram comparing all DEG between plants exposed to darkness the last two days.
B) Venn diagram comparing upregulated DEG between plants exposed to darkness the last
two days. C) Venn diagram comparing downregulated DEG between plants exposed to
darkness the last two days. D) Venn diagram comparing all DEG between plants exposed to
red light stimulation the last two days. E) Venn diagram comparing upregulated DEG between
plants exposed to red light stimulation the last two days. F) Venn diagram comparing
downregulated DEG between plants exposed to red light stimulation the last two days.



Figure S4. Heatmap showing the top Gene Ontologies enrichment
clusters for DEG in the three genotype pair-comparisons among WT,

nucl-2 and nuc2-2 (related to Figure 4)
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Run Overview Report

Data S1. RNA extraction quality report (related to Figure 1). Page | of 25
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Data S1. RNA extraction quality report (related to Figure 1).
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Data S1. RNA extraction quality report (related to Figure 1) which is used as an example of the sets of samples included in Figure 1C, namely EMCS samples (samples numbers 21-23, 24-26 and 27-29 respectively correspond to Col-0-RL, nuc1-2-RL and nuc2-2-RL), in this study showing good quantity and quality values for extracted plant RNA (RIN/RQI numbers >7).
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A

Run Version: N/A
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# Ladder
Ladder
Tt
il
sl
I
wl
L% —
L —
) —
el I
S —
10 —
o
a r o I >
f L f i1 1T i ‘Mﬁ TI f L L f f
2 25 30 kS EH 45 L &
Time (secends) L
Well# Ladder
RNA Area: 681.27
RNA Concentration: 160.00 ng/ul
Well# Ladder
Peak Peak Mig. Time Corrected Comments FWHM
State | Number (secs) Area
= 1 21.15 6.47 0.31
L 2 26.90 75.39 0.36
3 27.35 2.43 0.29
4 28.15 2.78 0.80.
L 5 30.45 112.32 0.43
6 33.25 1.69 0.50.
7 34.05 2.51 0.65
L 8 34.75 53.23 0.47
L 9 37.40 74.05 0.45
L 10 39.60 70.83 0.91
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# Ladder
Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
L = 42.70 99.96
L 12 46.20 78.91
- 13 51.60 82.57
—

DefaultUser

12/21/2018 8:51:32 AM

N/A

FWHM

Area

42.68

36.45

42.61
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# 1 Control
Contrl
B0
0L
0+
w0l
0L
8T
Q
z
2001
—
150+
0+
sl
o
oL oo ot omn w2 TR OXT L@ mma o @ & § 3 B8R i
| N A 1 Y s Ly | I | 1]
i} ) 30 & L 5 50 ki 8 H
Time [seconds)
Well# 1 Control
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.75 39.70| 704.26 15.97
2 28S 43.00 45.80 880.42 19.97
RNA Area: 4,409.13
RNA Concentration: 1,035.51 ng/pl
Ratio[28S/188S]: 1.25
RQl: 9.4 B
Well# 1 Control
Peak Peak Mig. Time Corrected Comments FWHM Area
State | Number (secs) Area
= 1 21.15 7.51 0.31 1.59
2 23.99 290.56 0.58 69.70
3 24.48 271.46 0.70,  66.46)
4 25.48 47.85 0.38 12.19
5 26.18 23.97 0.73 6.28
6 27.42 5.03 0.60 1.38
7 28.22 47.33 0.68 13.36
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Project: Javier Medina Acq. Analyst: DefaultUser

Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM

Run: Experion RNA SS 21-12-18(3) Signature: N/A

Run Version: N/A

Well# 1 Control

Peak Peak Mig. Time Corrected Comments FWHM | Area

State | Number (secs) Area
8 29.41 7.30 0.50  2.15
9 29.96 37.09 0.66, 11.11]
10 31.10 33.45 0.53 10.40
11 32.75 31.24 1.29/ 10.23
12 33.59 31.18 0.57 10.47
13 34.64 45.34 0.61 15.70)
14 35.58 73.15 0.83 26.03
15 37.07 140.88 1.10/ 52.23
16 38.32 916.66 0.49 351.25
17 40.36 89.56 0.75 36.14
18 40.81 70.17 0.60 28.64
19 41.80 91.68 0.75 38.33
20 44.24) 1,570.41 0.93 694.76)
21 46.53 411.72 2.95 191.57
22 55.14 31.91 2.14) 17.60)
23 59.77 10.04 1.69  6.00)
24 61.51 7.71 1.94  4.74
25 63.50 1.43 0.60 0.91]
26 64.15 0.83 0.45 0.53

