

LARP6C orchestrates post-transcriptional reprogramming of gene expression during hydration to promote pollen tube guidance

Elodie Billey, Said Hafidh, Isabel Cruz-Gallardo, Celso G Litholdo, Viviane Jean, Marie-Christine Carpentier, Claire Picart, Vinod Kumar, Katarina Kulichova, Eric Maréchal, et al.

▶ To cite this version:

Elodie Billey, Said Hafidh, Isabel Cruz-Gallardo, Celso G Litholdo, Viviane Jean, et al.. LARP6C orchestrates post-transcriptional reprogramming of gene expression during hydration to promote pollen tube guidance. The Plant cell, 2021, 33 (8), pp.2637-2661. 10.1093/plcell/koab131. hal-03275017v2

HAL Id: hal-03275017 https://univ-perp.hal.science/hal-03275017v2

Submitted on 30 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RESEARCH ARTICLE

LARP6C orchestrates post-transcriptional reprogramming of gene expression during hydration to promote pollen tube guidance

Elodie Billey^{1,2,3*}, Said Hafidh^{4*,@}, Isabel Cruz-Gallardo^{5,6}, Celso G. Litholdo Jr^{1,2}, Viviane Jean^{1,2}, Marie-Christine Carpentier^{1,2}, Claire Picart^{1,2}, Vinod Kumar⁴, Katarina Kulichova⁴, Eric Maréchal⁷, David Honys⁴, Maria R. Conte⁶, Jean-Marc Deragon^{1,2,8@} and Cécile Bousquet-Antonelli^{1,2,@}

¹CNRS LGDP-UMR5096, 58 Av. Paul Alduy 66860 Perpignan, France.

² Université de Perpignan Via Domitia, LGDP-UMR5096, 58 Av. Paul Alduy 66860 Perpignan, France.

³ Present address: TOTAL RC, 2 place Jean Millier- Arche Nord Coupole/Regnault, 92078 Paris La Défense Cedex, France

⁴ Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojovà 263, 165 02 Prague 6, Czech Republic.

⁵Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.

⁶ Present address: Department fo Chemistry, King's College London, Britannia House, 7 Trinity St, London SE1 1DB, UK

⁷ Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.

⁸ Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 5 France *: These authors contributed equally to the work

. These authors contributed equally to the

Corresponding authors:

cecile.antonelli@univ-perp.fr, hafidh@ueb.cas.cz, jean-marc.deragon@univ-perp.fr

Short title: AtLARP6C in pollen tube guidance

One-sentence summary: The RNA-Binding protein LARP6C is a key player in polarized pollen tube growth in Arabidopsis via post-transcriptional regulation of a subset of mRNAs in dry pollen and during the fertilization process.

The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the instruction for Authors (www.plantcell.org) are: Dr. C. Bousquet-Antonelli (cecile.antonelli@univ-perp.fr), Dr. Said Hafidh (hafidh@ueb.cas.cz) and Pr. JM Deragon (jean-marc.deragon@univperp.fr).

ABSTRACT

Increasing evidence suggests that post-transcriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this mRNA-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein (RBP) LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in *Arabidopsis thaliana*. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding

protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In *Nicotiana benthamiana* leaf cells and *in planta*, analysis of reporter mRNAs designed from the LARP6C target *MGD2* provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely post-transcriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.

1 INTRODUCTION

2 In the cytoplasm, mRNAs coated with RNA-binding proteins (RBPs) in the form of 3 ribonucleoprotein particles (mRNPs) are in balance between translation, storage, and 4 decay. Translationally silent mRNPs can be stored and protected from decay in 5 cytosolic aggregates and released when their protein product is needed. In response 6 to developmental or environmental cues, the fine-tuning between mRNA decay rate or 7 storage will have a direct impact on translation and hence gene expression. RBPs play 8 a crucial role in this fine-tuning, enabling gene-specific regulation through binding to 9 their mRNA targets.

LA and Related Proteins (LARPs) form a large family of eukaryote RBPs that 10 share the La Motif (LAM), a structured RNA-binding domain. LARPs are classified into 11 12 five distinct subfamilies, including the LARP6 group (Bousquet-Antonelli and Deragon, 13 2009). In most LARPs, an RNA Recognition Motif (RRM1) is found immediately after 14 the LAM and forms a bipartite RNA-binding unit called the La-module (Maraia et al., 15 2017). While the LAM is usually very well conserved between subfamilies, the RRM1s 16 are specific to each subgroup (Bousquet-Antonelli and Deragon, 2009; Maraia et al., 17 2017). Members of the LARP6 subfamily are found in Stramenopiles, Chlorophytes, plants, invertebrates, and vertebrates and are characterized by the La-module and by 18 19 a short conserved motif known as LSA (LAM and S1 Associated) at the C-terminus 20 (Bousquet-Antonelli and Deragon, 2009) that mediates protein-protein interactions (Cai et al., 2010b; Manojlovic et al., 2017; Vukmirovic et al., 2013; Weng et al., 2009). 21 22 In mammals, one of the functions of LARP6 is to regulate the synthesis of type 23 I collagen, a heterotrimer composed of two α 1 and one α 2 subunits whose assembly 24 and correct secretion are dependent upon the coordinate translation of their transcripts 25 at the endoplasmic reticulum (ER) (Zhang and Stefanovic, 2016). The expression of type I collagen is primarily regulated by the binding of LARP6 through its La-module to 26

27 a stem loop in their 5'-UTRs (Cai et al., 2010a; Martino et al., 2015). LARP6 either 28 stores or stabilizes the collagen mRNA transcripts in a translationally silent form by 29 tethering them to vimentin filaments where they can further be activated for translation 30 or subjected to decay (Challa and Stefanovic, 2011). Alternatively, LARP6 docks the 31 mRNAs to non-muscle myosin filaments (Cai et al., 2010b; Manojlovic et al., 2017) and 32 either recruits STRAP (Serine Threonine kinase Receptor Associated Protein) 33 (Vukmirovic et al., 2013) or RNA helicase A (RHA) via its LSA (Manojlovic et al., 2017), 34 which respectively function as a repressor and activator of translation. Through this 35 mechanism, LARP6 orchestrates the coordinated translation of α 1 and α 2 collagen 36 transcripts at the ER. More recently, human LARP6 was found to regulate the 37 localisation and translation of ribosomal protein (RP) mRNAs to cell protrusions, 38 enhancing RP synthesis, ribosome biogenesis, and overall protein synthesis in 39 migratory cells (Dermit et al., 2020). Furthermore, in zebrafish (Danio rerio), both 40 LARP6 paralogs are required for normal oocyte development, chorion formation, and 41 egg activation (Hau et al., 2020).

While LARP6 proteins are generally encoded by a single gene, vascular plant proteins are encoded by 3 to 6 genes and are of three evolutionary types named 6A, 6B, and 6C (Merret et al., 2013b). Whilst members of the 6A subgroup most closely resemble LARP6 from other eukaryotes, in addition to a reorganized La-module, Band C-type orthologs carry a PABP-interacting motif 2 (PAM2). *Arabidopsis thaliana* has three *AtLARP6* genes, one of each type, which we will refer to as *LARP6A*, *B* and *C* throughout this manuscript.

49 We previously demonstrated that LARP6C directly associates with the poly(A) 50 binding protein (PABP) in plants, which is consistent with the presence of a PAM2 motif 51 and that the finding that its La-module binds to $oligo(U_{20})$ homopolymers in vitro. In 52 addition, in onion (Allium cepa) epidermis, LARP6C accumulates in the cytoplasm, the 53 nucleoplasm, and the nucleolus. Strikingly, LARP6C redistributes to stress granules 54 upon hypoxia, where it associates with mRNP aggregates (Merret et al., 2013b). These 55 data support the view that Arabidopsis LARP6C is an RNA-binding protein that is likely 56 involved in mRNA post-transcriptional regulation.

57 In flowering plants, the haploid male gamete (pollen grain) consists of a 58 vegetative cell that encases two sperm cells, which are connected (through a so-called 59 cytoplasmic connexion) with the vegetative cell nucleus to form the male germ unit. A 60 characteristic feature of angiosperm sexual reproduction is that sperm cells are non61 motile and must be carried simultaneously to the ovule by a pollen tube (Johnson and 62 Preuss, 2002). Upon adhesion to the stigma, the male vegetative cell hydrates, 63 germinates, and grows into a tube that delivers the two sperm cells to the ovule. The 64 pollen tube is a highly polarized and fast tip-growing cell whose growth directionality is 65 determined by various perceived cues. It is first guided in the gynoeceum by female sporophytic tissue in the pistil (preovular guidance) and then, upon exit from the 66 67 transmitting tract, it navigates in gametophytic tissues guided by ovule-emitted signals 68 (ovular guidance). Ovular cues guide the pollen tube alongside the funiculus to the 69 micropyle. Upon reaching the ovule, the pollen tube stops growing and bursts to free 70 the sperm cells that will fuse respectively with the egg cell (to form the embryo) and the central cell (to form the endosperm), hence completing the fertilization process 71 72 (Higashiyama and Takeuchi, 2015).

73 In the pollen tube, upon reception and transduction of extracellular female 74 signals, a complex cellular process targets the cell wall synthesis machinery at the site 75 of perception, hence permitting the delivery of macromolecules at site of extension and 76 the directional growth of the tube. This requires tip-localized receptors, the flow of ions, 77 intracellular trafficking of signalling molecules and proteins, but also vesicular 78 trafficking, cytoskeleton-dependent transport, and novel cell wall formation through 79 exocytosis (Feng et al., 2018; Hafidh et al., 2014; Higashiyama and Takeuchi, 2015). 80 Pollen tube growth also requires changes in the pattern of gene expression that at least in part rely on post-transcriptional mechanisms. Several studies have suggested 81 82 that all mRNAs required for germination and pollen tube growth are already present in 83 the mature pollen grain and maintained in a translationally silent state until the 84 progamic phase (Hafidh et al., 2018; Honys et al., 2000; Honys and Twell, 2004; 85 Scarpin et al., 2017). Nonetheless, how male gene expression is post-transcriptionally 86 regulated to permit correct pollen guidance is largely unknown, and the mRNA-87 regulating factors required for proper ovular guidance of pollen are currently unclear.

In the present study, we further explored the role of LARP6C and determined that it is a pollen-specific factor required for male fertility during the progamic phase. We provide evidence that loss of LARP6C affects lipid synthesis and homeostasis as well as vesicular trafficking. Moreover, our experimental results support the notion that LARP6C orchestrates the balance between the translation, storage, and decay of its mRNA clients through direct binding, thus intervening in the guided growth of the pollen tube. 95

96 **RESULTS**

97

LARP6C and its RNA-binding domain are required for male fertility at the pollen tube guidance step

100 Immunoblotting and high-throughput transcriptomic analyses (Klepikova et al., 2015) 101 showed that, unlike LARP6A and 6B, LARP6C is almost exclusively expressed in 102 pollen grains and pollen tubes (Figure 1A and Supplemental Figure S1). We therefore 103 investigated its role in male fertility using two Arabidopsis T-DNA insertion mutants, 104 larp6c-3 and larp6c-4. Immunoblotting showed that both alleles are loss-of-function 105 (lof) mutants (Figure 1B). To establish whether *larp6c* is a gametophytic mutation, we 106 monitored the transmission efficiency (TE) through the female (TE^f) and the male (TE^m) 107 gametophytes by reciprocal crosses with wild type and heterozygous larp6c-3/+ or 108 larp6c-4/+ mutants (Figure 1C). Both alleles were transmitted normally through the 109 female gametophyte (TE^f 6c-3 = 100% and 6c-4 = 96.7%), whereas their transmission 110 through the male was significantly reduced, with 6c-3 showing TE^m = 74.1% and 6c-4 $TE^m = 68.2\%$ (Figure 1C). This suggests that male but not female fertility is 111 112 compromised by the loss of LARP6C function.

There are different stages at which the male gametophyte could be deficient, including pollen development, germination, pollen tube growth or guidance, and sperm delivery (Johnson and Preuss, 2002). We monitored these pollen stages in *larp6c-3*, *6c-4*, and wild-type plants (Figure 1D-F and Supplemental Figure S2A-E). Assessment of male gametophyte maturation by DAPI staining revealed that 10% of the *6c-3* and *6c-4* mutant pollen grains did not complete their maturation and were arrested at the bicellular stage, compared to less than 3% in wild type (Supplemental Figure S2A).

120 We next monitored germination and pollen tube growth during the early and late 121 steps after hydration (in vitro) or pollination (in vivo and semi in vivo [SIV]) (Palanivelu and Preuss, 2006) and Methods) (Figure 1D and Supplemental Figure S2). In vitro, 122 123 *larp6c-3* showed some defects in germination, with over 70% of ungerminated pollen 124 grains after 30 min incubation versus 60% for wild type and an increased frequency of 125 pollen tube burst. Moreover, at 30 min, *larp6c-3* showed less than 5% elongated pollen 126 tubes versus 20% in the wild type, e.g. pollen tubes with lengths over three times that 127 of mature pollen grains. In vivo, the situation appeared more dramatic, with a very high 128 levels of ungerminated *larp6c-3* pollen at 15 and 30 min after pollination of over 80 and

50%, respectively, compared to wild-type pollen, which showed less than 10% ungerminated pollen after 15 min incubation. Moreover, *in vivo*, at 30 min, *larp6c-3* pollen tubes seemed to be more prone to bursting than wild type (Figure 1D). These germination and pollen tube growth defects were likely due to delays rather than full arrest, since 7 and 24 hours after pollination (Supplemental Figure S2B, C and E) or 4 hours after hydration (Supplemental Figure S2D), the density and length of *larp6c* pollen tubes were similar to those of wild type.

136 We next investigated the requirement for LARP6C for pollen tube guidance and 137 ovule targeting competence (Johnson and Preuss, 2002). We set up SIV experiments 138 using pistils from *ms1* plants, a male-sterile mutant with normal pistil function (van der 139 Veen and Wirtz, 1968), to assess the ability of *larp6c*-deficient pollen tubes to be 140 guided through the pistil tissues towards wild-type ovules for fertilization (Figure 1E, 141 top panel and Supplemental Figure S3A). Whereas wild-type pollen targeted 80% to 100% of the ovules (with a median value of around 90%), both *larp6c-3* and 6c-4 pollen 142 showed a significant reduction, targeting 50 to 70% of wild-type ovules (with a median 143 144 value of 60%). This failed pollen tube guidance phenotype was rescued by the N- and 145 C-terminal LARP6C fusion constructs (YFP-LARP6C and LARP6C-tRFP) (Figure 1E 146 and Supplemental Figure S3B-C). In competition assays, irrespective of the order of 147 pollination or the side of the stigma in which the pollen grains were dusted on, *larp6c*-148 3 and 6c-4 pollen also showed a clear deficiency in ovule targeting, with a maximum 149 targeting efficiency of 20% compared to the expected 50% rate (Supplemental Figure 150 S3A and D). This further supports the notion that the observed guidance phenotype 151 directly relates to *larp6c* deficiency.

152 We next monitored the ability of the *larp6c* and *larp6c*-complemented pollen to 153 target ovules in planta (Figure 1E-F and Supplemental Figure S2E). We hand 154 pollinated *ms1* pistils and following aniline blue staining, scored the number of targeted 155 and non-targeted ovules. Aniline blue stains callose-like polysaccharides contained in pollen tube walls, and after exposure to UV emits yellow-green fluorescence that 156 157 allows visualization of pollen tubes even after penetration in the ovule. Here again the 158 *larp6c* deficient pollen tubes displayed only 60% ovule targeting efficiency versus the 159 80% average observed in wild-type pollinated pistils (Figure 1E, bottom panel). The 160 targeting efficiency by the (*larp6c-3*; LARP6C-tRFP) and (*larp6c-3*; YFP-LARP6C) 161 complemented lines recovered to a wild-type frequency (Figure 1E). Considering that 162 4 hours after pollination, the density and length of mutant pollen tubes were similar to 163 those of wild type (Supplemental Figure S2E), it appears unlikely that the ovule 164 targeting deficiency of *larp6c* pollen was due to delays in germination or pollen tube 165 elongation. Nonetheless, to completely rule out this possibility, we monitored the type 166 of ovule targeting defects at 4, 8, and 24 hours after pollination (HAP) in vivo. We 167 observed and scored two types of behaviour: type I: if pollen tube attraction and 168 reception were normal and type II: if pollen tube attraction was defective. We did not 169 observe a situation where attraction was normal but reception defective. Consistent 170 with previous experiments, we found that *larp6c*-deficient pollen tubes showed a 171 significant increase in type II behaviour compared to wild type (Figure 1F). At 24 HAP, 172 while some 40% of the ovules remain unfertilized in pistils pollinated with *larp6c-3* or 4 173 mutant pollen due to attraction defects, only 5% of the ovules were not fertilized when 174 pollination was conducted with wild-type pollen (Figure 1F).

175 Considering that LARP6A mRNA is highly expressed in pollen (3 to 4 times 176 more than LARP6C mRNA in mature pollen grain, Supplemental Figure S1A), we wondered whether LARP6A and LARP6C could at least partially act redundantly. In 177 178 backcross experiments, *larp6a-1* loss-of-function pollen (Supplemental Figure S3F) 179 displayed over 95% transmission efficiency, and the transmission efficiency of (larp6c-180 3; larp6a-1) was not significantly different from that of single larp6c-3 mutant pollen 181 (82.7%) (Supplemental Figure S3F). We also ran in vivo pollination assays with wild-182 type, *larp6c-3*, or (*larp6c-3*; *larp6a-1*) pollen and scored fertilization behaviours (Supplemental Figure S3G). Consistent with the results of backcross experiments, the 183 184 absence of LARP6A did not affect fertilization in the wild-type or larp6c null 185 background.

Finally, to confirm that *larp6c* loss of function specifically affects male fertility, we examined the capability of *larp6c-3* and *6c-4* mutant ovules to attract wild-type pollen tubes by SIV and *in vivo* assays and found no significant difference from wild type (Supplemental Figure S4). A detailed description of these experiments can be found in the legend of Supplemental Figure S4.

We previously demonstrated that LARP6C is an RNA-binding protein and that its La-module is sufficient to bind RNA homopolymers *in vitro* (Merret et al., 2013b). We hence wondered whether the RNA-binding function of LARP6C is necessary for its role in pollen tube guidance. Since for LARPs, including human LARP6, which carry a bipartite La-Module, the LAM is absolutely necessary to bind RNA both *in vitro* and *in vivo* (Martino et al., 2015; Cai et al., 2010a), we constructed a truncated *LARP6C* 197 deleted of its La Motif (*LARP6C* Δ *-LAM*). We then stably expressed this deletion mutant 198 construct in the *larp6c-3* and *larp6c-4* backgrounds under the control of the *LARP6C* 199 native promoter (Supplemental Figure S3C). *In vivo* fertilization assays showed that 200 pollen expressing LARP6C Δ LAM had the same pollen tube guidance defects as *larp6c* 201 loss-of-function pollen, suggesting that *LARP6C\Delta-LAM* cannot complement the *larp6c-*202 *3* lof phenotype and that the La-Module RNA-binding motif is essential for LARP6C 203 function in pollen tube guidance (Figure 1F).

In summary, our results support the notion that LARP6C is required for male fertility at least in part at the progamic phase through its function in pollen germination and during pollen tube guidance and does not appear to act redundantly with LARP6A. Moreover, LARP6C function in pollen tube guidance requires an intact La-Module, supporting the notion that this physiological role involves the RNA-binding activity of LARP6C.

210

LARP6C forms dynamic cytoplasmic granules in mature pollen grains and in pollen tubes

213 To better understand the cellular roles of LARP6C, we monitored its subcellular 214 distribution across pollen maturation and during pollen tube growth (Figure 2A and 215 Supplemental Figure S5). In microspores, LARP6C was only detected in the nucleolus. 216 At the bicellular stage, LARP6C was much more generally distributed in the cytoplasm 217 of the vegetative cell, as well as in the vegetative and generative cell nuclei. At the tricellular stage, the subcellular distribution of LARP6C was similar to that at the 218 219 bicellular stage, with possibly reduced amounts of LARP6C in the sperm cell nucleus 220 compared to other subcellular compartments. In mature pollen grain, LARP6C 221 displayed a complex localization pattern. It was clearly present in vegetative cell 222 cytoplasm but transitioned from a diffuse pattern to a granular, aggregate-like pattern 223 (Figure 2A and Supplemental Figure S5). In addition to this granular distribution, 224 LARP6C appeared to concentrate around the membrane surrounding the vegetative 225 cell nucleus, the sperm cells and the cytoplasmic connection linking the sperm cell 1 226 to the vegetative cell nucleus.