27 64.74 0.47 0.41 0.30
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# 2 Sample 21
Sampk 21
1+
al
wl
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§
:
™ —
—
20 —
101
o
o - >
1‘- IN 1TTWTTTTITT f f f
2 25 30 kS EH 45 L &
Time (secends) 2
Well# 2 Sample 21
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.65 39.35 49.14 14.66
2 28S 41.80 43.85 97.28 29.02
RNA Area: 335.24
RNA Concentration: 78.73 ng/ul
Ratio[28S/188S]: 1.98
RQl: 9.5 B
Well# 2 Sample 21
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 8.08 0.31 1.71
2 25.55 5.18 0.37 1.32
3 31.18 4.24 0.69 1.32
4 33.06 1.00: 0.38 0.33
5 34.84 10.65 0.39) 3.71
6 36.02 5.13 0.45 1.85
7 37.21 21.46 0.38/ 7.98
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 2 Sample 21

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
8 38.25 55.04
9 39.88 4.96
10 41.36 9.45
11 42.40 108.28

DefaultUser

12/21/2018 8:51:32 AM

N/A

FWHM

0.62

1.05

0.84

0.68

Area

21.05

1.98

3.91

45.91
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# 3 Sample 22
Sampks 22
P
wl
wl
01
§
%15--
3 —
———
1w+ —
5
ok
»
f L f I { Eﬂ LIr TI | f f f f f
2 25 30 kS EH =0 kS L &
Time: [secends) 3
Well# 3 Sample 22
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.70/ 39.35 18.76 13.28
2 28S 41.80 43.85 46.67 33.02
RNA Area: 141.34
RNA Concentration:  33.19 ng/pl
Ratio[28S/188S]: 2.49
RQl: 9.7 B
Well# 3 Sample 22
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 8.04 0.31 1.70
2 25.53 2.58 0.37 0.66
3 34.82 3.77 0.38 1.31
4 36.00 2.50 0.46  0.90
5 37.23 9.70] 0.37, 3.61]
6 38.22 20.42 0.59 7.80
7 39.89 1.26 0.48 0.50
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 3 Sample 22

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
8 41.32 3.89

9 42.45 50.41

DefaultUser
12/21/2018 8:51:32 AM
N/A

FWHM | Area

0.83] 1.61

0.63| 21.40
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# 4 Sample 23
Sampk: 23
124
1wt
il
§
:
E —
—
| ]
2 L f I { Eﬂ il f f f f
2 25 30 kS EH 45 L &
Time: [secends) 4
Well# 4 Sample 23
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.65 39.30, 8.16 10.98
2 28S 41.75 43.80 17.68 23.79
RNA Area: 74.32
RNA Concentration: 17.45 ng/pl
Ratio[28S/188S]: 217
RQl: 9.1 B
Well# 4 Sample 23
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 6.95 0.31 1.47
2 25.54 1.08 0.38 0.28
3 34.80 1.85 0.36) 0.64
4 35.96 0.95 0.44 0.34
5 37.23 3.58 0.36) 1.33
6 38.16 8.03 0.56 3.06
7 42.45 17.69 0.62| 7.51
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# 5 Sample 24
Sampks 24
wl
o+
ol
wl
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8 —
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o
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'm"l— 1N IT TﬁfTTTlTT f f f f f
2 2% EH & 40 EH 55 ki 8
Time [seconds)
Well# 5 Sample 24
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.70/ 39.35 50.42 16.23
2 28S 41.85 43.85 104.06 33.49
RNA Area: 310.74
RNA Concentration: 72.98 ng/ul
Ratio[28S/188S]: 2.06
RQl: 9.5 B
Well# 5 Sample 24
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 6.48 0.30, 1.37
2 25.52 4.48 0.36/ 1.14
3 30.85 3.32 0.70, 1.02
4 33.13 1.17 0.42, 0.39
5 34.83 9.66 0.40, 3.37
6 36.04 5.88 0.46 2.12
7 37.26 19.92 0.38 7.42
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 5 Sample 24

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
8 38.23 56.75
9 39.87 2.95
10 41.33 7.61
11 42.45 111.94