To determine more precisely the distribution of LARP6C in mature pollen grains, we performed colocalization experiments between LARP6C-tRFP and various markers (Figure 2B). The histone H2B-GFP fusion protein, expressed under the control of the tomato (*Solanum lycopersicum*) pollen-specific *LAT52* promoter (Twell et al., 1989), 231 was used to label the vegetative cell nucleus, thereby demonstrating the absence of 232 LARP6C in this compartment. GEX2 is a sperm cell-expressed transmembrane protein 233 (Mori et al., 2014) that labels the sperm cell membranes and the cytoplasmic 234 connection between sperm cell 1 and the vegetative cell nucleus (Brownfield et al., 235 2009; McCue et al., 2011; Mori et al., 2014). Confocal analyses showed that LARP6C 236 and GEX2 displayed distinct distributions (Figure 2B). The tRFP signal surrounded the 237 GFP-GEX2 signal decorating the outer membrane of the male germ unit but not the 238 membrane connecting the two sperm cells (the inner membrane), supporting the notion 239 that LARP6C is excluded from the sperm cells and therefore only resides in the 240 vegetative cell cytoplasm in mature pollen.

241 We next inquired on the nature of LARP6C cytoplasmic foci (Figure 2B). 242 Eukaryotic cells contain many types of membrane-less cytoplasmic aggregates 243 composed of translationally silent mRNAs and RBPs (Buchan, 2014). So far, only two types of mRNP granules have been identified in plant cells: processing bodies (p-244 bodies) and stress granules (Weber et al., 2008). Plant p-bodies are - as in other 245 246 eukaryotes - characterized by the presence of actors of the general mRNA turnover 247 process, such as the DCP1/DCP2 decapping holoenzyme, the XRN4 exoribonuclease, 248 or the deadenylation complex. Stress granules, on the contrary, contain factors 249 belonging to the translational machinery, including the poly(A) binding protein (Weber 250 et al., 2008). First clues on the nature of LARP6C aggregates observed in mature 251 pollen were derived by colocalization experiments with specific markers of p-bodies 252 and stress granules, namely DCP1 and PABP, respectively. We used a YFP-tagged 253 DCP1 protein expressed from its own upstream genomic sequences (Merret et al., 254 2013a). Although YFP-DCP1 displayed a punctuate distribution in the vegetative cell 255 cytoplasm, similar to LARP6C, no obvious colocalization of DCP1 and LARP6C was 256 observed. Of note, DCP1 accumulation appeared to be restricted to the vegetative cell 257 cytoplasm, at least in mature pollen, and contrary to LARP6C, it did not localize at the 258 periphery of the sperm cells or the vegetative nucleus (Figure 2B).

The Arabidopsis genome contains seven genes (*PAB2* to 8) encoding canonical PABPs, including *PAB3*, 5, 6 and 7 (Belostotsky and Meagher, 1996; Belostotsky, 2003; Honys and Twell, 2004), whose transcripts accumulation is restricted to pollen. We fused the genomic sequence of the *PAB5* gene (the most highly expressed of the pollen specific *PABP* genes) to a YFP tag under the control of its own upstream sequences. In the vegetative cell cytoplasm, the YFP-PAB5 protein displayed a pattern identical to that of the LARP6C protein in that it accumulated in foci surrounding the
 sperm cells and was excluded from the vegetative nucleus, but contrary to LARP6C, it
 was also present in the cytoplasm of sperm cells.

268 Finally, in pollen tubes, LARP6C was clearly excluded from the sperm cells and 269 restricted to vegetative cell cytoplasm. In the cytoplasm, LARP6C signals showed 270 various degrees of aggregate patterns, with foci appearing to be organized along a 271 longitudinal string-like structure (Figure 2A and Supplemental Figure S5C). To explore 272 the possibility that LARP6C foci could bind to the cytoskeleton structure, we co-273 expressed LARP6C-tRFP with GFP-AtTUB6 (which labels microtubules) in *Nicotiana* 274 benthamiana epidermis cells (Ambrose and Cyr, 2007), GFP-FABD2 (Voigt et al., 275 2005), or LifeACT-GFP (Cvrčková and Oulehlová, 2017) (which label actin 276 microfilaments; Figure 2C and Supplemental Movie S1). While LARP6C did not 277 significantly co-localize with actin microfilament markers, it co-localized with GFP-278 tubulin (Figure 2C and Supplemental Movie S1). Not only did the strings formed by 279 LARP6C foci overlap with tubulin filaments, but LARP6C foci also appeared to move 280 along microtubules, as revealed by time series observations (Supplemental Movie S1).

281 Finally, as an additional exploration of possible redundancy, we ran 282 colocalization experiments between LARP6C and LARP6A (Supplemental Figure S5B, 283 C). We previously showed that, when transiently expressed in onion epidermis cells, 284 LARP6C localized to stress granules (together with PABP), while LARP6A did not. 285 Consistently, in mature pollen grain, we observed that LARP6C formed foci, while 286 LARP6A did not (Supplemental Figure S5C). Additionally, LARP6A and 6C showed 287 distinct subcellular distributions in pollen tubes, with 6A mainly accumulating in sperm 288 cell cytoplasm while 6C was excluded from the sperm cells (Supplemental Figure 289 S5C).

In summary, our data indicate that LARP6C shows a dynamic subcellular distribution across pollen maturation. We found that in mature pollen and pollen tubes, LARP6C is restricted to the vegetative cell cytoplasm and is present in aggregates that could possibly associate with microtubules.

294

295 **RIP-seq pulldown reveals LARP6C mRNA targets in mature pollen grain**

The presence of LARP6C in cytoplasmic aggregates, which contain the poly(A) binding protein, together with our previously published data (Merret et al., 2013b), strongly support the notion that at the cellular level, LARP6C likely acts to control mRNA fate 299 in pollen. In addition, since its RNA-binding domain is necessary to fulfil its role in 300 pollen tube guidance, we reasoned that the identification of its mRNA clients would 301 help reveal how LARP6C controls male fertilization at the molecular level. We hence 302 sought to identify its mRNA targets using an unbiased RNA immunoprecipitation and 303 sequencing (RIP-seq) strategy. We conducted the RNA immunoprecipitation 304 procedure from complemented larp6c-3 lof mature pollen grains expressing a 305 PRO_{6C}:LARP6C-FlagHA tagged version (6C-FH hereafter) (Supplemental Figure S3B, 306 C) and from wild-type pollen grains as a negative control. After assessing the efficiency 307 of the immunoprecipitation through immunoblotting (Supplemental Figure S6A), RNAs 308 were extracted from the input and eluate fractions and subjected to RNA-seq. After 309 mapping and filtering of the dataset (see Supplemental Methods), a RPKM (read per 310 kilobase per million mapped reads) value was calculated for each protein-coding gene. 311 The replicates were found to be reproducible (Supplemental Figure S6B), enabling us 312 to build a table with a mean normalized value per gene and filter out those with less 313 than 1 RPKM value in one of the four samples (input or eluate from wild type or 6C-314 FH) (Supplemental Data Set S1). Using such criteria, we retained a list of 7356 315 expressed transcripts.

316 We first filtered out transcripts based on input fraction values, retaining mRNAs 317 that are not differentially expressed (DE) and show a fold change between 6C-FH and 318 wild-type < 1.2 in order to select for transcripts whose levels did not vary between 319 control and 6C-FH inputs. Then, from this trimmed list, we selected mRNAs that are 320 DE (FDR 0.01) and accumulated to a higher extent in the eluate fraction of 6C-FH 321 compared to wild type (Figure 3A). Next, we selected mRNAs that were enriched by 322 the immunoprecipitation procedure, by selecting those with a RE_{6C-FH} (RE is the eluate 323 over input ratio) value > 1. To further increase stringency and reveal mRNAs that are 324 most likely to be direct targets of LARP6C, we compared the RE_{WT} to the RE_{6C-FH} and, 325 based on the repartition of the values (Supplemental Figure S6C and D) selected 326 transcripts with an (RE_{6C-FH}/RE_{WT}) value of 3 or more (Figure 3B). Through the above 327 series of filters, we identified a high-confidence list of 115 genes encoding direct or 328 indirect mRNA targets of LARP6C (Supplemental Data Set S1).

No gene ontology (GO) term was found to be significantly enriched amongst the 115 mRNAs identified as potential LARP6C targets. Nonetheless, a gene-to-gene analysis shows that the majority of LARP6C targets encode factors likely to be involved in polarized cell growth and male fertilization. This includes protein involved in endomembrane system trafficking and synthesis, signalling factors and kinases
(Grebnev et al., 2017; Samaj et al., 2006) and most strikingly proteins involved in lipid
metabolism and homeostasis control (Ischebeck, 2016) (Figure 3C, Supplemental
Data Set S1). Also, we found that some LARP6C targets are known actors of pollen
gametogenesis, pollen germination, pollen tube growth and guidance, or tip-polarized
growth, such as the grown of roots or neurons (Supplemental Data Set S1).

339

Loss of LARP6C affects lipid metabolism and the endomembrane system duringpollen tube growth

342 In angiosperms, lipids are crucial for male fertilization. Pollen tube elongation depends 343 on lipids synthesized and stored in pollen grain before desiccation or produced on the 344 way from pistil to ovule (Ischebeck, 2016). Amongst the list of LARP6C targets are 345 actors involved in fatty acid synthesis, di- and triacylglycerol (TAG) synthesis and homeostasis, whose control were previously found to be necessary for correct pollen 346 tube growth (Botté et al., 2011; Pleskot et al., 2012; Zheng et al., 2018). This includes 347 348 genes encoding fatty acid synthesis factors (FAD2 (Botella et al., 2016), ACX4 (Khan et al., 2012) and AtLPEAT2 (Stålberg et al., 2009)); DGAT1, which catalyzes the first 349 350 step of TAG synthesis (Zhang et al., 2009); DYRKP-2A (Schulz-Raffelt et al., 2016) 351 and MPK6 kinases, which regulate TAG production (Zheng et al., 2018); SDP1, a TAG 352 lipase involved in membrane lipid homeostasis control (Kelly et al., 2013); and MGD2, 353 which catalyzes the synthesis of monogalactosyldiacylglycerol (MGDG) (Botté et al., 354 2011).

355 Considering that LARP6C might control the expression of genes encoding 356 proteins involved in glycerolipid metabolism and homeostasis at the post-357 transcriptional level, we tested lipid accumulation and synthesis in the absence of 358 LARP6C in mature pollen grains and pollen tubes (Figure 4). First, we visualized lipid 359 droplets (LDs), which consist of a phospholipid monolayer surrounding a core of neutral lipids such as TAG and fatty acid steryl esters, by staining with Bodipy 505/515 360 361 (which stains neutral lipids) and Nile Red (which stains non-polar and neutral lipids) 362 (Figure 4A-B). In *larp6c-3* mature pollen grain, we did not detect any significant 363 difference in staining compared to wild-type grains (Figure 4A). We then germinated 364 and grew wild-type and *larp6c-3* pollen tubes in vitro and visualized LD accumulation 365 at 2 and 4 h post germination (Figure 4B). At 2h after gemination, 77 out 132 (58%) 366 observed pollen tubes showed fewer LDs compared to wild type, and at 4h, 84% (n

367 =100/119) of pollen tubes showed an abnormal distribution of LDs. In 72% of the 368 cases, LDs were absent from apical and sub-apical regions and were only detected in 369 the shank, and 12% showed an overaccumulation and aggregation of lipids at the tip. 370 Such aberrant distribution was never observed amongst the wild-type pollen tubes (n 371 = 109). This phenomenon was even more pronounced when pollen tubes were grown 372 through a pistil explant, with 100% of *larp6c-3* pollen tubes showing an atypical 373 distribution of LDs (Figure 4C, SIV). These results support the notion that lipid 374 synthesis and/or distribution in pollen tubes is perturbed in the absence of LARP6C.

375 We next explored the impact of the downregulation of lipid synthesis on pollen tube guidance in the absence of LARP6C. Amongst the LARP6C mRNA targets, 376 377 MGD2 encodes a pollen specific (our data and (Qin et al., 2009)) MGDG synthase 378 (Botté et al., 2011). In situ labelling of Arabidopsis pollen tube membranes previously 379 showed the presence of digalactosyldiacylglycerol (DGDG) (which are synthesized 380 from MGDG), and the chemical inhibition of the MGD enzymatic pathway with 381 galvestine-1 reduces MGDG content and downregulates pollen tube elongation rates 382 (Botté et al., 2011), supporting a role for MGD in male fertilization.

383 We reasoned that if one of the molecular bases of the guidance defect of *larp6c* 384 relates to the misregulation of MGD2 mRNA fate and expression, the specific inhibition 385 of its enzymatic activity and downregulation of MGDG/DGDG production with 386 galvestine-1 should alleviate or aggravate the *larp6c* lof phenotype. We hence 387 monitored pollen tube elongation rates and pollen tube guidance in the presence of 388 galvestine-1 by SIV assays (Figure 4D, E). Consistent with a previous report (Botté et 389 al., 2011), we observed that galvestine-1 application reduced pollen tube elongation in 390 wild-type pollen as well as *larp6c-3* mutant pollen (Figure 4D). However, when we 391 monitored pollen tube guidance efficiency, wild-type pollen tubes were only slightly or 392 not affected at all, whereas pollen tubes of *larp6c* mutants showed a considerable 393 decrease in ovule targeting in the presence of galvestine-1 (Figure 4E). Under these 394 conditions, only 30 to 60% of ovules were targeted by *larp6c*-pollen tubes, whereas 395 the mock-treated samples showed 60 to 70% targeting. In some pistil explants, larp6c 396 pollen tubes showed no ovule targeting at all in the presence of the MGD inhibitor, a 397 situation that was never observed with *larp6c-3* pollen tubes in the absence of the 398 MGD inhibitor (Figures 1E-F and 4E). Collectively, these results support a synergic 399 effect between the loss-of-function of LARP6C and the pharmacological inhibition of 400 MGD2 synthase activity on pollen tube guidance but not on pollen tube elongation.

401 LARP6C also binds mRNA encoding factors involved in endosome functioning 402 and vesicular trafficking. Brefeldin A (BFA) is a fungal toxin known to perturb 403 endomembrane system trafficking, particularly at the level of retrograde Golgi to ER 404 trafficking and to induce ectopic ER-Golgi fusions known as BFA bodies (Tse et al., 405 2006). We therefore monitored *larp6c-3* pollen tube sensitivity to BFA compared to wild 406 type (Figure 5). After 1h activation on germination medium, the pollen tubes were 407 exposed to BFA and the number and size of BFA bodies scored over time through FM 408 4-64 staining. As soon as 10 min after exposure to BFA, 6c-3 pollen tubes showed 409 increased number of BFA bodies and a dramatic increase in size compared to wild-410 type 17 min after treatment. At this time point, ectopic BFA-particles were also bigger 411 in the mutant than in wild type. These results indicate that pollen tubes deprived of 412 LARP6C are hypersensitive to pharmacological perturbation of endosomal trafficking.

413

414 **LARP6C directly binds to the 5'-UTRs of its mRNA targets**

415 We next sought to understand how LARP6C recognises and influences the fate of its 416 mRNA targets through binding. RNA-binding proteins often bind to primary sequence 417 motifs shared between their mRNA targets to regulate their fate. Considering that *cis* 418 regulatory elements are mostly located in the 5' and/or 3' untranslated regions (UTRs) 419 of transcripts, we looked for primary sequence motif(s) shared between the UTRs of 420 the putative LARP6C targets. Using the Araport database, we found and retrieved the 421 5'- and 3'-UTRs for 112 mRNAs and ran a discriminative motif search using a MEME 422 search (at the MEME suite portal (https://meme-suite.org/)). Whereas no significant 423 motif could be detected in the 3'-UTRs of LARP6C mRNA targets, we identified two regions we named A-box (E^{value}: 5.5E⁻⁹⁹) and B-box (E^{value}: 9.3E⁻⁹¹) motifs that are 424 425 highly enriched in the 5'-UTRs of LARP6C mRNA targets (Figure 6A). As a control, we 426 ran an identical motif search using a set of 112 randomly chosen 5'- and 3'-UTRs from 427 genes expressed in pollen according to our transcriptomic analyses. We found no 428 significant enrichment for an A- or a B-type region, supporting the idea that these 429 sequence motifs are specific for mRNAs that are in a complex with LARP6C.

The A motif is a purine-rich 21 nt sequence with a clear dominance of A over G nucleotides, while the B motif is a pyrimidine-rich 21 nt sequence with a majority of U (T in DNA) over C repeats (Figure 6A, Supplemental Data Set S1). A closer examination of sequences that contain the A and/or B consensus sequence revealed two major categories for each box type. In particular, sequences harbouring the A motif are mainly composed of either A or AG/AAG repeats, whilst sequences sharing the B
consensus motif contain either U or UC/UUC repeats (Supplemental Data Set S1).
Amongst the 112 identified 5'-UTRs, 70 (62.5%) bear the A motif, 74 (66%) the B motif,
and 49 (43.7%) carry both (Supplemental Figure S6E).

439 The presence of motifs shared by transcripts that co-immunoprecipitated with LARP6C in vivo suggests that one or both of these boxes mediate the direct binding 440 of LARP6C. To explore this hypothesis, we tested the RNA-binding unit of LARP6C, 441 442 the La-module, for its ability to interact with these boxes in vitro (Figure 6B-E and 443 Supplemental Figure S7). We designed two oligonucleotide sequences for the A motifs 444 called A1 and A2, representing the "A-rich" and the "AG/AAG-rich" types, respectively 445 (Supplemental Figure S7A). Analogously, B1 and B2 were designed for the B motifs 446 exemplifying the "U-rich" and "UC/UUC-rich" types, respectively (Figure 6B). As a 447 control, we designed oligos B3 and B4, representing C- or CU/CCU-rich sequences, 448 respectively. A recombinant version of the LARP6C La-module, identical to the one 449 used in Merret et al., (Merret et al., 2013b), was expressed in E. coli as previously 450 described and its ability to bind the A and B type oligo RNAs was guantified by 451 isothermal titration calorimetry (ITC) and electrophoretic mobility shift assay (EMSA) 452 (Figure 6B-E and Supplemental Figure S7). In the ITC experiments, serial titration of 453 LARP6C La-module with RNA oligos B1 and B2 generated (in both cases) a profile 454 that could be fitted to a sigmoid-shaped binding curve centred around a 1:1 455 stoichiometry, with a dissociation constant in the low micromolar range (Kds of 2.8 µM 456 and 3.7 µM, respectively, indicating direct binding of LARP6C La-module to B1 and B2 457 type motifs (Figure 6B and Supplemental Table S1). The binding mode of LARP6C La-458 module for the B1 and B2 oligos is similar (but with higher affinity) to that previously 459 observed for an U20 homopolymer (Supplemental Table S1 and (Merret et al., 2013b)). 460 On the contrary, no binding of oligos B3, B4, A1, or A2 to the recombinant LARP6C 461 domain was detected by ITC under the same experimental conditions (Figure 6D, 462 Supplemental Figure S7A and Supplemental Table S1).

To confirm the ITC results, parallel EMSAs were performed using RNA oligos labelled at the 5' end with γ -³²P to monitor RNA-protein complex formation by native gel electrophoresis. Experiments were conducted in the presence or absence of tRNA competitor. For oligos showing the ability to form a complex with La-module, the fraction of bound RNA was plotted against the protein concentration and the 468 dissociation constant determined (Figure 6C). In agreement with the ITC results, EMSA confirmed that B1 and B2 oligos associate with the LARP6C La-module, with 469 estimated dissociation constants in the low micromolar range (Kds of 0.8 μ M and 1.9 470 471 µM, respectively), again suggesting a high affinity of LARP6C La-module towards B1 472 and B2 oligos (Figure 6C). The binding behaviour of B2 oligo was very similar to what 473 we observed for an oligo(U_{20}) (Merret et al., 2013b), whereas B1 showed a slightly 474 higher binding affinity. Assays with oligos A1, A2, B3, $oligo(C_{20})$ and to a lesser extent 475 with B4 were hindered by samples being retained in the wells of the gel at high protein 476 concentration (Figure 6E and Supplemental Figure S7B), an issue most likely linked to 477 protein and/or protein/RNA non-specific aggregation (Hellman and Fried, 2007). 478 Despite changing various experimental conditions, this issue could not be overcome. 479 The presence of a tRNA competitor marginally helped in the case of B4, albeit 480 association with LARP6C was observable only at high protein concentrations and a Kd 481 could not be calculated, as the binding curve did not reach a plateau (Figure 6E).

482 Collectively, these experiments demonstrate that LARP6C La-module binds to 483 oligos B1 and B2 with high affinity and with a similar association mechanism observed 484 with oligo(U_{20}). B1, which contains three stretches of U residues, one of which is 6 485 uridines long, appeared to bind slightly more tightly than B2 and U₂₀. Altogether, these 486 results indicate that the LARP6C La-module strongly binds to B type motifs and does 487 not associate with A type motifs, at least *in vitro*, and that it displays low affinity for B4. 488 We hence propose that *in vivo*, LARP6C directly binds (at least) to mRNAs that carry 489 a B1 or B2-type box in their 5'-UTRs to execute post-transcriptional regulation on its 490 mRNA targets.

491

492 LARP6C is not required for the accumulation of its mRNA targets in mature493 pollen grain

494 To gain a global view of the role of LARP6C in the accumulation of its mRNA targets. 495 we monitored the polyadenylated transcriptome of mature pollen grains in the absence 496 of LARP6C. Pollen grains were collected from wild-type and larp6c-3 plants grown 497 together in a greenhouse (see Supplemental Methods), total RNAs were extracted 498 from the pollen, and the polyadenylated fraction was subjected to next generation 499 sequencing. Following mapping and filtering of the reads (see Supplemental Methods), 500 we retained a list of 7399 transcripts with at least 1 RPKM as reliably expressed from 501 both Col-0 and *larp6c-3* (Supplemental Figure S8, Supplemental Data Set S2). We

then used a DE-seq pipeline (FDR 0.05) to find genes whose transcripts differentially 502 503 accumulate in the mutant background and retained those with a fold change of at least 504 1.5 between wild type and *larp6c-3*. We found 2174 genes that were up- or 505 downregulated in *larp6c-3* pollen compared to the wild type (Figure 7A). Monitoring the 506 fold changes of these transcripts between wild type and (*larp6c-3*; 6C-FH) in the input 507 fraction of the RIP-seq samples, we observed that they are centred around 1 (Figure 508 7B). This suggests that the expression of the LARP6C-FlagHA transgene in the larp6c-509 3 background fully complemented the larp6c-3 mutation and restored a wild-type 510 expression level, demonstrating that the LARP6C-FlagHA translational fusion is 511 functional and that the mis-regulation of the *larp6c-3* pollen transcriptome is biologically 512 significant and a direct consequence of the loss of LARP6C function. We then asked 513 if the steady-state levels of LARP6C-bound mRNAs are affected in larp6c-3 pollen 514 grains. Of the 115 targets, 96 were detected in the RNA-seq data, and only 15 of these 515 differentially accumulated in the *larp6c-3* background (Figure 7C, Supplemental Data Set S2). Of these, ten were downregulated by 1.5- to 2.8-fold and five were 516 517 upregulated by 1.5- to 1.7-folds in *larp6c-3* (Figure 7D). These observations suggest 518 that, at least in dry pollen, LARP6C is not required for maintaining steady-state levels 519 of its mRNA targets.

520

521 LARP6C controls the expression of a reporter transcript containing a functional 522 5'-UTR B-box motif

523 To gain a mechanistic insight into the impact of LARP6C binding to its mRNA targets, 524 we performed transient assays to monitor the expression of a YFP reporter gene under 525 the control of a modified 5'-UTR belonging to MGD2, a LARP6C mRNA target that 526 carries a potential bona fide B-box and no A-box motif (Supplemental Data Set S1). 527 We then respectively replaced the native B-box by two sequences that we 528 demonstrated in vitro are strongly bound (B1-box) or not bound at all (B3-box) by the 529 LARP6C La-module (Figure 6). We inserted the modified 5'-UTR sequences 530 downstream of the CaMV35S promoter and fused to coding sequence of YFP (B1-YFP) 531 and B3-YFP) in a plant binary vector (Figure 8A). These YFP-containing plasmids were 532 transiently expressed in Nicotiana benthamiana leaves individually or co-infiltrated with 533 a plant binary vector expressing a tRFP-tagged LARP6C also under the control of the 534 CaMV35S promoter. Three days post infiltration, leaves were collected and YFP 535 mRNA and protein levels assessed (Figure 8B and C). Quantitative analyses showed

536 that when the LARP6C protein was present, B1-YFP transcript levels increased by 537 two-fold (Figure 8B). Conversely, co-expression of LARP6C with the B3-YFP construct 538 did not significantly affect B3-YFP mRNA levels (Figure 8B). Remarkably, the presence 539 of LARP6C significantly reduced YFP protein accumulation when expressed from the 540 B1 but not the B3 construct (Figure 8C). We also monitored the subcellular distribution 541 of the tRFP-LARP6C fusion protein following agroinfiltration. Similar to findings for 542 mature pollen grains (Figure 2) and onion epidermis cells following stress exposure, 543 LARP6C formed foci in the cytoplasm of *N. benthamiana* leaves (Figure 8D). Since in 544 pollen grains and onion epidermis cells, LARP6C foci contained the poly(A) binding 545 protein, we reason that LARP6C also likely aggregates into mRNP granules in N. 546 benthamiana.

547

548 LARP6C controls native MGD2 protein levels and distribution in pollen tubes

We next asked whether LARP6C controls the mRNA and proteins levels of their target 549 550 genes using MGD2 mRNA as an example. We cloned the MGD2 genomic locus 551 (starting at position - 579 from ATG) including its native B-box motif in fusion with the 552 YFP coding region that we placed at the C-terminus and transformed this chimeric 553 gene into the wild-type background. We then screened pollen and pollen tubes from 554 22 primary transformants and selected line 6, which we crossed to larp6c-3 555 homozygous plants. In the F2 generation, we selected plant homozygous for the larp6c-3 allele that expressed heterozygous MGD2-YFP. We then performed 556 557 microscopic observations of wild type and *larp6c-3* pollen that was heterozygous for 558 the MGD2-YFP transgene. Pollen grains were placed on in vitro pollen germination 559 agarose pad medium and YFP signals monitored in mature pollen grain (dry pollen), 560 pollen at 15 and 30 minutes after hydration (Figure 9A), and pollen tubes at the 4 hour 561 time point (Figure 9B). Strikingly, both in wild type and *larp6c-3*, mature pollen grains 562 show very low levels of YFP signal, which intensified over time upon hydration and in 563 pollen tubes.

To confirm this finding and to assess the role of LARP6C in MGD2 protein accumulation, we quantified fluorescence intensity in dry pollen and at 1h and 4h after activation. As shown in Figure 9C, MGD2-YFP levels drastically increased in pollen tubes 1h after activation in both the wild type and mutant. Nonetheless, compared to wild type, *larp6c-3* dry pollen showed higher levels of fluorescence, a situation opposite that observed in 1h pollen tubes, which showed reduced MGD2-YFP signals in the

18

570 absence of LARP6C. Using specific antibodies (Awai et al., 2001), we made similar 571 observations for endogenous MGD2 accumulation, finding significantly more protein in 572 pollen tubes than in dry pollen. Moreover, the loss of LARP6C function induced 573 overaccumulation of MGD2 in mature pollen and underaccumulation in pollen tubes 574 compared to wild type (Figure 9C right panel). Next, RT-gPCR assays revealed that 575 the mRNA levels of MGD2-YFP and endogenous MGD2 did not significantly vary 576 before and after pollen hydration and that loss-of-function of LARP6C did not affect 577 mRNA levels (Figure 9D). This is consistent with previously published transcriptomic 578 data showing that endogenous MGD2 mRNA levels did not significantly vary between 579 dry pollen and pollen tubes after 30 min or at 4h activation in vitro (Qin et al., 2009).

Beyond an impact on protein levels, the loss of LARP6C function also appeared to affect MGD2-YFP distribution along the pollen tube (Figure 9B). In wild type, MGD2-YFP signal showed a diffuse cytosolic pattern, with the signal intensity distributed along a gradient decreasing from the shank toward the tip in almost 94% (n = 124) of the pollen tubes. In the absence of LARP6C, the gradient distribution of MGD2-YFP was lost in 59% (n = 109) of the observed pollen tubes, which showed a uniform distribution of the signal that also reached the pollen tube tip.

587

588 **DISCUSSION**

589 We report here that LARP6C, an evolutionarily conserved RNA-binding protein, is 590 essential for male fertility, acting during gametogenesis and germination and especially 591 during the progamic phase, during which it is necessary for the directional growth of 592 pollen tubes.

593

594 The role of LARP6C in vesicular trafficking during male fertilization

595 The anisotropic growth of the pollen tube, which takes place exclusively at the apical 596 dome, requires vast amounts of secretory vesicles delivered at the tip via cytoplasmic 597 streaming. Golgi-derived secretory vesicles supply cell wall material as well as material 598 for plasma membrane extension at the site of growth. Vesicles also deliver 599 transmembrane proteins, such as receptor kinases, which are inserted into the apical 600 plasma membrane through exocytosis (Grebnev et al., 2017). Indeed, the exocyst 601 secretory complex was found to be essential for the specification of plasma membrane 602 nanodomains that define sites for the directional growth of pollen tubes (Li et al., 2010; 603 Synek et al., 2017, 2006; Vukašinović and Žárský, 2016). We found that *larp6c*-pollen

604 tubes are hypersensitive to Brefeldin-A and identified several transcripts encoding 605 components of the vesicular system as LARP6C mRNA clients, including factors 606 involved in the trafficking of ER vesicles, constituents of the vacuolar trafficking system 607 HOPS (Takemoto et al., 2018), components and regulators of the ESCRT (Endosomal 608 Sorting Complex Required for Transport) (Reves et al., 2014), and a subunit of the 609 exocyst complex (Supplemental Data Set S1). We hence propose that the pollen tube 610 guidance defects of *larp6c* mutants are in part the consequence of abnormal vesicular 611 trafficking.

612

613 **LARP6C** is necessary for lipid homeostasis during male fertilization

614 To optimize polar tip growth, pollen has evolved a unique lipid composition. In 615 particular, pollen grains produce extra-plastidial glycerolipids and store fatty acids and 616 TAGs in LDs (Ischebeck, 2016). LDs are necessary for gametogenesis, pollen grain 617 maturation, viability, and germination. They also might be required for pollen tube 618 guided growth, as supported by the finding that MPK6 is a regulator of their synthesis 619 involved in pollen tube guidance (Zhang et al., 2009; Zheng et al., 2018). The exact 620 role of LDs in pollen tubes is not currently clear, but it has been proposed that TAGs 621 could be synthesized in the shank of the pollen tube and transported to the tip in the 622 form of LDs to deliver membrane components (Ischebeck, 2016). In line with this idea, 623 we report that LDs are distributed from shank to tip in wild-type pollen tubes (Figure 624 4). Hence, the role of LARP6C in pollen tube guidance could also involve maintaining 625 adequate LD levels, distribution, and possibly composition, as it can specifically bind 626 mRNAs encoding fatty acid, TAG, phospho-, and glycerolipid synthases (FAD2, ACX4, 627 TAG1, LPEAT2, MGD2) for lipases such as SDP1, which is involved in storage lipid 628 breakdown (Kelly et al., 2013), and for regulators of their synthesis, such as DYRKP-629 2A (Schulz-Raffelt et al., 2016) and MPK6 kinases (Zheng et al., 2018).

630 MGD2 is one of the three Arabidopsis synthases that catalyse the last step of MGDG synthesis. Consistent with the finding that galactolipids are unique and major 631 632 constituents of plastid membranes, MGD1 and MGD3 were previously found to localize 633 inside chloroplasts and at the periphery of plastids, respectively, which are consistent 634 with a protein embedded in the outer envelope membrane. The subcellular distribution 635 of MGD2 was more difficult to interpret than that of its two counterparts, as it was 636 detected in the cytosol (Awai et al., 2001). Here, in the absence of any plastid, we also 637 report that MGD2 is present in the cytosol of the pollen tube and that it is distributed

638 from shank to tip along a decreasing gradient that is lost in the absence of LARP6C. 639 These observations uncover an unsuspected role for cytosolic MGD2, which could 640 have the ability to produce MGDG outside plastids and possibly transport its substrate 641 DAG to the site of MGDG synthesis. Since MGDG is the substrate for DGDG, which 642 was detected at the periphery of pollen tubes (Botté et al., 2011), MGD2 could 643 participate to pollen tube membrane expansion. Alternatively, as DAG is also a 644 substrate for TAG production, MGD2 may also transport this substrate to the sites of 645 LD production and therefore participate to the guidance process. The changes in 646 MGD2 protein levels and distribution along pollen tubes could hence be another reason 647 for the observed guidance defect of the *larp6c* mutants.

648 On top of vesicular trafficking and lipid dynamics, LARP6C likely controls other 649 cellular processes required for the directed growth of pollen tubes. Indeed, several 650 LARP6C targets encode actors in processes involved in pollen tube elongation and 651 guidance, such as signalling factors and kinases, cell wall modification players, or ion 652 transporters. Moreover, some LARP6C clients were experimentally found to be 653 involved in anisotropic cell elongation. These include, the transcription factor TFIIB1, 654 which controls guided pollen tube growth (Zhou et al., 2013); TUB4, a structural 655 microtubule component required for normal hypocotyl guidance and elongation (Yu et 656 al., 2015); or the α/β hydrolase-domain protein WAV2, which is involved in directional 657 root growth (Mochizuki et al., 2005) (Supplemental Data Set S1).

658

659 Molecular functions of LARP6C during male fertilization

LARP6C is an RNA-binding protein that physically interacts with PABP, a master regulator of mRNA translation and decay (Merret et al., 2013b). Here we demonstrated that LARP6C at least in part co-localizes with PABP in mature pollen grain. Furthermore, a LARP6C protein deficient in its RNA-binding domain (La-module) was unable to restore LARP6C's function in pollen tube guidance. We hence propose that LARP6C acts at the molecular level to control gene expression by regulating mRNA fate in the cytoplasm.

We provided strong evidence that LARP6C directly interacts with mRNAs harbouring B-boxes of the B1 or B2 type in their 5'-UTRs (*i.e.* at least 52 of the 115 transcripts identified by RIP-seq (Supplemental Data Set S1)). For some transcripts, only A-boxes were identified in the 5'-UTR. This might have occurred because we were only able to retrieve a partial 5'-UTR sequence, and inadvertently missed sequence regions that could contain the B-box, but it is also possible that some LARP6C RIPtargets are in complex with this RBP but not through direct binding.

674 In *N. benthamiana* leaf epidermis, LARP6C appeared to control the levels of its 675 mRNA targets as well as the amount of the corresponding translated proteins. LARP6C 676 promoted the overaccumulation of YFP mRNA that carried its recognition sequence, 677 specifically a B1 type B-box motif (Figure 6). We propose that at least in somatic cells, 678 this overaccumulation is the result of LARP6C-mediated protection from cytoplasmic 679 decay, rather than an action at the transcriptional level. Surprisingly, our results also show that this increase in mRNA levels is associated with a decrease in the 680 681 corresponding YFP protein levels (Figure 8). This suggests that LARP6C could, while 682 protecting its mRNA targets, dampen their translation. Alternatively, LARP6C could 683 control protein stability, but since it is unlikely to interact with the reporter YFP protein 684 (the only protein encoded by the reporter gene we designed), we deem this hypothesis 685 unlikely. In eukaryotic cells, one common feature of mRNP granules is that they contain 686 translationally silent mRNAs that are capable of (re)-entering translation in response 687 to the appropriate signals and protect these mRNAs from decay (Buchan, 2014). 688 Hence, the presence of LARP6C in foci that we propose are mRNP storage granules 689 also rather favours the first hypothesis.

690 The mRNA stabilization effect of LARP6C binding observed in transient N. 691 benthamiana assays is in contrast with the observation that in pollen grains, LARP6C 692 does not seem to control its targets' steady-state levels. In pollen, as in animal 693 gametes, mRNAs are highly stable, suggesting that in the male gametophyte, the 694 mRNA decay machineries, as well as the translational apparatus, have poor activity 695 (Ylstra and McCormick, 1999; Hafidh et al., 2018). This assumption is consistent with 696 our observation that DCP1, a core constituent of the mRNA decapping complex, 697 localises to foci in mature pollen grains and that this localisation is thought to be linked 698 to quenched DCP1 activities. Indeed, work conducted in animal cells proposed that 699 when components of the mRNA decay machineries are present in p-bodies, they are 700 catalytically inactive (Hubstenberger et al., 2017). The discrepancies between the 701 results from transient assays in *N. benthamiana* leaf cells and RNA-seq of pollen 702 grains could hence be the consequence of differences in how the mRNA decay 703 complex operates between sporophytic and reproductive cells.

In vivo, we propose that LARP6C plays a dual role in controlling of the levels of translated proteins encoded by its targets' transcripts. Using *MGD2* mRNA as a model,

22

706 we indeed showed that whilst antagonizing MGD2 protein accumulation in mature 707 pollen grains, LARP6C promotes its translation after gemination without affecting 708 *MGD2* mRNA levels (Figure 9). Although the possibility that LARP6C regulates the 709 amount of MGD2 protein post-translationally cannot be ruled out at this stage, we 710 believe that it is unlikely, as discussed for the YFP reporter protein. This implies that 711 LARP6C shifts from a repressor to an activator role in translation. This could be the 712 result of a differential pattern of post-translation modifications that might allow LARP6C 713 to recruit different sets of accessory proteins to its target mRNAs before and after 714 pollen hydration, resulting in a mode switch from repression to activation.

715 In 2017, Scarpin et al. reported that like MGD2 mRNA, SK14 mRNA is 716 translationally silent in mature pollen grain and reactivated at germination. They also 717 found that SK14 mRNA aggregates in sub-cytoplasmic bodies that also contain the p-718 body component DCP1 (Scarpin et al., 2017). Here, we also demonstrated the 719 existence of foci in mature pollen grain containing proteins that function in mRNA 720 regulation (LARP6C and PAB5), which we believe also contain mRNAs. mRNP 721 granules exist in most eukaryotes and in many cell types and are of different types 722 based on their protein content. However, a common feature is that they store and 723 protect translationally silent mRNPs until their protein product is needed. We therefore 724 propose that a large portion of mRNAs whose expression is necessary for male 725 fertilization are stored in mature pollen grains in the form of mRNP aggregates until 726 their protein products are required during the progamic phase, as supported by 727 previous findings (Hafidh et al., 2018), and that LARP6C is one of the trans-acting 728 factors that orchestrate this process (see Supplemental Figure S9 for a summary 729 model).

730 An intriguing observation from the current study is that LARP6C appears to be 731 required for the distribution of the protein encoded by one of its client mRNAs, MGD2, 732 along the pollen tube. We presently have no conclusive proof that LARP6C does not 733 act at the protein level to participate in this gradient distribution. Nonetheless, 734 considering that LARP6C is an mRNA-binding protein, we hypothesize that the 735 defective distribution of MGD2 in *larp6c* is the consequence of the aberrant regulation 736 of its mRNA. We propose that LARP6C transports the translationally silent mRNAs 737 present in mRNP granules to the appropriate cytoplasmic location where the protein is 738 then translated and required. The existence of such localized translation events 739 following the transport of silent mRNAs is a conserved and widespread feature of 740 eukaryotes, including plants, where few examples of mRNAs targeted to the surface 741 of the ER, chloroplasts, or mitochondria have been reported (Tian et al., 2020). In the 742 vast majority of cases, mRNAs are transported by cytoskeletal motors in the form of 743 silent mRNPs (Bullock, 2011; Eliscovich and Singer, 2017). Consistent with a possible 744 role in mRNA delivery, our data support the notion that LARP6C, in association with 745 mRNP granules, likely navigates along microtubules in growing pollen tubes. Considering the phenotypes of *larp6c*-pollen, we propose that mRNA movement and 746 747 localized translation are necessary for the polarized growth of pollen tubes and hence 748 plant reproduction.

749

750 The role of LARP6 proteins in mRNA control might be evolutionarily conserved 751 Interestingly, a recent study by Dermit et al. demonstrated that human LARP6 acts in 752 migrating cells to navigate mRNAs encoding ribosomal proteins (RPs) along 753 microtubules to transport them from the cell body to protrusions; these cellular migrating fronts act as translation hotspots. This function of human LARP6 in the 754 755 spatiotemporal control of RP mRNA translation is necessary for cell proliferation and 756 migration (Dermit et al., 2020). The physiological roles of zebrafish LARP6 differ from 757 that of Arabidopsis LARP6C, as it participates in oocyte development, chorion 758 formation, and egg activation whilst it is not involved in male fertilization. Nevertheless, 759 the authors suggest that zebrafish LARP6 could function in chorion formation by regulating mRNA metabolism in microvilli, i.e., fine cell protrusions extending from both 760 761 the developing oocytes and granulosa cells (Hau et al., 2020). It is interesting that 762 LARP6 proteins, which are highly conserved eukaryotic RBPs, seem to have acquired 763 distinct physiological roles during eukaryote evolution but could have retained their 764 molecular mode of action in mRNA transport and translational control.