DefaultUser

12/21/2018 8:51:32 AM

N/A

FWHM

0.57

0.63

0.84

0.60

Area

21.69

47.51
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 6 Sample 25

Sampks 25

Fluorescence

DefaultUser
12/21/2018 8:51:32 AM
N/A

I
—
—
|3 8o oo o
o : : e : : : :
] 25 B kS E s 5 & %
Time: [secends) 6
Well# 6 Sample 25
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.80/ 39.40/ 10.19 12.39
2 28S 41.90| 44.05| 24.24 29.47
RNA Area: 82.26
RNA Concentration: 19.32 ng/pl
Ratio[28S/18S]: 2.38
RQl: 9.8 ]

Well# 6 Sample 25

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
= 1 21.15 6.94

2 34.90 1.85

3 36.01 0.83

4 37.31 4.27

5 38.33 10.83

6 42.59 25.77

FWHM | Area
0.31 1.47
0.41] 0.65
0.55| 0.30
0.42 1.59
0.63| 4.15
0.74 10.98
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 7 Sample 26

Sampk: 26

Fluorescence

DefaultUser
12/21/2018 8:51:32 AM
N/A

]
—
[ S—
2+ = o oo owow IS
: : : e : : : :
] 25 B kS E s 5 & %
Time (secends) 7
Well# 7 Sample 26
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.70/ 39.35 12.02 12.03
2 28S 41.85 43.90 26.88 26.89
RNA Area: 99.94
RNA Concentration: 23.47 ng/ul
Ratio[28S/18S]: 2.24
RQl: 9.3 ]

Well# 7 Sample 26

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
= 1 21.15 6.15

2 25.50 0.81

3 34.86 2.38

4 36.02 0.98

5 37.23 5.10

6 38.24 12.44

FWHM | Area
0.30f 1.30
0.36] 0.21
0.40[ 0.83
0.44/ 0.35
0.37| 1.90
0.59| 4.76
0.67, 11.98
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# 8 Sample 27
Sampks 27
al
5
2+
845l
:
E —
i) —
5
o
»
f L f I { I Vﬁ i f | f f f f f
2 25 30 kS EH =0 kS L &
Time: [secends)
Well# 8 Sample 27
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.70 39.30| 19.41 13.81
2 28S 41.85 43.90 42.07 29.95
RNA Area: 140.48
RNA Concentration:  32.99 ng/ul
Ratio[28S/188S]: 217
RQl: 9.4 B
Well# 8 Sample 27
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 6.28 0.30, 1.33
2 25.55 2.03 0.37 0.52
3 30.83 1.01 0.43] 0.31]
4 34.85 3.33 0.38 1.16
5 36.01 1.51 0.45 0.54
6 37.27 6.98 0.37 2.60
7 38.28 20.01 0.59| 7.66
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 8 Sample 27

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
8 41.48 2.84

9 42.45 45.42

DefaultUser
12/21/2018 8:51:32 AM
N/A

FWHM | Area

0.73| 19.28
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 9 Sample 28

Sampk: 28

Fluorescence

DefaultUser
12/21/2018 8:51:32 AM
N/A

—
—
—
AT o @t omoe ™~ o
: : : R : : : :
2 25 30 3 ] 45 0 55 80 %
Time (secends) 9
Well#9 Sample 28
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 188 37.70/ 39.25/ 10.07 11.32
2 28S 41.80 43.95 24.13 27.12
RNA Area: 88.96
RNA Concentration: 20.89 ng/ul
Ratio[28S/18S]: 2.40
RQl: 9.2 ]
Well#9 Sample 28
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 6.36 0.30 1.35
2 25.53 1.16 0.36/ 0.30
3 34.86 2.06 0.38/ 0.72
4 36.03 1.19 0.42, 0.43
5 37.29 4.82 0.39| 1.80
6 38.26 10.45 0.60, 4.00
7 41.67 2.71 0.72| 1.13
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well#9 Sample 28