765

766 **METHODS**

767

768 Plant material and growth conditions

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used as the wild-type reference.
The *larp6c-3* (SAIL_268E02) (McElver et al., 2001) and *larp6c-4* (WiscDsLox293296invG4) (Woody et al., 2007) lines were respectively ordered from the NASC and
ABRC stock centres. Genotyping primers are shown in Supplemental Data Set S3.
Stable transgenic lines were obtained using the *Agrobacterium tumefaciens*-based

floral dip technique (Clough and Bent, 1998). For *in vitro* culture, surface sterilized seeds were sown on synthetic Murashige & Skoog (MS) medium at 2.20 g/L (1/2 MS) with 0.8% agar and stored for 48 h at 4°C in the dark before being grown under continuous light (50-60 μ E.m⁻².s⁻¹) at 20°C. Plants in soil cultures were grown in growth chambers under a 16 h light (100 μ E.m⁻².s⁻¹) / 8 h dark cycle at 20°C with approximately 75% humidity. See Supplemental Methods for growth conditions used to collect mature pollen for RNA-seq and RIP-seq experiments.

781

782 **Cloning and plasmids**

783 All LARP6C-containing fusion proteins (YFP, TagRFP, and FLAGHA) were expressed 784 under the control of the upstream genomic sequences (spanning region -1181 to -1 from ATG) of the LARP6C gene (AT3G19090 locus). To obtain the LARP6C-tRFP and 785 786 LARP6C-FLAGHA fusions, we isolated total genomic DNA from Col-0 and PCR 787 amplified the LARP6C genomic region starting from nucleotide -1181 from the ATG to 788 the last nucleotide before the stop codon using primers 543 and 544 (Supplemental 789 Data Set S3). The PCR product was inserted at sites Kpnl and Nhel upstream of either 790 the tagRFP or FLAG-HA tag into a pCAMBIA1300-based plant binary vector 791 expressing the HPTII (hygromycin) resistance gene, giving rise to vectors pEB16 and 792 pEB13. To obtain the YFP-LARP6C expressing binary vector, the genomic region 793 spanning nucleotides -1181 to -1 from the ATG of the LARP6C gene was PCR 794 amplified with primers 974 and 975 from vector pEB13 and cloned at sites Sacl and 795 *Kpnl* upstream of a Gateway entry cassette into a pPZP221 (Hajdukiewicz et al., 1994) 796 based plant binary vector carrying the AAC1 (gentamycin) resistance gene, giving rise 797 to vector p788. The LARP6C coding genomic region was PCR amplified from total 798 genomic DNA with primers 976-977 and cloned at sites Spel-EcoRV downstream of 799 the YFP tag located between the AttL1 and L2 Gateway donor sites, giving rise to 800 plasmid p793. The plant binary vector p795 was obtained through a Gateway cloning 801 reaction between p788 and 793. The PAB5 genomic sequence (-1966 from the ATG to the last nucleotide before the stop codon) was PCR amplified from total genomic 802 803 DNA with primers eb3 and eb4 and cloned using the restriction endonucleases Xbal 804 and BamHI into vector CTL579 (pCAMBIA-1300) upstream of the GFP tag, giving rise 805 to plasmid pEB3. To prepare transgenic lines expressing the YFP-LARP6CALAM 806 protein, we transformed larp6c-3 or larp6c-4 plants with plasmid p844. The

807 LARP6C ALAM CDS codes for a LARP6C protein deleted of the region spanning amino 808 acids 137-227 and was obtained as follow. We PCR amplified the regions of the coding 809 sequence from +1 to + 411 from ATG (primers 1197 and 1198) with primer 1198, which 810 also adds a 3'-tail extension of 20 nt complementary to region 684-704 of the CDS 811 (located just downstream to the LAM). A second PCR product was generated with 812 primers 1199-1200, starting from position 684 to the stop codon. To fuse both products, 813 we ran a third PCR amplification with primers 1201-1200 and an equimolar mixture of 814 products 1 and 2 as a matrix. The resulting fragment corresponds to the full-length 815 LARP6C CDS deleted of its LAM and carrying Xbal and EcoRV restriction sites at its 816 5' and 3' ends, respectively. This fragment was inserted downstream of the YFP 817 sequence into a Gateway donor vector through enzymatic restriction and ligation 818 (p843). The YFP-LARP6CALAM fusion construct was transferred into a plant binary 819 vector under the control of the LARP6C native promoter through Gateway cloning 820 between p843 and p788 (p844).

821 The binary vector pGEX2-GEX2GFP was obtained from (Mori et al., 2014). 822 Binary plasmids for transient assays were prepared as follow. DNA fragments 823 encompassing a basal CaMV35S promoter without enhancer sequences (Töpfer et al., 824 1987), modified MGD2 5'-UTRs, and the YFP CDS were ordered from GeneCust 825 (http://www.genecust.com/fr) and subcloned into a Gateway donor vector. DNA 826 cassettes were then introduced into a plant binary vector containing the HPTII 827 (hygromycin) resistance gene (vector CTL575, a derivative of pCAMBIA-1300). The 828 LARP6C coding sequence was fused downstream of the tagRFP fluorescent reporter and placed under the control of a strong CaMV35S promoter by Gateway 829 830 recombination with the plant binary entry vector p-SITE-6C1 (Martin et al., 2009).

831 To prepare a translational MGD2-YFP fusion, we amplified the MGD2 genomic 832 region starting from nucleotide -579 from the ATG to the last nucleotide before the stop 833 codon using primers 31 and 32 (Supplemental Data Set S3). The complete PCR 834 product was cloned into pDONR221 via the TOPOisomerase cloning technique to 835 generate entry vector pDONR221-MGD2no-stop. To generate the plant expression 836 vector, LR Clonase was used to recombine pDONR221-MGD2no-stop into the pB7FWG,0 Gateway binary vector in frame with C-terminal YFP. Primary 837 838 transformants were selected using BASTA selection.

839

840 **Pollen phenotyping**

26

841 Pollen transmission tests were conducted through hand pollination of wild-type pistils 842 with pollen from mutant and complemented homozygous plants. The number of off-843 spring carrying the mutation was scored either by PCR-based genotyping or by 844 selection of antibiotic/herbicide-resistant seedlings. The number of mutant seedlings 845 was expressed as a percentage over the total number of seedlings and transmission 846 efficiency of the mutant gametophyte calculated as TE = ((No of mutant /847 No of WT (x 100). Experiments were conducted in triplicate. Pollen tube guidance 848 efficiency was scored either by semi in vivo (Palanivelu and Preuss, 2006) or in vivo 849 assays by observing pistils hand pollinated with the mutant pollen of interest and 850 stained with aniline blue (Mori et al., 2006). Emasculated pistils were from *ms1* (male 851 sterility 1) heterozygous plants. This guaranteed that the pistils were not contaminated 852 with wild-type pollen, as the *ms1-1* mutant is male sterile (van der Veen and Wirtz, 853 1968; Ito et al., 2007). Monitoring of pollen tube guidance in the presence of galvestine-854 1 was conducted through semi *in vivo* assays on plates containing 1% DMSO for mock 855 treatment or 5 or 10 µM of galvestine-1 with a final concentration of 1% DMSO. For all 856 pollen tube guidance assays, in vivo aniline blue staining and semi in vivo as well as 857 in vivo blue dot assays were performed according to (Kulichová et al., 2020).

858

859 Pollen and pollen tube collection for total RNA and protein extraction

860 Approximately 250 µL equivalent of open flowers were collected in 1.5 mL Eppendorf 861 tubes for each respective genotype. To collect mature pollen, flowers were vigorously 862 and briefly vortexed with 500 µl of RIPA extraction buffer for protein extraction or with 863 pollen germination medium for RNA extraction and spun in a benchtop centrifuge for 864 1 minute. Media were removed and pellets stored at -80°C until extraction. For pollen 865 activation/germination, the pollen pellet was resuspended in liquid pollen germination 866 medium and incubated for 1h at 22°C. One biological replicate corresponds to one 867 sample of 250 µL equivalent of open flowers.

868

869 Microscopy

870 Subcellular localization experiments in pollen grain and pollen tubes were conducted

with an LSM700 confocal microscope (Zeiss) using emission/excitation wavelengths:

405 nM / 420-480 nM for DAPI, 555 nM / 600-700 nM for tRFP and 488 nM / 490-555

nM for YFP and GFP. Mature pollen grains were collected by dipping open flowers into

874 a drop of DAPI solution (1X PBS pH 7, 0.5% Triton-X100, 1 µg/mL 4',6-diamino-2phenylindole) on a glass slide. To collect immature pollen grains at the microspore, bi-875 and tricellular stages, anthers were collected from unopened buds, placed in a drop of 876 877 DAPI solution on a glass slide, and gently crushed to free the pollen grains from pollen 878 sacs. Pollen tubes germinated and grown as described in the Supplemental Methods 879 were directly observed from the germination slide. For cytoskeleton co-localization, 880 PROLARP6C-tRFP:LARP6C was co-infiltrated in Nicotiana benthamiana leaves with either p35S:GFP-AtTUB6, p35S:GFP-FABD2, or pUBQ-LifeAct:GFP. Confocal 881 882 images were taken under a Nikon Eclipse Ti confocal microscope equipped with a 883 CSU-X1 spinning disk module and Andor iXon3 EMCCD camera, as well as with a 884 Zeiss LSM880 confocal microscope, and captured with ZEN 2.3v software. Images 885 were analyzed and assembled with ImageJ/ Fiji (http://imagej.net/http://fiji.sc/Fiji), 886 Adobe Photoshop CS6 (www. adobe.com), Ink-scape (www.inkscape.org), and NIS 887 Elements (LIM) software. For YFP quantification in pollen tubes, MGD2-YFP signals 888 in the respective genotypes were captured under a Zeiss LSM880 confocal microscope 889 using an Argon 488 laser and detected with GasP detector with fixed configurations. 890 Zen (blue edition) software was used to quantify pixel intensity, and data were 891 processed in Excel.

892

893 Pharmacological treatment

894 For the galvestine-1 inhibition assay, pollen tubes were grown on solid pollen 895 germination medium containing 1% DMSO for mock treatment or 5 or 10 µM of 896 galvestine-1 at a final concentration of 1% DMSO. For Brefeldin A treatment, 897 Arabidopsis pollen tubes were grown for 1h in vitro and stained by incubating with 1 898 µM FM4-64 (Thermo Fisher Scientific, https://www.thermofisher.com) concomitantly 899 with Brefeldin A at 25 µM (BFA, Sigma, www.sigmaaldrich.com, BFA stock solution at 900 50 mM in DMSO) in liquid pollen germination medium for 5 and 10 min. To visualize 901 lipid droplets, Bodipy stain (505/515) at a final concentration of 2 µM and Nile red stain (552/636) at a final concentration of (0.1 μ g/mL) were simultaneously added to 902 903 germinated pollen tubes and incubated for 3 min prior to imaging.

904

905 Total RNA extraction and RT-qPCR

906 For RNA-sequencing purpose, total RNA was purified from mature pollen grain as 907 follow. 0.5 to 3 mg of dry pollen was ground with a Silamat S6 mixing device (Ivolcar 908 Vivadent, Schaan, Liechtenstein) in 500 µL of GuHCl buffer (8 M GuHCl, 20 mM MES, 909 20 mM EDTA, at pH 7, 50 mM β -mercaptoethanol) and with 5 glass beads. Following 910 1 min vortexing at full speed and 10 min incubation on ice, RNAs were separated from 911 proteins via two consecutive phenol-chloroform-IsoAmylAlcool (IAA) (25:24:1) 912 extractions, followed by one extraction with chloroform-IAA (24:1), consisting of 1 min 913 vortexing at full speed and 10 min centrifugation at 16°C, 14,000 g. RNAs are then 914 precipitated in the presence of 0.7 vol isopropanol, 1/20th CH₃COOH at 1 M for 20 min 915 at -20°C. Following 20 min centrifugation at 4°C, 14,000 g, the RNA pellet was washed 916 in 90% EtOH and resuspended in RNAse free water. The average efficiency of pollen 917 RNA extraction was 5-6 µg of RNA per mg of dry pollen. To measure MGD2 (YFP-918 MGD2 and endogenous MGD2) mRNA levels, total RNA was extracted from 5 mg of 919 dry pollen and 250 µl equivalent of flowers used to grow pollen tubes for 4h in vitro 920 from (MGD2-YFP; LARP6C) and (MGD2-YFP; larp6c-3) homozygous lines. One 921 biological replicate corresponds to 5 mg of dry pollen and 250 µL equivalent flowers 922 for pollen tubes. A total of three biological and six technical replicates were generated. 923 MGD2 native primers and TUB8 were used for measurement and normalization, 924 respectively. Relative expression was computed as above.

925 To quantify YFP mRNA levels in *N. benthamiana* transient assays, total RNA 926 was isolated from the samples using a Monarch Total RNA Miniprep Kit (New England 927 Biolabs), and genomic DNA was eliminated using gDNA removal columns and on-928 column DNasel-treated (New England Biolabs). 5 µg of total RNA was reverse 929 transcribed with a SuperScript IV kit (Life Technology) using an oligodT₁₈ primer. gPCR 930 was conducted on a LightCycler 480 Multiwell Plates 384-well themocycler (Roche 931 Applied Sciences) with the following amplification program: 5 min 95°C, 40 cycles of 932 15 s at 95°C, and 1 min at 60°C. After amplification, melting curve analysis was 933 performed with a temperature gradient of 0.1°C/s from 60°C to 95°C. The PCR mixture 934 contained Takyon gPCR master mix (Eurogentec), 500 nM gene-specific primers, and 935 1 µL cDNA in a total reaction volume of 10 µL. Primer efficiencies were determined 936 using standard curves, with 10-fold serial dilution series ranging from 1×10^{1} to 937 1×10^6 of the cDNA samples. Relative quantification was performed by the $\Delta\Delta C_T$ 938 method (Livak and Schmittgen, 2001), with YFP and HPTII used as the target and

- reference gene, respectively. The sequences of the primers used for RT- and qPCRare shown in Supplemental Table S2.
- 941

942 **RNA-seq, RIP-seq, bioinformatics**

943 Techniques related to large scale analyses (RNA-seq and RIP-seq), as well as the 944 bioinformatic analyses, are detailed in the Supplemental Methods.

945

946 **Protein-related techniques**

947 Total protein extracts were separated by SDS PAGE on an acrylamide gel before being 948 electrotransferred onto a PVDF membrane (0.45 µM, Merck Millipore). After saturation 949 in a (1X TBS - 0.1% tween - 5% fat-free dry milk) solution, the membranes were 950 incubated with the appropriate primary then secondary antibodies, washed three times with a 1X TBS - 0.1% Tween solution, and chemiluminescence revealed with an EMD 951 952 Millipore Immobilon Western Chemiluminescent HRP Substrate kit. Antibodies against 953 the LARP6C protein were custom made (at Agro-Bio, La Ferté St Aubin, France) 954 through immunization of rabbits with the peptide "KRTSQFTDRDREELGQ" (amino 955 acids 220-235). Anti-LARP6C antibodies are utilized at 1/1000 dilution in a (1X TBS -956 0.1% Tween - 5% fat-free dry milk) solution and incubated overnight at 4°C with gentle 957 shaking. Secondary antibodies were anti-rabbit HRP (Bio-Rad) and used at a 1/5,000 958 dilution. Anti-ACTIN antibodies were from Affinity Bio Reagents (Golden, CO, USA) 959 and used at 1/15,000 dilution. Secondary antibodies were anti-mouse HRP (Bio-Rad) 960 used at a 1/10,000 dilution. For transient assays, the YFP protein was detected using 961 the GFP antibody (Clontech) at 1/5,000 and the UGPase antibody (Agrisera) at 1/7,500 962 dilution, both incubated overnight at 4°C. Secondary antibodies anti-mouse HRP (Bio-963 Rad) used at a 1/2,000 dilution and anti-rabbit HRP (Bio-Rad) used at a 1/5,000 dilution were incubated for YFP and UGPase detection, respectively, for 1h at room 964 965 temperature. To detect endogenous MGD2, proteins were extracted from 5 mg of dry 966 pollen and 250 µl equivalent of flowers used to germinate pollen tubes in vitro for 1h 967 or 4h from (MGD2-YFP; LARP6C) and (MGD2-YFP; *larp6c*-3) homozygous lines. One 968 biological replicate corresponds to 5 mg of pollen grain, and 250 µL equivalent open 969 flowers for pollen tubes. A total of three replicates for dry pollen and 1h activated pollen, 970 and two replicates for 4h pollen tubes were generated. After SDS-PAGE separation, 971 membrane blocking was performed with 5% milk for 30 min at room temperature. The 972 membrane was incubated with antibodies against MGD2 (a gift from Eric Maréchal
973 (LPCV, Grenoble) (Awai et al., 2001), at 1/500 dilution, overnight at 4°C. Secondary
974 anti-Rabbit HRP (Agrisera) was used at 1/10,000 dilution and incubated for 1h at room
975 temperature prior to membrane development.

976 For RNA-protein binding *in vitro* assays, the LARP6C La-module (amino acids 977 137-223) was recombinantly expressed as in (Merret et al., 2013b). The hexahistidine 978 tag (His-tag) was removed by proteolysis via incubation at 4°C overnight with HRV 3C 979 Protease in a buffer containing 50 mM Tris-HCl pH 7.25, 100 mM KCl, 0.2 mM EDTA, 980 1 mM DTT, 10% glycerol. The cleaved His-Tag and the protease were separated from 981 the La-module through retention onto a Ni-NTA column. The protein was then 982 subjected to heparin column purification and dialysis in a final buffer as in (Merret et 983 al., 2013b).

984

985 **ITC and EMSA**

986 RNA oligos were custom made from IBA-Lifescience GmbH (Göttingen, Germany) at 987 a 1 µMolar scale and HPLC purified. The lyophilized RNAs were resuspended in 988 RNAse free water (DEPC treated) at concentrations ranging from 2.5 to 3 mM. The 989 ITC experiments were performed as in (Merret et al., 2013b) on an iTC200 990 microcalorimenter (Malvern). Here, 20 injections of 2 µL RNA solutions at 200-320 µM 991 concentration were added to protein solutions (LARP6C La-module) at 20-30 µM with 992 a computer-controlled 40 µL syringe. Control titrations of RNA into buffer alone and 993 into protein solution without the His-tag were performed. The heat per injection 994 normalized per mole of injectant versus molecular ratio was analyzed with the 995 MicroCal-Origin 7.0 software package and fitted using a nonlinear least-square 996 minimization algorithm using a theoretical single-site binding model. ΔH (reaction 997 enthalpy change in kcal/mol), K_b (binding constant equal to 1/Kd), and n (molar ratio between the two proteins in the complex) were the fitting parameters. The reaction 998 999 entropy was calculated using the equations $\Delta G = -RT ln Kb$ (R = 1.986 cal/mol K; T = 1000 298 K) and $\Delta G = \Delta H - T \Delta S$. All ITC experiments were repeated at least three times, 1001 and a detailed analysis of the thermodynamic parameters and errors calculated as the 1002 standard deviation from the mean value are reported in Supplemental Table S1. For EMSA (Electrophoretic Mobility Shift Assay), RNAs were 5'-labelled with γ -³²P-ATP 1003 1004 using T4 polynucleotide kinase. Recombinant protein and RNA were mixed and

1005 incubated for 15 minutes at room temperature in 20 mM Tris pH 7.25, 200 mM KCl, 1006 5% of glycerol, 1 mM DTT, 0.1 mg/mL of BSA and 0.7 units of RNase inhibitors 1007 (RNaseOUT, Invitrogen). Each reaction mixture (22 µL) contained 3 nM of labelled 1008 RNA oligo and varying amounts of LARP6C La-module (3-fold serial dilutions from an 1009 88 µM sample). The experiments were performed in the absence or presence of 1010 unlabelled mixed tRNAs from *E. coli* MRE 600 (0.01 mg/mL). After the addition of 2 µL 1011 of 30% Ficoll, the samples were loaded on a 9% native polyacrylamide gel prerun at 1012 100 mV for 1 hour at 4°C in 0.5x TBE (Tris-borate-EDTA buffer). A typical EMSA 1013 experiment was run at 4°C for 1 hour at 125 mV. Gels were dried onto 3MM 1014 chromatography paper, exposed to a phosphoimaging plate overnight, analysed on a 1015 Typhoon Trio phosphoimager, and guantified with Image Quant TL software. The 1016 fraction of bound RNA was plotted versus the protein concentrations. To determine the 1017 dissociation constants, the data were fitted with Origin 8.0 to a modified Hill equation 1018 (Ryder et al., 2008) using non-linear least squares methods and assuming a 1:1 1019 stoichiometry.

1020

1021 Nicotiana benthamiana transient assays

1022 Plasmids B1-YFP, B3-YFP and RFP-LARP6C were respectively transformed into 1023 Agrobacterium tumefaciens strain LB4404. Transformed bacteria were cultivated until 1024 they reached OD 0.8 and used to infiltrate fully expanded leaves from eight week old 1025 N. benthamina plants using a needless syringe as described in (Ruiz et al., 1998). 1026 When double transformations were performed (B1-YFP and RFP-LARP6C or B3-YFP 1027 and RFP-LARP6C), an equimolar mixture of Agrobacterium cultures (OD 0.4) was used for transformation. For each transformation, we also used an Agrobacterium 1028 1029 culture carrying a plasmid (OD 0.2) allowing the expression of the P19 suppressor of 1030 RNA silencing (Lasierra and Prat, 2018). Three days post-infiltration (3 dpi), 1031 transformed leaf segments were collected, flash frozen, and total RNA or protein 1032 extracted. Alternatively, at 3 dpi transformed leaves were observed by confocal 1033 microscopy to monitor YFP and tRFP signals.

1034

1035 Accession Numbers

Sequence data in this study can be found under the following accession numbers:
Bioproject PRJNA557669. RNA-Seq-Col0-Rep 1: SRR9887494; RNA-Seq-Col0-Rep

1038 1: SRR9887493; RNA-Seq-*larp6c-3*-Rep 1; SRR9887496; RNA-Seq-*larp6c-3*-Rep 2
1039 SRR9887495; RIP-Col0-Input-Rep 1: SRR9887498; RIP-Col0-Eluate-Rep 1:
1040 SRR9887500; RIP-Col0-Input-Rep 2: SRR9887497; RIP-Col0-Eluate-Rep 2:
1041 SRR9887499; RIP-LARP6C-Input-Rep 1: SRR9887490; RIP-LARP6C-Eluate-Rep 1:
1042 SRR9887492; RIP-LARP6C-Input-Rep 2: SRR9887489; RIP-LARP6C-Eluate-Rep 2:
1043 SRR9887491.

1044

1045 Supplemental Data

1046

1047 Supplemental Figure S1: Expression profiles of *LARP6A, 6B* and *6C* mRNAs across1048 development.

- Supplemental Figure S2: Pollen maturation, germination, and pollen tube growth of*larp6c* loss-of function mutants.
- 1051 **Supplemental Figure S3:** Schematic representation of *LARP6C* transgenes and 1052 immunoblotting analyses of their accumulation. Semi *in vivo* pollen tube guidance 1053 competition assays. Analysis of LARP6A function in male fertilization.
- 1054 **Supplemental Figure S4:** Pollen attraction competence of *larp6c-*3 and *6c4* ovules.
- 1055 Supplemental Figure S5: Confocal analyses of LARP6C-tRFP and/ LARP6A-GFP in1056 pollen.
- Supplemental Figure S6: Reproducibility of the RIP-seq data, RIP-seq filtering
 workflow, representation of the position of A and/or B boxes on the 5'-UTRs of LARP6C
 targets.
- 1060 **Supplemental Figure S7:** ITC and EMSA assessment of LARP6C La-module binding
- 1061 to A type oligos.
- 1062 **Supplemental Figure S8:** Reproducibility of the RNA-seq data.
- 1063 **Supplemental Figure S9:** Model of the molecular functions of LARP6C in male 1064 fertilization.
- Supplemental Table S1: Thermodynamic parameters of the calorimetric analysesshown in Figure 4B, 4D and Supplemental Figure 6A.
- 1067 **Supplemental Table S2**: List and sequences of primers used for q-PCR, genotyping
- 1068 and cloning.
- 1069 Supplemental Methods
- 1070 Supplemental Data Set S1: Results of RIP-seq experiment.
- 1071 Supplemental Data Set S2: Results of RNA-Seq experiment.

- 1072 **Supplemental Movie S1:** LARP6C foci move along microtubules.
- 1073

1074 **ACKNOWLEDGEMENTS**

1075 This work was supported by the CNRS, the University of Perpignan (UPVD), the Institut 1076 Universitaire de France (IUF) and the Bio-Environnement platform through utilization 1077 of the confocal microscope. This study is set within the framework of the "Laboratoires 1078 d'Excellence (LABEX)" TULIP (ANR-10-LABX-41). EB was the recipient of a PhD grant 1079 from the UPVD, Doctoral School ED305. CGL jr. is the recipient of a short-term contract 1080 supported by the ANR Heat-EpiRNA (ANR-17-CE20-007-01). SH, KK and DH are 1081 supported by GACR grant numbers 17-23203S and 18-02448S. SH is also supported 1082 by European Regional Development Fund-Project "Centre for Experimental Plant 1083 Biology" (No. CZ.02.1.01/0.0/0.0/16 019/0000738). ICG was supported by a Royal 1084 Society Newton International fellowship (ref. NF140482). IGC and MRC thank the 1085 Centre for Biomolecular Spectroscopy at King's College London funded by a capital award from the Wellcome Trust. We thank David Twell group (Leicester University) for 1086 1087 sharing LAT52:H2B-GFP marker, Martin Potoský (Cell Biology, IEB Prague), Eva 1088 Kollárová and Fatima Cvrčková (Faculty of Science, Charles University, Prague) for 1089 the cytoskeleton constructs. The authors would like to thank Eric Maréchal (LPCV, 1090 Grenoble) for sharing MGD2 antibodies and galvestine-1, as well as for fruitful 1091 discussions on LARP6C targets' functions, in particular those involved in lipid biology. 1092 This work was funded by the CNRS, The University of Perpignan (UPVD), the

Agence Nationale pour la Recherche (ANR) grant Heat-EpiRNA (n°: ANR-17-CE20-007-01); a Bonus Quality Research (BQR) funded by the University of Perpignan ; a Collaborative PICS Project (LARP&STRESS, n° 6170) funded by CNRS; Grantová agentura České republiky (GACR) grants (n°: 17-23203S and 18-02448S), European Regional Development Fund-Project "Centre for Experimental Plant Biology" (No. CZ.02.1.01/0.0/0.0/16_019/0000738) and the Royal Society Newton International fellowship (ref. NF140482).

1100

1101 AUTHOR CONTRIBUTIONS

EB and SH performed experiments and analyzed the data. CP helped EB with confocal microscopy analyses. VJ helped EB with plant maintenance and reciprocal crossed. MCC performed RNA-seq and RIP-seq bioinformatics. VK and KK assisted SH with *in vitro* pollen tube assays and VK assisted SH with experiments presented in Figure 9. ICG and MRC designed and analyzed EMSA and ITCs; ICG performed the experiments. CGL Jr. ran experiments from Figure 8. EM contributed his knowledge on lipid metabolism and suggested a role for MGD2 as cargo for TAGs. CBA coordinated the work, designed the research, analyzed data and wrote the paper. JMD helped with data analysis. EB, SH, MRC, JMD and DH revised the manuscript.

1111

1112 **REFERENCES**

Ambrose, J.C. and Cyr, R. (2007). The Kinesin ATK5 Functions in Early Spindle Assembly in Arabidopsis. Plant Cell 19: 226–236.

- Awai, K., Maréchal, E., Block, M.A., Brun, D., Masuda, T., Shimada, H., Takamiya,
 K., Ohta, H., and Joyard, J. (2001). Two types of MGDG synthase genes, found
 widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses
 in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc.
 Natl. Acad. Sci. U. S. A. 98: 10960–5.
- Belostotsky, D.A. (2003). Unexpected complexity of poly(A)-binding protein gene
 families in flowering plants: three conserved lineages that are at least 200 million
 years old and possible auto- and cross-regulation. Genetics 163: 311–9.
- Belostotsky, D.A. and Meagher, R.B. (1996). A pollen-, ovule-, and early embryospecific poly(A) binding protein from Arabidopsis complements essential functions
 in yeast. Plant Cell 8: 1261–75.
- 1126 Botella, C., Sautron, E., Boudiere, L., Michaud, M., Dubots, E., Yamaryo-Botté, Y.,
- Albrieux, C., Marechal, E., Block, M.A., and Jouhet, J. (2016). ALA10, a
 Phospholipid Flippase, Controls FAD2/FAD3 Desaturation of Phosphatidylcholine
 in the ER and Affects Chloroplast Lipid Composition in Arabidopsis thaliana. Plant
 Physiol. 170: 1300–14.
- Botté, C.Y. et al. (2011). Chemical inhibitors of monogalactosyldiacylglycerol
 synthases in Arabidopsis thaliana. Nat. Chem. Biol. 7: 834–842.
- Bousquet-Antonelli, C. and Deragon, J.-M. (2009). A comprehensive analysis of the
 La-motif protein superfamily. RNA 15.
- Brownfield, L., Hafidh, S., Borg, M., Sidorova, A., Mori, T., and Twell, D. (2009). A
 plant germline-specific integrator of sperm specification and cell cycle
 progression. PLoS Genet. 5: e1000430.
- Buchan, J.R. (2014). mRNP granules. Assembly, function, and connections with
 disease. RNA Biol. 11: 1019–30.
- Bullock, S.L. (2011). Messengers, motors and mysteries: sorting of eukaryotic
 mRNAs by cytoskeletal transport. Biochem. Soc. Trans. 39: 1161–5.
- Cai, L., Fritz, D., Stefanovic, L., and Stefanovic, B. (2010a). Binding of LARP6 to
 the conserved 5' stem-loop regulates translation of mRNAs encoding type I
 collagen. J. Mol. Biol. 395: 309–26.
- Cai, L., Fritz, D., Stefanovic, L., and Stefanovic, B. (2010b). Nonmuscle myosindependent synthesis of type I collagen. J. Mol. Biol. 401: 564–78.
- 1147 Challa, A.A. and Stefanovic, B. (2011). A novel role of vimentin filaments: binding
 1148 and stabilization of collagen mRNAs. Mol. Cell. Biol. 31: 3773–89.
- Clough, S.J. and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–43.
- 1151 Cvrčková, F. and Oulehlová, D. (2017). A new kymogram-based method reveals
 1152 unexpected effects of marker protein expression and spatial anisotropy of
 1153 cytoskeletal dynamics in plant cell cortex. Plant Methods 13: 19.
- Dermit, M., Dodel, M., Lee, F.C.Y., Azman, M.S., Schwenzer, H., Jones, J.L.,
 Blagden, S.P., Ule, J., and Mardakheh, F.K. (2020). Subcellular mRNA
 Localization Regulates Ribosome Biogenesis in Migrating Cells. Dev. Cell 55:
 298-313.e10.
- Eliscovich, C. and Singer, R.H. (2017). RNP transport in cell biology: the long and
 winding road. Curr. Opin. Cell Biol. 45: 38–46.
- Feng, Q.-N., Liang, X., Li, S., and Zhang, Y. (2018). The ADAPTOR PROTEIN-3
 Complex Mediates Pollen Tube Growth by Coordinating Vacuolar Targeting and
 Organization. Plant Physiol. 177: 216–225.
- Grebnev, G., Ntefidou, M., and Kost, B. (2017). Secretion and Endocytosis in Pollen
 Tubes: Models of Tip Growth in the Spot Light. Front. Plant Sci. 8: 154.

1165 Hafidh, S., Potěšil, D., Fíla, J., Feciková, J., Čapková, V., Zdráhal, Z., and Honys,

- D. (2014). In search of ligands and receptors of the pollen tube: the missing link
 in pollen tube perception. Biochem. Soc. Trans. 42: 388–94.
- Hafidh, S., Potěšil, D., Müller, K., Fíla, J., Michailidis, C., Herrmannová, A.,
 Feciková, J., Ischebeck, T., Valášek, L.S., Zdráhal, Z., and Honys, D. (2018).
- 1170 Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics.
- 1171 Plant Physiol. **178**: 258–282.
- Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family
 of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25: 989–

- 1174 **94**.
- Hau, H.T.A. et al. (2020). Maternal Larp6 controls oocyte development, chorionformation and elevation. Development 147.
- Hellman, L.M. and Fried, M.G. (2007). Electrophoretic mobility shift assay (EMSA) for
 detecting protein–nucleic acid interactions. Nat. Protoc. 2: 1849–1861.
- Higashiyama, T. and Takeuchi, H. (2015). The mechanism and key molecules
 involved in pollen tube guidance. Annu. Rev. Plant Biol. 66: 393–413.
- Honys, D., Combe, J.P., Twell, D., and Capková, V. (2000). The translationally
 repressed pollen-specific ntp303 mRNA is stored in non-polysomal mRNPs during
 pollen maturation. Sex. Plant Reprod. 13: 135–144.
- Honys, D. and Twell, D. (2004). Transcriptome analysis of haploid male gametophyte
 development in Arabidopsis. Genome Biol. 5: R85.
- Hubstenberger, A. et al. (2017). P-Body Purification Reveals the Condensation of
 Repressed mRNA Regulons. Mol. Cell 68: 144-157.e5.
- 1188 Ischebeck, T. (2016). Lipids in pollen They are different. Biochim. Biophys. Acta
 1189 1861: 1315–1328.
- Ito, T., Nagata, N., Yoshiba, Y., Ohme-Takagi, M., Ma, H., and Shinozaki, K. (2007).
 Arabidopsis MALE STERILITY1 Encodes a PHD-Type Transcription Factor and
- 1192 Regulates Pollen and Tapetum Development. Plant Cell **19**: 3549–3562.
- Johnson, M.A. and Preuss, D. (2002). Plotting a course: multiple signals guide pollen
 tubes to their targets. Dev. Cell 2: 273–81.
- Kelly, A.A., van Erp, H., Quettier, A.-L., Shaw, E., Menard, G., Kurup, S., and
 Eastmond, P.J. (2013). The SUGAR-DEPENDENT1 Lipase Limits
 Triacylglycerol Accumulation in Vegetative Tissues of Arabidopsis. PLANT
 Physiol. 162: 1282–1289.
- Khan, B.R., Adham, A.R., and Zolman, B.K. (2012). Peroxisomal Acyl-CoA oxidase
 4 activity differs between Arabidopsis accessions. Plant Mol. Biol. 78: 45–58.
- Klepikova, A. V, Logacheva, M.D., Dmitriev, S.E., and Penin, A.A. (2015). RNA seq analysis of an apical meristem time series reveals a critical point in
 Arabidopsis thaliana flower initiation. BMC Genomics 16: 466.
- Kulichová, K., Kumar, V., Steinbachová, L., Klodová, B., Timofejeva, L., Juříček,
 M., Honys, D., and Hafidh, S.S. (2020). PRP8A and PRP8B spliceosome
 subunits act coordinately to control pollen tube attraction in Arabidopsis thaliana.
 Development 147.

- Lasierra, P. and Prat, S. (2018). Transient Transactivation Studies in Nicotiana
 benthamiana Leaves. Methods Mol. Biol. 1794: 311–322.
- Li, S., van Os, G.M.A., Ren, S., Yu, D., Ketelaar, T., Emons, A.M.C., and Liu, C.-M.
 (2010). Expression and functional analyses of EXO70 genes in Arabidopsis
 implicate their roles in regulating cell type-specific exocytosis. Plant Physiol. 154:
 1819–30.
- Livak, K.J. and Schmittgen, T.D. (2001). Analysis of Relative Gene Expression Data
 Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25: 402–
 408.
- Manojlovic, Z., Earwood, R., Kato, A., Perez, D., Cabrera, O.A., Didier, R., Megraw,
 T.L., Stefanovic, B., and Kato, Y. (2017). La-related protein 6 controls ciliated
 cell differentiation. Cilia 6: 4.
- Maraia, R.J., Mattijssen, S., Cruz-Gallardo, I., and Conte, M.R. (2017). The La and
 related RNA-binding proteins (LARPs): structures, functions, and evolving
 perspectives. Wiley Interdiscip. Rev. RNA 8.
- Martin, K., Kopperud, K., Chakrabarty, R., Banerjee, R., Brooks, R., and Goodin,
 M.M. (2009). Transient expression in Nicotiana benthamiana fluorescent marker
 lines provides enhanced definition of protein localization, movement and
 interactions in planta. Plant J. 59: 150–62.
- Martino, L. et al. (2015). Synergic interplay of the La motif, RRM1 and the interdomain
 linker of LARP6 in the recognition of collagen mRNA expands the RNA binding
 repertoire of the La module. Nucleic Acids Res. 43: 645–60.
- McCue, A.D., Cresti, M., Feijó, J.A., and Slotkin, R.K. (2011). Cytoplasmic
 connection of sperm cells to the pollen vegetative cell nucleus: potential roles of
 the male germ unit revisited. J. Exp. Bot. 62: 1621–31.
- McElver, J. et al. (2001). Insertional mutagenesis of genes required for seed
 development in Arabidopsis thaliana. Genetics 159: 1751–63.
- Merret, R., Descombin, J., Juan, Y.-T., Favory, J.-J., Carpentier, M.-C., Chaparro,
 C., Charng, Y.-Y., Deragon, J.-M., and Bousquet-Antonelli, C. (2013a). XRN4
 and LARP1 are required for a heat-triggered mRNA decay pathway involved in
 plant acclimation and survival during thermal stress. Cell Rep. 5.
- Merret, R., Martino, L., Bousquet-Antonelli, C., Fneich, S., Descombin, J., Billey,
 É., Conte, M.R., and Deragon, J.-M. (2013b). The association of a La module
 with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led

- 1242 to the neofunctionalization of la-related proteins. RNA **19**.
- Mochizuki, S., Harada, A., Inada, S., Sugimoto-Shirasu, K., Stacey, N., Wada, T.,
 Ishiguro, S., Okada, K., and Sakai, T. (2005). The Arabidopsis WAVY GROWTH
 2 protein modulates root bending in response to environmental stimuli. Plant Cell

1246 **17**: 537–47.

- Mori, T., Igawa, T., Tamiya, G., Miyagishima, S.-Y., and Berger, F. (2014). Gamete
 attachment requires GEX2 for successful fertilization in Arabidopsis. Curr. Biol.
 24: 170–175.
- Mori, T., Kuroiwa, H., Higashiyama, T., and Kuroiwa, T. (2006). GENERATIVE
 CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8: 64–
 71.
- Palanivelu, R. and Preuss, D. (2006). Distinct short-range ovule signals attract or
 repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol. 6: 7.
- Pleskot, R., Pejchar, P., Bezvoda, R., Lichtscheidl, I.K., Wolters-Arts, M., Marc,
 J., Zárský, V., and Potocký, M. (2012). Turnover of Phosphatidic Acid through
 Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in
 Tobacco. Front. Plant Sci. 3: 54.
- Qin, Y., Leydon, A.R., Manziello, A., Pandey, R., Mount, D., Denic, S., Vasic, B.,
 Johnson, M.A., and Palanivelu, R. (2009). Penetration of the stigma and style
 elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in
 a pistil. PLoS Genet. 5: e1000621.
- Reyes, F.C., Buono, R.A., Roschzttardtz, H., Di Rubbo, S., Yeun, L.H., Russinova,
 E., and Otegui, M.S. (2014). A novel endosomal sorting complex required for
 transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and
 development. J. Biol. Chem. 289: 4980–8.
- Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998). Initiation and Maintenance of
 Virus-Induced Gene Silencing. Plant Cell 10: 937–946.
- Ryder, S.P., Recht, M.I., and Williamson, J.R. (2008). Quantitative analysis of
 protein-RNA interactions by gel mobility shift. Methods Mol. Biol. 488: 99–115.
- Samaj, J., Müller, J., Beck, M., Böhm, N., and Menzel, D. (2006). Vesicular
 trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant
 Sci. 11: 594–600.
- Scarpin, M.R., Sigaut, L., Temprana, S.G., Boccaccio, G.L., Pietrasanta, L.I., and
 Muschietti, J.P. (2017). Two Arabidopsis late pollen transcripts are detected in