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area

8 42.49 28.10

DefaultUser
12/21/2018 8:51:32 AM
N/A

FWHM | Area

0.70/ 11.94
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Project: Javier Medina Acq. Analyst: DefaultUser
Assay: Eukaryote Total RNA StdSens Acq. Time: 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) Signature: N/A
Run Version: N/A
Well# 10 Sample 29
Sampk: 28
01
15+
§
%10-—
3 —
—
5
ok
»
f L f I { I W frr f | f f f f f
2 25 30 kS EH =0 kS L &
Time: [secends) 10
Well# 10 Sample 29
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.70 39.35| 12.71 12.54
2 28S 41.80 43.85 30.58 30.15
RNA Area: 101.42
RNA Concentration: 23.82 ng/pl
Ratio[28S/188S]: 2.41
RQl: 9.4 B
Well# 10 Sample 29
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 6.28 0.30, 1.33
2 25.54 1.26 0.39 0.32
3 30.85 0.99 0.45 0.31]
4 34.84 2.68 0.38 0.93
5 36.01 1.33 0.43] 0.48
6 37.23 5.25 0.37 1.96
7 38.21 13.23 0.59| 5.06
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 10 Sample 29

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
8 41.47 1.83

9 42.45 32.37

DefaultUser
12/21/2018 8:51:32 AM
N/A

FWHM | Area

0.65| 13.74




Egram, Gel Lane and Result Table Report

Page 22 of 25

Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 11 Sample 30

DefaultUser
12/21/2018 8:51:32 AM
N/A

Sampks 30
12+
1wt
IS5
12+
gl
:
ERa —
i
81 —
i
21
ad
i3 o P
2+ - o o < 1 owm @ -
— : : N : : : :
2 25 30 3 ] 0 55 80 %
Time (secends) 1 1
Well# 11 Sample 30
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 188 37.65 39.30, 9.79 10.47
2 28S 41.80 43.80 23.74 25.39
RNA Area: 93.50
RNA Concentration: 21.96 ng/pl
Ratio[28S/18S]: 243
RQl: 9.0 ]
Well# 11 Sample 30
Peak Peak Mig. Time Corrected Comments FWHM | Area
State | Number (secs) Area
= 1 21.15 6.29 0.30 1.33
2 25.56 1.63 0.37, 0.42
3 30.84 1.48 0.45/ 0.46
4 34.81 3.66 0.38 1.27
5 36.03 2.23 0.42| 0.80
6 37.26 6.45 0.36/ 2.40
7 38.14 10.80 0.54| 4.12
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 11 Sample 30

Peak Peak Mig. Time Corrected Comments
State | Number (secs) Area
8 39.85 1.31
9 41.27 3.25
10 42.40 26.15

DefaultUser

12/21/2018 8:51:32 AM

N/A

FWHM

0.55

0.82

0.59

Area

0.52

1.34

11.09
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Project: Javier Medina DefaultUser
Assay: Eukaryote Total RNA StdSens 12/21/2018 8:51:32 AM
Run: Experion RNA SS 21-12-18(3) N/A
Run Version: N/A
Well# 12 Control
Contrl
0L
50—
0L
B0~
w0l
§
304
! —
Q
Z o
—
150+
100+
sl
o
>
wf ot sep o ome 2 THOY RO mowo @ g 5 8
; N O O R T PR A PR [RRPR L,
i} ) 30 & L 45 5 50 ki
Time [secands) 12
Well# 12 Control
Fragment Fragment Start End Area % of
Number Name Time Time Total Area
1 18S 37.75 39.65/ 607.21 16.93
2 28S 43.10 45.80 794.79 22.16
RNA Area: 3,586.20
RNA Concentration: 842.24 ng/ul
Ratio[28S/188S]: 1.31
RQl: 9.6 B
Well# 12 Control
Peak Peak Mig. Time Corrected Comments FWHM Area
State | Number (secs) Area
= 1 21.15 6.73 0.31 1.42
2 24.09 261.59 0.67  63.01
3 24.92 118.52 0.47| 29.53
4 25.51 31.68 0.34 8.08
5 26.19 13.95 0.70] 3.65
6 27.47 1.70 0.54 0.47
7 28.25 30.70 0.58 8.67
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Project: Javier Medina Acq. Analyst:
Assay: Eukaryote Total RNA StdSens Acq. Time:
Run: Experion RNA SS 21-12-18(3) Signature:

Run Version: N/A

Well# 12 Control

Peak Peak Mig. Time Corrected Comments

State | Number (secs) Area
8 29.47 3.41
9 30.01 22.22
10 31.14 20.68
11 32.85 15.63
12 33.63 20.16
13 34.66 29.36
14 35.64 52.25
15 37.16 99.95
16 38.33 774.43
17 40.44 123.81
18 41.81 73.03
19 44.31  1,344.29
20 46.61 226.00
21 51.50 41.00
22 54.39 25.28

23 58.85 0.36
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