- 1276 cytoplasmic granules. Plant direct **1**: e00012.
- Schulz-Raffelt, M., Chochois, V., Auroy, P., Cuiné, S., Billon, E., Dauvillée, D., Li Beisson, Y., and Peltier, G. (2016). Hyper-accumulation of starch and oil in a
 Chlamydomonas mutant affected in a plant-specific DYRK kinase. Biotechnol.
 Biofuels 9: 55.
- Stålberg, K., Ståhl, U., Stymne, S., and Ohlrogge, J. (2009). Characterization of two
 Arabidopsis thaliana acyltransferases with preference for
 lysophosphatidylethanolamine. BMC Plant Biol. 9: 60.
- Synek, L., Schlager, N., Eliáš, M., Quentin, M., Hauser, M.-T., and Žárský, V.
 (2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically
 expanded in land plants, is important for polar growth and plant development.
 Plant J. 48: 54–72.
- Synek, L., Vukašinović, N., Kulich, I., Hála, M., Aldorfová, K., Fendrych, M., and
 Žárský, V. (2017). EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth
 of Pollen. Plant Physiol. 174: 223–240.
- Takemoto, K., Ebine, K., Askani, J.C., Krüger, F., Gonzalez, Z.A., Ito, E., Goh, T.,
 Schumacher, K., Nakano, A., and Ueda, T. (2018). Distinct sets of tethering
 complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at
 the vacuole in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115: E2457–E2466.
- Tian, L., Chou, H.-L., Fukuda, M., Kumamaru, T., and Okita, T.W. (2020). mRNA
 Localization in Plant Cells. Plant Physiol. 182: 97–109.
- Töpfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H.H. (1987). A
 set of plant expression vectors for transcriptional and translational fusions. Nucleic
 Acids Res. 15: 5890.
- **Tse, Y.C., Lo, S.W., Hillmer, S., Dupree, P., and Jiang, L.** (2006). Dynamic response
 of prevacuolar compartments to brefeldin a in plant cells. Plant Physiol. **142**:
 1442–59.
- Twell, D., Wing, R., Yamaguchi, J., and McCormick, S. (1989). Isolation and
 expression of an anther-specific gene from tomato. Mol. Gen. Genet. 217: 240–5.
- van der Veen, J.H. and Wirtz, P. (1968). EMS-induced genic male sterility in
 Arabidopsis thaliana: A model selection experiment. Euphytica 17: 371–377.
- Voigt, B., Timmers, A.C.J., Samaj, J., Müller, J., Baluska, F., and Menzel, D.
 (2005). GFP-FABD2 fusion construct allows in vivo visualization of the dynamic
 actin cytoskeleton in all cells of Arabidopsis seedlings. Eur. J. Cell Biol. 84: 595–

- 1310 **608**.
- 1311 Vukašinović, N. and Žárský, V. (2016). Tethering Complexes in the Arabidopsis
 1312 Endomembrane System. Front. cell Dev. Biol. 4: 46.
- 1313 Vukmirovic, M., Manojlovic, Z., and Stefanovic, B. (2013). Serine-threonine kinase
 1314 receptor-associated protein (STRAP) regulates translation of type I collagen
 1315 mRNAs. Mol. Cell. Biol. 33: 3893–906.
- Weber, C., Nover, L., and Fauth, M. (2008). Plant stress granules and mRNA
 processing bodies are distinct from heat stress granules. Plant J. 56: 517–30.
- Weng, H., Kim, C., Valavanis, C., Wang, Z., and Schwartz, L.M. (2009). Acheron,
 an novel LA antigen family member, binds to CASK and forms a complex with Id
 transcription factors. Cell. Mol. Biol. Lett. 14: 273–87.
- Woody, S.T., Austin-Phillips, S., Amasino, R.M., and Krysan, P.J. (2007). The
 WiscDsLox T-DNA collection: an arabidopsis community resource generated by
 using an improved high-throughput T-DNA sequencing pipeline. J. Plant Res. 120:
 157–65.
- 1325 Ylstra and McCormick (1999). Analysis of mRNA stabilities during pollen
 1326 development and in BY2 cells. Plant J. 20: 101–8.
- Yu, J., Qiu, H., Liu, X., Wang, M., Gao, Y., Chory, J., and Tao, Y. (2015).
 Characterization of tub4(P287L), a β-tubulin mutant, revealed new aspects of
 microtubule regulation in shade. J. Integr. Plant Biol. 57: 757–69.
- Zhang, M., Fan, J., Taylor, D.C., and Ohlrogge, J.B. (2009). DGAT1 and PDAT1
 Acyltransferases Have Overlapping Functions in Arabidopsis Triacylglycerol
 Biosynthesis and Are Essential for Normal Pollen and Seed Development. Plant
 Cell 21: 3885–3901.
- I334 Zhang, Y. and Stefanovic, B. (2016). LARP6 Meets Collagen mRNA: Specific
 Regulation of Type I Collagen Expression. Int. J. Mol. Sci. 17: 419.
- **Zheng, Y., Deng, X., Qu, A., Zhang, M., Tao, Y., Yang, L., Liu, Y., Xu, J., and Zhang, S.** (2018). Regulation of pollen lipid body biogenesis by MAP kinases and
 downstream WRKY transcription factors in Arabidopsis. PLoS Genet. **14**:
 e1007880.
- Zhou, J.-J., Liang, Y., Niu, Q.-K., Chen, L.-Q., Zhang, X.-Q., and Ye, D. (2013). The
 Arabidopsis general transcription factor TFIIB1 (AtTFIIB1) is required for pollen
 tube growth and endosperm development. J. Exp. Bot. 64: 2205–18.
- 1343

1344 FIGURE LEGENDS

1345

1346 Figure 1: LARP6C is required for pollen tube guidance. (A), Immunoblot analysis 1347 of steady-state LARP6C protein accumulation. The same blot was probed with 1348 antibodies against LARP6C or ACTIN as a loading control. (B), larp6c-3 and larp6c-4 alleles are loss-of-function mutants. Top panel: schematic representation of the 1349 1350 LARP6C gene and LARP6C protein. Plain boxes represent exons and lines represent 1351 introns. The colour code for exons is identical to that for the conserved protein domains. The insertion sites of the T-DNAs in *larp6c-3* and *6c-4* mutants are reported. 1352 1353 Bottom panel: immunoblot analysis of LARP6C accumulation in flowers from wild-type, 1354 larp6c-3 and 6c-4 lines. ACTIN was used as a loading control. (C), Transmission 1355 efficiencies of *larp6c-3 and 6c-4* mutant alleles. Transmission Efficiency (TE) was 1356 calculated as: (([No of mutant] / [No of wild type]) x 100). ns: the number of mutant 1357 seedlings in the progeny is not significantly different from the expected number of mutant seedlings. (D) Scoring of germination rate, pollen tube bursting, and elongation 1358 1359 in vitro and in vivo. Left panels show representative images of in vivo (upper part) and in vitro (lower part) experiments. On the right, graphs report the frequency of 1360 1361 ungerminated pollen (1), PT emergence (2), PT burst (3), and PT longer than three 1362 lengths of the pollen grain (PT>3) 15 or 30 minutes after pollination. n represents the 1363 number of scored pollen grains. (E), Semi in vivo (SIV) (upper panel) and in vivo (bottom panel) pollen tube guidance assays. For SIV assays, wild-type ovules were 1364 1365 arranged around homozygous *ms1* pistil explants pollinated with pollen from various 1366 homozygous backgrounds. For *in vivo* assays, homozygous *ms1* pistils were pollinated 1367 in planta with pollen from various homozygous genotypes. For each type of 1368 experiment, the numbers of targeted (blue boxes) and non-targeted (white boxes) 1369 ovules were scored and results represented as whisker notched boxplots. The 1370 genotypes of the pollen used for fertilization are recorded below the graphs and n is 1371 the total number of ovules scored in each experiment. The dotted lines respectively 1372 show the wild type mean values of targeted (blue) and non-targeted (dark red) ovules 1373 by wild-type pollen. (F) In vivo scoring of pollen tube behaviours. Wild-type pistils were 1374 pollinated in planta with pollen from various homozygous genotypes (recorded below 1375 the graph) and the behaviour of pollen tubes monitored and scored over a time course: 1376 4h, 8h and 24h after pollination (HAP). Type-I (blue bars): targeting and reception are 1377 normal, Type-II (white bars): attraction (targeting) is defective. Below the graph are

representative images of the type of behaviours observed. Scale bars correspond to 1379 10 μ m. The table below the graphs report the numbers of scored ovules (n). p-values 1380 were calculated with an unpaired Student t-test. ns: not significant, *: p-value≤0.05, **: 1381 p-value ≤ 0.01, **: p-value ≤ 0.001.

1382

1383 Figure 2: Subcellular distribution of LARP6C across pollen development and 1384 **pollen tubes**. (A) Subcellular localization of fluorescently tagged YFP-LARP6C by 1385 confocal microscopy at different stages of pollen maturation: UNM: uninucleate 1386 microspore, BCP: bicellular pollen, TCP: tricellular pollen, MPG: mature pollen grain and Pollen tube. Scale bars correspond to 5 µm for pollen and 10 µm for pollen tube 1387 1388 images. Representative images of LARP6C fused at its C-terminus with a tagRFP 1389 reporter are shown in Supplemental Figure S5A. (B) Confocal observation of mature 1390 pollen grains that stably co-express the LARP6C-tRFP fusion and the H2B-GFP fusion, the GFP-GEX2 fusion, the YFP-DCP1 fusion or the PAB5-GFP fusion. Except for the 1391 1392 H2B-GFP marker, which is expressed from the tomato LAT52 promoter, all marker 1393 genes are expressed from their own upstream genomic sequences. Scale bars 1394 correspond to 5 μ m. In (A) and (B), arrows indicate the position of the Nucleolus (No), 1395 Generative Cell Nucleus (GCN), Vegetative Nucleus (VCN), Sperm Cell Nucleus 1396 (SCN) and Cytoplasmic Connection (CC). (C) Confocal observation of *N. benthamiana* 1397 epidermis cells transiently expressing the LARP6C-tRFP fusion co-expressed with microtubule-binding GFP-AtTUB6 and two actin-binding GFP-FABD2 or LifeAct-GFP 1398 1399 reporters. n = 20 cells from three independent infiltration repeats.

1400

Figure 3: RIP-Seq identification of LARP6C mRNA targets. (A) Volcano plot 1401 1402 repartition of the log2 of fold changes between values in the eluate fractions of 1403 LARP6C-FH and wildtype for mRNAs found in the LARP6C-FH eluate fraction, 1404 according to their p-values obtained through the DESeg2 pipeline. Red dots represent 1405 mRNAs that are significantly more represented in LARP6C-FH eluates. A p-value 1406 ≤0.01 and FC≥1 was used as significance criteria. (B) Plotting the RE (Eluate-1407 RPM/Input-RPM) values in LARP6C-FH against the RE values in wild type for the 635 1408 mRNAs highlighted in graph A. mRNAs with a RE6c-FH \geq 3RE-WT are labelled as 1409 blue dots. See Supplemental Figure S6C for a detailed description of the RIP-seq pipeline. (C) Pie chart representation of the number of LARP6C targets within thevarious functional categories identified.

1412

1413 Figure 4: Loss of LARP6C function affects lipid homeostasis in pollen tubes. 1414 Wild-type and *larp6c-3* pollen grains were stained with Bodipy 505/515 and Nile red at 1415 the Mature Pollen Stage (MPG) (A) or in pollen tubes (PTs) (B, C). In (B) PTs were 1416 germinated and grown in vitro. PTs were collected at 2 h and 4 h after activation for 1417 staining. Representative images are shown. In (C) PTs grown semi in vivo were 1418 collected 7h following pollination (4 hap, pistils are cut at shoulder, placed on plate with 1419 ovules and further incubated 3 hours before scoring). n represents the number of 1420 pollen tubes with LDs distributed as on the presented image over the total number of 1421 observed pollen grains. Scale bars correspond to 10 μ m in (A) and to 5 μ m in (B, C). 1422 (**D**), Monitoring of pollen tube growth in the presence of galvestine-1. Whisker boxplot 1423 representation of the length of wild-type or *larp6c-3* pollen tubes grown *in vitro* for 4 1424 hours in the presence or absence of galvestine-1. 1: untreated, 2: mock (1% DMSO), 1425 3 and 4: 5 μ M and 10 μ M galvestine-1. (E) Semi *in vivo* pollen tube guidance assays. 1426 Assays were conducted either in the presence of 1% DMSO (untreated) or in the 1427 presence of 10 µM of galvestine-1. Results are represented as whisker boxplots. p-1428 values were obtained through an unpaired Student t-test, ns: not significant, ***: p-1429 value ≤ 0.001 .

1430

Figure 5: Pollen tubes deprived of LARP6C are hypersensitive to Brefeldin A 1431 1432 (BFA). Pollen grains were germinated *in vitro* and after 1h activation on germination 1433 medium, pollen tubes were incubated with mock (DMSO) or 25 μ M BFA. (A) 1434 Representative images of FM4-64 staining captured at the respective times or wild 1435 type (WT) and *larp6c-3* PTs treated with mock or BFA. Sketched outline of the PTs 1436 with red dots (counts) describing the appearance of the particle frequency and size, as 1437 detected by the ImageJ particle analysis plug in. (B) Following FM 4-64 staining, the 1438 number (top panel) and size (bottom panel) of BFA bodies was scored over a time 1439 course and represented as violin plots. Number of PTs observed to score particle 1440 number: WT: mock: 23, 10 min: 14, 17 min: 30; *larp6c-3*: mock: 32, 10 min: 35, 17 min: 1441 25. Number of PTs observed to score particle size: WT: mock: 59, 10 min: 62, 17 min:

1442 95; *larp6c-3*: mock: 61, 10 min: 115, 17 min: 189. p-values were obtained with an 1443 unpaired Student t-test, ns: not significant, **: p-value ≤ 0.01 , ***: p-value ≤ 0.001 . 1444

1445 Figure 6: The LARP6C La-module binds to B-type RNA boxes. (A), Consensus 1446 sequences of the conserved motifs within the 5'-UTRs of LARP6C-bound mRNAs. Calorimetric (B, D) and EMSA (C, E) analyses of the interaction between the 1447 1448 LARP6C La-module (encompassing residues 137-332) and oligos B1, B2 (B, C), U₂₀ 1449 (C), B3 and B4 (D, E). In (B) and (D): for each graph, the upper panel corresponds to 1450 the raw titration data showing the thermal effect of injecting an RNA oligo solution into 1451 a calorimetric cell containing the recombinant LARP6C La-module. The lower panels 1452 show the normalized heat per injection values obtained by integrating the raw data and 1453 subtracting the heat value of the RNA dilution. The red lines in the graphs for oligos 1454 B1 and B2 (B) represent the best fit derived by a non-linear best-square procedure based on an independent binding site model. The dissociation constants (Kd) are 1455 1456 indicated for the B1 and B2 oligos; the thermodynamic parameters are shown in 1457 Supplemental Table S1. (C, E), EMSAs of LARP6C La-module binding to: B1, B2 or oligo U₂₀ (C), B3 or B4 (E). Decreasing concentrations (µM) (88 (lane 1), 29.3 (lane 2), 1458 1459 9.8 (lane 3), 3.3 (lane 4), 1.1 (lane 5), 0.4 (lane 6), 0.12 (lane 7), 0.04 (lane 8) and 0 1460 (lane 9)) of the recombinant LARP6C La-module were mixed with 3nM of 5'-labelled oligos. B stands for Bound, F for Free, red asterisks mark the RNA-protein complex, 1461 1462 and the red arrows on panels E shows samples retained into the gel wells. Experiments 1463 were conducted in the absence (-tRNA) or presence (+tRNA) of unlabelled competitor 1464 (tRNAmix of *E. coli* MRE 600 at 0.01 mg/mL concentration). Graphs in panel C show 1465 the quantification of the bound RNA fraction versus the protein concentration in the absence (black lines) or presence (red lines) of tRNA competitor. The values of the 1466 1467 dissociation constants are reported. Kd values reported for the EMSA experiments 1468 were calculated out of three independent replicates with the following standard deviations: LARP6C-B1 (-tRNA): 0.8 +/- 0.1; LARP6C-B1 (+tRNA): 3.5 +/- 0.3; 1469 1470 LARP6C-B2 (-tRNA): 1.9 +/- 0.3; LARP6C-B2 (+tRNA): 5.6 +/- 0.2.

1471

Figure 7: *larp6c* loss-of-function does not affect the steady-state transcript levels of its target in dry pollen. (A), Heat map representation of the log₂(RPKM) values of genes that are differentially expressed between wild type (WT) and *larp6c-3* plants. The heat map was built from the list of DE genes with log2(RPKM) values 1476 between -2 and +10 (2142 genes: 98.5% of the DE genes). (B), Plot representation of 1477 the log2 values of the ratios: (*larp6c-3*/wild type) (upper panel) and log2(6C-FH/wild 1478 type) (lower panel) for the 2174 genes found to be differentially expressed in *larp6c-3* 1479 mutant pollen. Red lines mark the cut off value (log2(1.5) and log2(1/1.5)). (C) Venn 1480 diagram representation of the number of transcripts that are DE in *larp6c-3* and/or 1481 immunoprecipitated by 6C-FH. Note that of the 115 RIP targets, 19 were not present 1482 in the transcriptomic data from RNA-seq. (D) plot representation of the log2(larp6c-1483 3/WT) for mRNAs identified by RIP-seq. Red lines mark the cut off value (log2(1.5) 1484 and $\log 2(1/1.5)$).

1485

1486 Figure 8: LARP6C binding at the 5'UTR of a reporter construct reduces protein 1487 and increases mRNA levels. (A) Schematic representation of the YFP reporter constructs, (B) RT-gPCR monitoring of YFP mRNA levels. To normalize YFP mRNA 1488 1489 levels to transformation efficiency, we used the levels of HPTII mRNA encoded by the HPTII gene carried by the YFP binary plasmid but not the tRFP-LARP6C one. SDs 1490 1491 were calculated from three biological replicates. p-value were obtained using a Student-t test. **P < 0.005, ns: not significant. (C) Immunoblot analysis of tRFP-1492 1493 LARP6C and YFP protein levels. Two immunoblots were prepared and respectively 1494 hybridized with anti-LARP6C or GFP antibodies. Levels of UGPase were used as a 1495 loading control. Representative images of three replicates are shown. (D) Confocal imaging of YFP from leaves not transformed with tRFP-LARP6C (left panels) and of 1496 1497 YFP and tRFP-LARP6C distribution (right panels). Scale bars represent 20 µm. 1498 Leaves that were observed are different from those used to prepare total RNA and 1499 protein extracts. Representative images of three biological replicates are shown.

1500

1501 Figure 9: LARP6C is involved in the dynamic fine-tuning of MGD2 protein accumulation in vivo. Monitoring of the levels of MGD2-YFP fusion protein expressed 1502 from the MGD2 native promoter (PRO_{MGD2}:MGD2-YFP) and endogenous MGD2 in 1503 1504 wild type (WT) and *larp6c-3* plants. (A) Representative images of YFP signal in 1505 heterozygous mature pollen grains at activation: 0, 15 and 30 min after incubation on 1506 in vitro germination medium. Bottom panels show images in pseudo colour with the 1507 associated scale bar representing the intensity of the YFP signal. White arrows and 1508 asterisks respectively point to segregation pollen grains expressing or not expressing 1509 the translational fusion. (B) Live cell imaging of MGD2-YFP distribution in pollen tubes.

1510 The numbers of pollen tubes with gradient MGD2 distribution toward the tip, uniform 1511 (lost gradient), or no expression of MGD2-YFP are reported in the table below. Scale 1512 bars correspond to 10 µm. (C) Left panel: fluorescence quantification of MGD2-YFP in wild type (WT) and *larp6c-3* (6c-3) pollen and during the progamic phase (1 and 4h). 1513 1514 n=3 biological replicates at each time point, a Student t-test for two independent samples/two-tailed test was conducted, with ns: not significant, **** p-value≤ 0.0001. 1515 Right panel: immunoblot analysis of endogenous levels of MGD2 in pollen and during 1516 1517 progamic phase in wild type and *larp6c-3*. Experiments were conducted in two or three independent replicates labelled R1, R2, and R3. (D) RT-qPCR analysis of MGD2 1518 1519 mRNA levels originating from the *MGD2-YFP* transgene and endogenous *MGD2* gene 1520 in dry pollen and 4h pollen tubes. Experiments were conducted in three independent 1521 replicates, and TUBULIN8 mRNA was used as a control. An unpaired Student t-test 1522 was conducted, with n.s.: not significant. Both wild type and larp6c-3 express MGD2-1523 YFP from the same primary transformant (line 6). In A and B, the MGD2-YFP transgene is in the heterozygous state and the *larp6c-3* allele is homozygous. In C and 1524 1525 D, wild type and *larp6c-3* carry the MGD2-YFP transgene in the homozygous state. 1526

Figure 1: LARP6C is required for pollen tube guidance. (A), Immunoblot analysis of steady-state LARP6C protein accumulation. The same blot was probed with antibodies against LARP6C or ACTIN as a loading control. (B), larp6c-3 and larp6c-4 alleles are lossof-function mutants. Top panel: schematic representation of the LARP6C gene and LARP6C protein. Plain boxes represent exons and lines represent introns. The colour code for exons is identical to that for the conserved protein domains. The insertion sites of the T-DNAs in larp6c-3 and 6c-4 mutants are reported. Bottom panel: immunoblot analysis of LARP6C accumulation in flowers from wildtype, larp6c-3 and 6c-4 lines. ACTIN was used as a loading control. (C), Transmission efficiencies of larp6c-3 and 6c-4 mutant alleles. Transmission Efficiency (TE) was calculated as: (([No of mutant] / [No of wild type]) x 100). ns: the number of mutant seedlings in the progeny is not significantly different from the expected number of mutant seedlings. (D) Scoring of germination rate, pollen tube bursting, and elongation in vitro and in vivo. Left panels show representative images of in vivo (upper part) and in vitro (lower part) experiments. On the right, graphs report the frequency of ungerminated pollen (1), PT emergence (2), PT burst (3), and PT longer than three lengths of the pollen grain (PT>3) 15 or 30 minutes after pollination. n represents the number of scored pollen grains. (E), Semi in vivo (SIV) (upper panel) and in vivo (bottom panel) pollen tube guidance assays. For SIV assays, wild-type ovules were arranged around homozygous ms1 pistil explants pollinated with pollen from various homozygous backgrounds. For in vivo assays, homozygous ms1 pistils were pollinated in planta with pollen from various homozygous genotypes. For each type of experiment, the numbers of targeted (blue boxes) and non-targeted (white boxes) ovules were scored and results represented as whisker notched boxplots. The genotypes of the pollen used for fertilization are recorded below the graphs and n is the total number of ovules scored in each experiment. The dotted lines respectively show the wild type mean values of targeted (blue) and non-targeted (dark red) ovules by wild-type pollen. (F) In vivo scoring of pollen tube behaviours. Wild-type pistils were pollinated in planta with pollen from various homozygous genotypes (recorded below the graph) and the behaviour of pollen tubes monitored and scored over a time course: 4h, 8h and 24h after pollination (HAP). Type-I (blue bars): targeting and reception are normal, Type-II (white bars): attraction (targeting) is defective. Below the graph are representative images of the type of behaviours observed. Scale bars correspond to 10 µm. The table below the graphs report the numbers of scored ovules (n). p-values were calculated with an unpaired Student t-test. ns: not significant, *: p-value ≤ 0.05 , **: p-value ≤ 0.01 , **: p-value ≤ 0.001 .

Figure 2: Subcellular distribution of LARP6C across pollen development and pollen tubes. (A) Subcellular localization of fluorescently tagged YFP-LARP6C by confocal microscopy at different stages of pollen maturation: UNM: uninucleate microspore, BCP: bicellular pollen, TCP: tricellular pollen, MPG: mature pollen grain and Pollen tube. Scale bars correspond to 5 µm for pollen and 10 µm for pollen tube images. Representative images of LARP6C fused at its C-terminus with a tagRFP reporter are shown in Supplemental Figure S5A. (B) Confocal observation of mature pollen grains that stably co-express the LARP6C-tRFP fusion and the H2B-GFP fusion, the GFP-GEX2 fusion, the YFP-DCP1 fusion or the PAB5-GFP fusion. Except for the H2B-GFP marker, which is expressed from the tomato *LAT52* promoter, all marker genes are expressed from their own upstream genomic sequences. Scale bars correspond to 5 µm. In (A) and (B), arrows indicate the position of the Nucleolus (No), Generative Cell Nucleus (GCN), Vegetative Nucleus (VCN), Sperm Cell Nucleus (SCN) and Cytoplasmic Connection (CC). (C) Confocal observation of *N. benthamiana* epidermis cells transiently expressing the LARP6C-tRFP fusion co-expressed with microtubule-binding GFP-AtTUB6 and two actin-binding GFP-FABD2 or LifeAct-GFP reporters. n = 20 cells from three independent infiltration repeats.

Figure 3: RIP-Seq identification of LARP6C mRNA targets. (A) Volcano plot repartition of the log2 of fold changes between values in the eluate fractions of LARP6C-FH and wildtype for mRNAs found in the LARP6C-FH eluate fraction, according to their p-values obtained through the DESeq2 pipeline. Red dots represent mRNAs that are significantly more represented in LARP6C-FH eluates. A p-value ≤ 0.01 and FC ≥ 1 was used as significance criteria. (B) Plotting the RE (Eluate-RPM/Input-RPM) values in LARP6C-FH against the RE values in wild type for the 635 mRNAs highlighted in graph A. mRNAs with a RE6c-FH \geq 3RE-WT are labelled as blue dots. See Supplemental Figure S6C for a detailed description of the RIP-seq pipeline. (C) Pie chart representation of the number of LARP6C targets within the various functional categories identified.

Figure 4: Loss of LARP6C function affects lipid homeostasis in pollen tubes. Wild-type and *larp6c-3* pollen grains were stained with Bodipy 505/515 and Nile red at the Mature Pollen Stage (MPG) (A) or in pollen tubes (PTs) (B, C). In (B) PTs were germinated and grown *in vitro*. PTs were collected at 2 h and 4 h after activation for staining. Representative images are shown. In (C) PTs grown semi *in vivo* were collected 7h following pollination (4 hap, pistils are cut at shoulder, placed on plate with ovules and further incubated 3 hours before scoring). n represents the number of pollen tubes with LDs distributed as on the presented image over the total number of observed pollen grains. Scale bars correspond to 10 µm in (A) and to 5 µm in (B, C). (D), Monitoring of pollen tube growth in the presence of galvestine-1. Whisker boxplot representation of the length of wild-type or *larp6c-3* pollen tubes grown *in vitro* for 4 hours in the presence or absence of galvestine-1. 1: untreated, 2: mock (1% DMSO), 3 and 4: 5 µM and 10 µM galvestine-1. (E) Semi *in vivo* pollen tube guidance assays. Assays were conducted either in the presence of 1% DMSO (untreated) or in the presence of 10 µM of galvestine-1. Results are represented as whisker boxplots. p-values were obtained through an unpaired Student t-test, ns: not significant, ***: p-value ≤ 0.001.

Figure 5: Pollen tubes deprived of LARP6C are hypersensitive to Brefeldin A (BFA). Pollen grains were germinated *in vitro* and after 1h activation on germination medium, pollen tubes were incubated with mock (DMSO) or 25 μ M BFA. (**A**) Representative images of FM4-64 staining captured at the respective times or wild type (WT) and *larp6c-3* PTs treated with mock or BFA. Sketched outline of the PTs with red dots (counts) describing the appearance of the particle frequency and size, as detected by the ImageJ particle analysis plug in. (**B**) Following FM 4-64 staining, the number (top panel) and size (bottom panel) of BFA bodies was scored over a time course and represented as violin plots. Number of PTs observed to score particle number: WT: mock: 23, 10 min: 14, 17 min: 30; *larp6c-3*: mock: 32, 10 min: 35, 17 min: 25. Number of PTs observed to score particle size: WT: mock: 59, 10 min: 62, 17 min: 95; *larp6c-3*: mock: 61, 10 min: 115, 17 min: 189. p-values were obtained with an unpaired Student t-test, ns: not significant, **: p-value ≤ 0.01, ***: p-value ≤ 0.001.

Figure 6: The LARP6C La-module binds to B-type RNA boxes. (A), Consensus sequences of the conserved motifs within the 5'-UTRs of LARP6C-bound mRNAs. Calorimetric (B, D) and EMSA (C, E) analyses of the interaction between the LARP6C La-module (encompassing residues 137-332) and oligos B1, B2 (B, C), U₂₀ (C), B3 and B4 (D, E). In (B) and (D): for each graph, the upper panel corresponds to the raw titration data showing the thermal effect of injecting an RNA oligo solution into a calorimetric cell containing the recombinant LARP6C La-module. The lower panels show the normalized heat per injection values obtained by integrating the raw data and subtracting the heat value of the RNA dilution. The red lines in the graphs for oligos B1 and B2 (B) represent the best fit derived by a non-linear best-square procedure based on an independent binding site model. The dissociation constants (Kd) are indicated for the B1 and B2 oligos; the thermodynamic parameters are shown in Supplemental Table S1. (C, E), EMSAs of LARP6C La-module binding to: B1, B2 or oligo U₂₀ (C), B3 or B4 (E). Decreasing concentrations (µM) (88 (lane 1), 29.3 (lane 2), 9.8 (lane 3), 3.3 (lane 4), 1.1 (lane 5), 0.4 (lane 6), 0.12 (lane 7), 0.04 (lane 8) and 0 (lane 9)) of the recombinant LARP6C La-module were mixed with 3nM of 5'-labelled oligos. B stands for Bound, F for Free, red asterisks mark the RNA-protein complex, and the red arrows on panels E shows samples retained into the gel wells. Experiments were conducted in the absence (-tRNA) or presence (+tRNA) of unlabelled competitor (tRNAmix of E. coli MRE 600 at 0.01 mg/mL concentration). Graphs in panel C show the quantification of the bound RNA fraction versus the protein concentration in the absence (black lines) or presence (red lines) of tRNA competitor. The values of the dissociation constants are reported. Kd values reported for the EMSA experiments were calculated out of three independent replicates with the following standard deviations: LARP6C-B1 (-tRNA): 0.8 +/- 0.1; LARP6C-B1 (+tRNA): 3.5 +/- 0.3; LARP6C-B2 (-tRNA): 1.9 +/- 0.3; LARP6C-B2 (+tRNA): 5.6 +/- 0.2.

Figure 7: *larp6c* loss-of-function does not affect the steady-state transcript levels of its target in dry pollen. (A), Heat map representation of the log₂(RPKM) values of genes that are differentially expressed between wild type (WT) and *larp6c-3* plants. The heat map was built from the list of DE genes with log₂(RPKM) values between -2 and +10 (2142 genes: 98.5% of the DE genes). (B), Plot representation of the log₂ values of the ratios: (*larp6c-3*/wild type) (upper panel) and log₂(6C-FH/wild type) (lower panel) for the 2174 genes found to be differentially expressed in *larp6c-3* mutant pollen. Red lines mark the cut off value (log₂(1.5) and log₂(1/1.5)). (C) Venn diagram representation of the number of transcripts that are DE in *larp6c-3* and/or immunoprecipitated by 6C-FH. Note that of the 115 RIP targets, 19 were not present in the transcriptomic data from RNA-seq. (D) plot representation of the log₂(*larp6c-3*/WT) for mRNAs identified by RIP-seq. Red lines mark the cut off value (log₂(1/1.5)).

Figure 8: LARP6C binding at the 5'UTR of a reporter construct reduces protein and increases mRNA levels. (A) Schematic representation of the YFP reporter constructs, **(B)** RT-qPCR monitoring of YFP mRNA levels. To normalize YFP mRNA levels to transformation efficiency, we used the levels of *HPTII* mRNA encoded by the *HPTII* gene carried by the YFP binary plasmid but not the tRFP-LARP6C one. SDs were calculated from three biological replicates. p-value were obtained using a Student-t test. **P < 0.005, ns: not significant. **(C)** Immunoblot analysis of tRFP-LARP6C and YFP protein levels. Two immunoblots were prepared and respectively hybridized with anti-LARP6C or GFP antibodies. Levels of UGPase were used as a loading control. Representative images of three replicates are shown. **(D)** Confocal imaging of YFP from leaves not transformed with tRFP-LARP6C (left panels) and of YFP and tRFP-LARP6C distribution (right panels). Scale bars represent 20 µm. Leaves that were observed are different from those used to prepare total RNA and protein extracts. Representative images of three biological replicates are shown.

Fluorescence intensity

Figure 9: LARP6C is involved in the dynamic fine-tuning of MGD2 protein accumulation *in vivo*. Monitoring of the levels of MGD2-YFP fusion protein expressed from the *MGD2* native promoter (*PRO_{MGD2}:MGD2-YFP*) and endogenous MGD2 in wild type (WT) and *larp6c-3* plants. **(A)** Representative images of YFP signal in heterozygous mature pollen grains at activation: 0, 15 and 30 min after incubation on *in vitro* germination medium. Bottom panels show images in pseudo color with the associated scale bar representing the intensity of the YFP signal. White arrows and asterisks respectively point to segregation pollen grains expressing or not expressing the translational fusion. **(B)** Live cell imaging of MGD2-YFP distribution in pollen tubes. The numbers of pollen tubes with gradient MGD2 distribution toward the tip, uniform (lost gradient), or no expression of MGD2-YFP are reported in the table below. Scale bars correspond to 10 µm. **(C)** Left panel: fluorescence quantification of MGD2-YFP in wild type (WT) and *larp6c-3* (*6c-3*) pollen and during the progamic phase (1 and 4h). n=3 biological replicates at each time point, a Student t-test for two independent samples/two-tailed test was conducted, with ns: not significant, **** p-value≤ 0.0001. Right panel: immunoblot analysis of endogenous levels of MGD2 in pollen and during progamic phase in wild type and *larp6c-3*. Experiments were conducted in two or three independent replicates labelled R1, R2, and R3. **(D)** RT-qPCR analysis of *MGD2* mRNA levels originating from the *MGD2-YFP* transgene and endogenous *MGD2* ene in dry pollen and 4h pollen tubes. Experiments were conducted in three independent replicates, and *TUBULIN8* mRNA was used as a control. An unpaired Student t-test was conducted, with n.s.: not significant. Both wild type and *larp6c-3* carry the MGD2-YFP transgene is in the heterozygous state and the *larp6c-3* allele is homozygous. In C and D, wild type and *larp6c-3* carry the MGD2-YFP transgene in the homozygous state.

Supplemental Figure S1: *Expression profiles of LARP6A, 6B and 6C mRNAs across development*. (Supports Figure 1A). (A), Expression profiles of the *LARP6A (AT5g46250), 6B (AT2g43970)* and *6C (AT3g19090)* mRNA across Arabidopsis development. Data were retrieved from the TraVa database of gene expression profiles monitored by RNA-seq (http://travadb.org/) (Klepikova et al., 2015) (upper graph) and from the Arabidopsis eFP Browser from the Bio-Analytic Resources for plant biology (http://bar.utoronto.ca/) (Winter et al., 2007) and are represented as histograms. The normalized expression values are arbitrary units. (B) RT-PCR analysis of steady-state *LARP6C* mRNA levels in various tissues from wild-type plants. Specificity of the PCR reactions was verified by omitting the reverse transcription step (no RT, lanes 1-4; 9-11). RNAs from *larp6c-* 3 pollen grains were utilized as negative controls (lanes 1 and 5). RNAs extracted from: seedling aerial parts (lanes 2, 6), whole flower (lanes 3, 7), mature pollen grains (lanes 4, 8), seedling roots (lanes 9, 12), stem (lanes 10, 13) and cauline leaves (lanes 11, 14) were tested. The *ACTIN8* transcript was used as a positive control.

larp6c-3 larp6c-4

Supplemental Figure S2: Pollen maturation, germination, and pollen tube growth of larp6c loss-of-function mutants. (Supports Figure 1). (A), larp6c loss-of-function induces a slight pollen maturation deficiency. Mature Pollen Grain (MPG) from wild type (WT) or *larp6c-3* homozygous in guartet (art-/-) mutant plants were collected and observed following DAPI staining. The number of bicellular pollen grains was scored over the total number of observed MPGs. The results are presented as histograms and correspond to mean values of three replicates ± SD and "n" is a total number of pollen grains examined. On the right are representative fluorescence micrographs of wild-type and *larp6c-3* pollen grains stained with DAPI. Red arrows point to mature pollen grains in which the generative cell remained undivided and appeared as binucleate. Scale bars correspond to 6 µm. (B), Mean germination rates (± SD) of pollen tubes emerged per pistil in a semi in vivo assay. The total number of observed pistils is reported as "n" from three biological replicates. Transgenic LAT52-GFP pollen grains were used as a control. (C), Pollen tube length derived from the semi in vivo assay. No significant difference was observed between wild-type and mutant pollen tubes (Student *t* test p > 0.05) calculated from pooled replicates. (D), *In vitro* pollen tube length measurements. The total number of pollen tubes measured is reported on the histogram as "n". (E) *In vivo* aniline blue staining of pollen tubes after fertilization with wild-type (WT), larp6c-3 or larp6c-4 pollen. n = 10, 16 and 21 pistils respectively. In the semi in vivo assays, scoring was conducted 7 hours after pollination (hap) (4 hap pistils were cut at the shoulder, placed on a plate, and further incubated 3 hours before scoring). In the in vitro assays, scoring was conducted 4 hours after activation on germination medium. In the in vivo assays, scoring was performed 24 hap.

Supplemental Figure S3: Schematic representation of LARP6C transgenes and immunoblotting analyses of their accumulation. Semi in vivo pollen tube guidance competition assays. Analysis of LARP6A function in male fertilization. (Supports Figures 1 to 3). (A) Representation of the setting of a semi in vivo guidance assay. (B) Schematic representation of the transgenes utilized to stably express tagged versions of LARP6C protein in mature pollen. The drawing and color codes are as in Figure 1B. (C) Immunoblot analysis of the expression of tagged LARP6C transgenic proteins. Total proteins were extracted from whole flowers, and blots were probed with anti-LARP6C antibodies. Left panel: expression levels of LARP6C-tRFP and YFP-LARP6C in the wild type (lanes 4 and 8), larp6c-3 (lanes 5, 6, 9) and/or larp6c-4 (lane 7) backgrounds. Confocal analyses presented in Figure 2 were conducted with pollen from: lines 1885 (UNM), 1930 (BCP and TCP), 1923 (MPG) and 136 (pollen tubes). Line 134 was used to co-express the various markers presented in Figure 3. Lines 134 and 1930 were used as complemented lines for pollen experiments reported in Figures 1D and E and Supplemental Figure 2. Black arrows point to endogenous LARP6C, red arrows to LARP6C-tRFP, green arrows to YFP-LARP6C and black asterisk to non-specific signal. Middle panel: steady-state levels of the LARP6C-FlagHA (6C-FH) fusion from six distinct transformants (lanes 3 to 8). 6C-FH was expressed in larp6c-3 knockout plants. Mature pollen from line number 267 (lane 5) was used for the RIP-seq experiment. Right Panel: expression levels of YFP-LARP6C- Δ LAM expressed in the *larp6c-3* (lanes 1-5) or *larp6c-4* (lanes 6-8) backgrounds. Complementation assays presented in Figure 1F were conducted with lines 2291 (lane 5) and 2293 (lane 7). (D) Semi in vivo pollen tube guidance competition assays. On the left, a cartoon representation of the pollen tube guidance assay. Unfertilized wild-type ovules were arranged around an ms1 pistil pollinated with both mutant larp6c and LAT52-GFP pollen. A limited pollination was performed with pollen from wild-type plants homozygous for LAT52-GFP reporter (hmLAT52-GFP) (labeled "WT"), with hmLAT52-GFP and larp6c-3 pollen (labeled "larp6c-3") or with hmLAT52-GFP and larp6c-4 pollen (labeled "larp6c-4"). Ovules were scored as: GFP positive (targeted by LAT52-GFP pollen), non-GFP ovules (targeted by mutant pollen) or non-targeted. The results are presented as whisker boxplots. (E) Top panel: Schematic representation of the LARP6A genomic locus; the color code is identical to that of Figure 1B. The position of larp6a-1 (SK39668) T-DNA is reported. Bottom panel: immunoblot analysis of LARP6A steady-state levels in the wild-type and larp6a-1 backgrounds. (F) Male transmission efficiencies of larp6a-1 and (larp6c-3+/-; larp6a-1) mutants. Transmission Efficiency (TE) was calculated as: (([No of mutant] / [No of wild type]) x 100). ns: the number

of mutant seedlings in the progeny is not significantly different from the expected number of mutant seedlings. (G) *In vivo* scoring of pollen tube behaviors. Wild-type pistils were pollinated *in planta* with pollen from various homozygous genotypes and the behavior of pollen tubes monitored and scored over a time course: 4h, 8h and 24h after pollination (HAP). Type I (white bars): targeting and reception are normal, Type II (grey bars): targeting is defective (see Supplemental Figure S3D). The numbers of scored ovules are reported as "n" in the table below the graphs. p-values were calculated with a t-test, unpaired, ns: non significative, ***, p-value <0.001.

Supplemental Figure S4: Pollen attraction competence of *larp6c-3* and *6c4* ovules. (Supports Figure 1C-F). **(A)**, Semi *in vivo* assays using wild-type (WT) (Col 0 ecotype) or *larp6c* (from *larp6c-3* or *larp6c-4* homozygous plants) mutant ovules for wild-type (WT) pollen tube attraction. The histograms report the frequency of targeted/untargeted ovules for each ovule genotype. Error bars are standard deviations calculated from 2 biological replicates with n= 150 ovules (contained in 25 pistil explants) tested for each replicate and each genotype. **(B-E)**, *In vivo* ovule attraction competence assays. Pollen tube targeting events were scored as successful attraction. *ms1*, *larp6c-3* or *larp6c-4* homozygous pistils were pollinated with pollen grains expressing the GUS transgene under the control of the *LAT52* promoter. Ovules showing positive GUS staining were scored as competent. **(B-D)**, representative micrographs of pollinated *larp6c-4* mutant ovules. Arrows point to pollen tubes (C, D) and asterisks to pollen tube penetration and burst (C). Scale bars correspond to 20 µm. **(E)**, Histogram representation of ovule attraction frequency. The minus GUS (dark grey) corresponds to frequency of untargeted ovules and the plus GUS (light grey) to the frequency of targeted ovules. Error bars are standard deviations calculated from 2 biological replicates. The total number of ovules scored in replicate 1 (n₁) and 2 (n₂) are: *ms1* (n₁=802 from 24 pistils; n₂= 975 from 29 pistils), *larp6c-3* (n₁= 1063 from 31 pistils; n₂= 869 from 28 pistils) and *larp6c-4* (n₁=860 from 26 pistils, n₂= 912 from 29 pistils).

Supplemental Figure S5: Confocal analyses of LARP6C-tRFP and/or LARP6A-GFP in pollen. (Supports Figure 2). (A) Confocal analyses of LARP6C-tRFP distribution in bicellular pollen (BCP), tricellular pollen (TCP), and mature pollen grain (MPG). Line 134 was used to monitor LARP6C-tRFP subcellular distribution. White arrows point to the cytoplasmic connexion (CC), the generative and vegetative cell nuclei (GCN and VCN), and the sperm cell nuclei (SCN). Scale bars correspond to 5µm. (B) Immunoblot analysis of LARP6A-GFP expression in four independent transgenic lines. The *LARP6A* whole genomic region (including promoter and introns) was fused at its C-terminus with the GFP CDS and expressed in the wild-type background. Line 1850 was crossed with line 134 (LARP6C-tRFP) to monitor LARP6A and 6C co-localization. (C) Confocal analysis of LARP6A-GFP and LARP6C-tRFP localization in mature pollen grain (MPG) and *in vitro* grown pollen tubes. Scale bars correspond to 10 μm.

Supplemental Figure S6: Reproducibility of the RIP-seq data, RIP-seq filtering workflow, representation of the position of A and/or B boxes on the 5'-UTRs of LARP6C targets. (Supports Figure 3). (A), Immunoblot analysis of the input (lanes 1, 3), unbound (lane 4), and eluate fractions (lanes 2, 5) of the RIP samples. 0.3% (15 µL) of the input and unbound and 3% (7.5 µL) of the eluate fractions were analyzed. The blots were probed with the anti-LARP6C antibody. (B), Comparison of the two biological replicates for the inputs of the RIP-Seg analysis. Correlation of expression levels between replicates of the inputs from wild-type (Col 0) (left panel) or complemented larp6c-3 ((LARP6C-FlagHA; larp6c-3), labelled 6C-FH) (right panel) lines. The X and Y axes correspond to read counts in RPKM respectively for replicates 1 and 2. The expected correlation line for a correlation coefficient of 1 is represented by a red dotted line and the actual correlation line is in black. Correlation coefficients are reported as R² on each graph. (C), Representation of the workflow utilized to identify the putative mRNA targets of the LARP6C protein in mature pollen grains. The filtering process was conducted with the weighted average values calculated between replicates, and with the list of genes that displayed at least 1 RPKM value in one of the four conditions (inputs, wild type and 6C-FH and eluates, wild type, and 6C-FH) (see Supplemental Data Set S1). To identify Differentially Expressed (DE) genes between wild type and 6C-FH, respectively, in the input and eluate fractions, we used the Cuffdiff suite. The first filtering step consisted of the elimination of all DE genes in the input. To increase stringency, in the first step, we also filtered out genes non-DE but having Fold Change (FC) values over 1.2, calculated as the ratios between 6C-FH and WT inputs. The second filtering step selects DE genes between the eluate fractions that present a FC of 1.5 or more, calculated as the ratios between 6C-FH and WT eluates. The third filtering step is based on the Enrichment Ratio (RE) calculated as the ratio between eluate and input values and initially selected genes with a RE6CFH≥1. We then calculated the ratio between RE6C-FH and REWT values, whose distribution is represented in **D** and retained genes with a ratio \geq 3. The target gene list is shown in Supplemental Data Set S1. (E), Schematic representation of the 5'-UTRs of Box A and/or Box B containing mRNAs identified as putative LARP6C baits. The positions of the A (red boxes) and B (green boxes) motifs are shown. Correspondence between numbers on the left hand-side and gene accession numbers are reported in Supplemental Data Set S1.

Α

Supplemental Figure S7: ITC and EMSA assessment of LARP6C La-module binding to A type oligos. (Supports Figure 4). **(A)**, Calorimetric analysis of the interaction between the LARP6C La-module (encompassing residues 137-332) and two A-type oligos (A1 and A2) whose sequences are reported below the graphs. For each graph, the upper panel corresponds to the raw titration data showing the thermal effect of injecting an RNA oligos solution into a calorimetric cell containing the recombinant LARP6C La-module. The lower panels show the normalized heat value for the titrations obtained by integrating the raw data and subtracting the heat value of the RNA dilution. **(B)**, EMSAs of the LARP6C La-module binding to A1, A2, or C20 oligos. Decreasing concentrations (μ M) 88 (lane 1), 29.3 (lane 2), 9.8 (lane 3), 3.3 (lane 4), 1.1 (lane 5), 0.4 (lane 6), 0.12 (lane 7), 0.04 (lane 8) and 0 (lane 9) of the recombinant La-module were mixed with 3 nM of 5'-labelled oligos. F stands for Free RNA and the red arrows show samples that were retained in the wells of the gel. Experiments were conducted in the absence (-tRNA) or presence (+tRNA) of unlabelled competitor (tRNAmix of *E. coli* MRE 600 at 0.01 mg/mL concentration).

Experiment Syringe: Cell	n	Kb	Kd	ΔH	-T∆S	∆G
		M-1	μM	kcal/mol	kcal/mol	kcal/mol
B1:La module 6C	0.8 +/- 0.01	(2.8 +/-0.4)xE⁵	3.5+/-0.5	-6.6+/-0.1	-1.3+/-0.1	-7.4+/-0.1
B2:La module 6C	0.9 +/- 0.1	(3.7 +/-0.9)xE⁵	2.8+/-0.4	-6.6+/-0.3	-1.0+/-0.3	-7.6+/-0.1
B3:La module 6C	na	na	na	na	na	na
B4:La module 6C	na	na	na	na	na	na
U ₂₀ :La module 6C*	1.1 +/- 0.1	(5.8 +/-0.3)xE ⁵	1.7+/-0.1	-3.1+/-0.1	-4.7+/-0.7	-7.8+/-1.0
A1:La module 6C	na	na	na	na	na	na
A2:La module 6C	na	na	na	na	na	na
C ₂₀ :La module 6C	na	na	na	na	na	na

Every value is averaged over three experiments and the errors are obtained as the standard deviation from the mean value. *: The values for $O(U_{20})$ are those previously reported in (Merret et al. RNA, 2013). na: not attributed.

Supplemental Table S1: Thermodynamic parameters of the calorimetric analyses shown in Figure 4B, 4D and Supplemental Figure 6A.

Supplemental Figure S8: Reproducibility of the RNA-seq data. (Supports Figure 7) Comparison of the two biological replicates used for the RNA-seq analyses. Correlation of expression levels between replicates of the RNA-seq data from wild-type (Col 0) (left panel) or from *larp6c-3* (right panel) lines. The X and Y axes correspond to read counts in RPKM respectively for replicates 1 and 2. The expected correlation line for a correlation coefficient of 1 is represented by a red dotted line and the actual correlation line is in black. Correlation coefficients are reported as R² on each graph.

Supplemental Figure S9: Model of the molecular functions of LARP6C in male fertilization. In mature dry pollen grain, LARP6C is part of mRNP granules and acts as s repressor of translation of its target transcripts. During pollen hydration and along the progamic phase, LARP6C shifts from a repressor to an activator of translation. In growing pollen tubes, we postulate that LARP6C could also participate in the transport of at least some of its target transcripts, navigating them along the cytoskeleton as translationally silent to their site of translation.

qPCR PRIMERS						
Primer Name	Gene	5'-3' sequence	Primer Tm (°C)	Amplicon Tm (°C)	Amplicon lenght (nt)	Primer pair Efficiency (%)
YFP-F	YFP	TAAACGGCCACAAGTTCAGC	59.05	86.91	87	99.85
YFP-R		CGGTGGTGCAGATGAACTTC	59.20			
Hyg-F	Hygromycin	CGTGGTTGGCTTGTATGGAG	58.91	86.91	156	97.9
Hyg-R		CCCAAGCTGCATCATCGAAA	58.90			
MGD2-F	YFP-MGD2 & MGD2	TGTGACTGCATCATCACAAAAG				
MGDR		GGCTGAGCTAGTTTACGTGCAT				
TUBULIN 8-R	TUBULIN 8	CTTCGTATTTGGTCAATCCGGTGC				
TUBULIN 8-F		GAACATGGCTGAGGCTGTCAAGTA				

Cloning & Genotyping Primers				
Primer Name	5'-3' sequence	Purpose		
31	CACCtcacacttttcaagtctcatt	MGD2 genomic region cloning (-579 to last nt before stop codon)		
32	AACTAAACTGGCAAAAGAAGAG			
543	CCCC <u>GGTACC</u> GTGCTTTCTGATTTAAGAGAGGCAAAGGA	LARP6C genomic region (-1181 to Stop codon)		
544	CCCC <u>GCTAGC</u> GAGATTGTTAGGTGAGAGTGAGATGGAA	cloning		
974	CCCCGAGCTCGTGCTTTCTGATTTAAGAGAGGCAAAGGA	ProLARP6C genomic region (-1181 to -1)		
975	CCCC <u>GGTACC</u> TTTCCTCTCACTACTCTGAAAAAATCTCTAAC	cloning		
976	CCCCC <u>ACTAGT</u> ATGGCGCAGATGCAGCGAGAAG	Cloning of genomic LARP6C from ATG to		
977	CCCCC <u>GATATC</u> TTAGAGATTGTTAGGTGAGAGTGAGATGG	STOP codon		
eb3	CCCC <u>TCTAGA</u> CTCGAGCTAGAAAGAGAACCAGGGACTTCT	Cloning of genomic PAB5 from ATG to STOP		
eb4	CCCC <u>GGATCC</u> CTCGGATGAGGATAGAGCAAACTGGTCATC	codon		
1197	GCAGGCTGCGGCCGCTCTAG	Construction of LARP6CDLAM CDS		
1198	<u>GCAATTCCTCTGTCTCT</u> CTTCGACGAAGAAGACGAGTTCTGA	<pre>(underlined sequence is complementary to the 20 first nt of pcr product 2, obtained with primers 1198 and 1200)</pre>		

1199	AGAGACAGAGAGGAATTGCA	Construction of LARP6CDLAM CDS
1200	TATCGATAAGCTTGATATCGA	
1201	GCTCTAGAATGGCGCAGAT	
488	GAAGTAGAGTCCGTCACGACG	<i>larp6c-3</i> LP primer
489	TTTCTTGCCGTCTTCACTCAC	<i>larp6c-3</i> RP primer
491	TAGCATCTGAATTTCATAACCAATCTCGATACAC	SAIL-LB2
999	GTTCAAATTCAACGCTCAAGC	<i>larp6c-4</i> LP primer
1000	AATTCTCTGCAACGACAGTCC	<i>larp6c-4</i> RP primer
483	AACGTCCGCAATGTGTTATTAAGTTGTC	DsLox-p745-LB
475	AAGCTGGAAGGTAGGCTATGG	larp6a-1 RP primer
476	GACGCTTTGAGACCTCAACAG	larp6a-1 LP primer
474	ATACGACGGATCGTAATTTGTCG	Saskatoon-3

Supplemental table S2: List and sequences of primers used for qPCR analyses, genotyping and cloning.

SUPPLEMENTAL METHODS

Plant material and plasmid construction

The *larp6a-1* (SK39668) line from the Saskatoon Arabidopsis T-DNA population collection (Robinson et al., 2009) was obtained from the NASC stock center. Genotyping primer sequences are listed in Supplemental Table S2. To determine whether this insertion line was loss-of-function, we ordered a custom-made antibody through immunization of rabbits with peptide "EESEKGGKKENFIRTR" (Agro-Bio (La Ferté St Aubin, France)). Anti-LARP6A antibodies were used at 1/5,000 dilution. To obtain the LARP6A-GFP fusion, we PCR amplified the whole genomic locus *AT5G46250* from position -1498 up to the last nucleotide before the stop codon with primers 959 and 960 and inserted the DNA fragment following *KpnI-SacI* digestion upstream of the *GFP*, into a pCAMBIA1300-based plant binary vector expressing the *HPTII* (hygromycin) resistance gene, giving rise to plasmid p791. A stable transgenic line was prepared through agroinfiltration of plasmid p791 into wild-type Col-0. To monitor co-localization of LARP6A and LARP6C, we transferred the LARP6A-GFP transgene (line 1850) into a LARP6C-tRFP expressing line (line 134) through crossing.

Growth conditions and pollen collection technique for RNA-Seq and RIP-Seq assays

Mature pollen materials for RNA-seq and RIP-seq were obtained from plants sown, grown and harvested under the exact same conditions. Wild type (Col-0), larp6c-3 and (larp6c-3; PRO_{6C}-LARP6CFLAGHA) (abbreviated as 6C-FH) were sown on 1/2 MS - 0.8% agar in duplicate and cultivated for 15 days in vitro at 20°C, with 24 h light (50-60 mE⁻¹m⁻²-s⁻¹). Seedlings were then transferred to soil treated with the nematode Steinernema feltiae (at 5000 / soil Liter) and cultivated in a greenhouse with approximately 16 h day at 22°C night and day (greenhouse conditions, July 2013 Gif/Yvette France) for 5 weeks. Wild type Col-0, larp6c-3 and 6C-FH (transformant number 267 (see Supplemental Figure S3C for an immunoblot analysis of LARP6C-FLAGHA protein accumulation)) plants were grown together in the same compartment of the greenhouse in large plates, each containing 96 plants. Two sets (Col-0, larp6c-3, 6C-FH) of plants were grown to produce two replicates. For each replicate, 15 Col-0, 3 larp6c-3 and 15 6C-FH plates were prepared. The plates of each replicate were respectively installed on two distinct growth shelves inside a same compartment and each genotype interspersed inside each replicate. To avoid the effects of cooling air efflux and temperature gradients and to obtain homogeneous growth between genotypes inside each replicate, the plates were rotated along their respective shelf every 2 weeks. Mature pollen grains were collected using a homemade pollen collector as described in (Johnson-Brousseau and McCormick, 2004). Briefly, mature pollen was collected by aspiration with a vacuum cleaner equipped with three successive filters

of 140, 60 and 10 μ m diameter. Pollen grains were scraped from the 10 μ m filter into an Eppendorf tube, weighed, flash frozen in liquid nitrogen, and stored at -80°C.

RNA sequencing

Total RNAs were extracted from 5 mg of wild-type and *larp6c-3* mature pollen grains as described in the Methods section of the main text. RNA quality was verified by gel electrophoresis and staining with Gel-red (Biotium). DNase treatment was conducted as for RT-PCR assays. The reaction was stopped and DNase extracted with phenol/chloroform/IAA before RNA was precipitated and resuspended in RNase-free water. The quality of DNase-treated RNA was assessed with a Bio-Analyser. Library preparation (with a True seq Stranded mRNA kit from Illumina) and sequencing were subcontracted to Fasteris (Switzerland). Single-end (101bp read length) sequencing was performed on the HiSeq 2000 platform with a depth of 31 to 60 M reads. Experiments were conducted in duplicate for each genotype.

RNA Immunoprecipitation and sequencing (RIP-Seq)

After pollen collection, crude extracts (Inputs) were prepared from identical amounts of wild-type and 6C-FH expressing pollen grains. Twenty-five mg of mature pollen was resuspended in 250 volumes of extraction buffer (50 mM Tris HCl pH 7.4, 10% glycerol, 100 mM NaCl, 5 mM MgCl₂, 80 units / ml RNAsin® Plus RNAse Inhibitor (Promega), 1X mg132, 1% protease inhibitor cocktail for plant extract (Sigma)) and ground using a Silamat S6 before extracts were cleared by centrifugation (4°C, 14.000 g for 10 min). 700 and 40 µL of Input fraction were saved to purify total RNA (Input RNA) and total protein (Input Protein) to respectively conduct RNA-sequencing and immunoblotting. For each sample (Col0-Replicate 1, Col0-Replicate 2, 6C-FH-Replicate 1 and 6C-FH-Replicate 2), the immunoprecipitation step was conducted with 5 mL of crude extract. For each sample, 250 µL of Anti-Flag M2 (Sigma) magnetic beads were thoroughly washed with 10 volumes of extraction buffer and evenly divided between the 5 tubes. After removing the supernatant, 1 mL of crude extract (approximately 300 µg of total protein) were added to each tube and rotated for 1 h at 4°C on a wheel at 10 rpms. The unbound fractions were collected, pooled, and 700 and 60 µL stored for RNA and protein analyses. The beads were washed once with 5 vol of washing buffer (50 mM Tris HCl pH 7.4, 10 % Glycerol, 150 mM NaCl, 3 mM MgCl₂, 80 units / ml RNAsin® Plus RNAse Inhibitor (Promega), 1X Mg132, 1% protease inhibitor cocktail for plant extract (Sigma), 0.1% Triton[™] (Sigma)) before being transferred to a new tube, pooled, and washed twice more in 2 vol of washing buffer. The elution step was conducted as follow: 6% of the beads (15 µL) were resuspended in 1X Laemmli buffer, heated for 10 min at 100°C, and
Supplemental data. Billey, Hafidh et al. (2021). LARP6C orchestrates post-transcriptional reprogramming of gene expression during hydration to promote pollen tube guidance. Plant Cell.

the supernatant used to run immunoblot analysis to monitor the efficiency of immunoprecipitation of the 6C-FH protein. The remaining 94% of the beads were resuspended into 400 μ L of guanidium hydrochloride buffer, incubated for 10 min at RT, the supernatant collected and separated from proteins with two phenol/chloroform/IAA extractions before the RNA was precipitated in the presence of 80 μ g of glycogen and resuspended into 10 μ L of RNase-free water. RNAs in the eluate fractions were quantified with a NanoDrop and their quality verified with a Bio-Analyzer system. The library preparation and sequencing (Input RNA and Eluate RNA) were subcontracted to Fasteris (Switzerland). The libraries constructed with the input RNAs were prepared from poly(A) purified RNAs using a True seq Stranded mRNA kit from Illumina and the libraries prepared from the eluate fractions were constructed from unpurified RNAs. Sequencing was performed as single-end 101 bp and with a depth of 42 to 64 M reads for the inputs and 25 to 40 M reads for the eluates.

Bioinformatics

For each RNA-seq and RIP-seq sample and replicate, read quality was first verified with FastQCsoftware (http://www.bioinformatics.babraham.ac.uk/projects.fastqc) and clusters with a Qscore below 30 filtered out. 95-96% of the RNA-seg clusters and 92-94% of the RIP-seg clusters had a Qscore of at least 30 (please see Supplemental Data Set S1 and S2 for the sequencing depth and quality scores of each sample). In the second step, non-nuclear genomic and ribosomal RNA sequences were filtered out against the TAIR10 database using Bowtie2 (Langmead and 2012) Salzberg, and the remaining clusters aligned against TAIR10 (TAIR10 genes transposons.gtf) with TopHat2 (Kim et al., 2013). After filtering, more than 99% of the clusters were retained for the RNA-seq samples and inputs of the RIP-seq. For the eluates, 5% of the Col-0 clusters and 15% of the 6C-FH clusters were retained, because of the high contamination with ribosomal RNAs. For the RNA-seg and RIP-seg assays, genes that did not display at least 1 RPKM (read per kilobase per million mapped reads) value in one of the conditions were filtered out. Normalized mean values were attributed to each gene, and differentially expressed genes were identified with the Cufflinks, Cuffmerge and Cuffdiff suite (Trapnell et al., 2010) with an FDR of 0.05 for RNA-seq and 0.01 for RIP-seq and |log2(FC)| ≤ 0.585 as cut-off for total RNA-seq and $log2(FC) \ge 0.585$ for eluate values of RIP-Seq. To search for a motif shared by putative targets of LARP6C, we looked at the Araport database (https://www.araport.org/) for their 5' and 3'-UTR sequences and retrieved sequences for 112 out of 115 putative targets. We then ran MEME searches (at the MEME suite portal (http://memeSupplemental data. Billey, Hafidh et al. (2021). LARP6C orchestrates post-transcriptional reprogramming of gene expression during hydration to promote pollen tube guidance. Plant Cell.

suite.org/)) using, as control sequences, a set of 112 randomly chosen 5'- and 3'-UTR sequences from genes expressed in pollen according to our transcriptomic analysis.

Pollen phenotyping: pollen maturation, pollen tube germination and growth

To monitor pollen maturation defects, mature pollen grains were collected from wild-type and larp6c homozygous plants, deposited on a DAPI solution (1X PBS pH7, 0.5% Triton, 1 µg/mL 4',6-diamidino-2-phenylindole (DAPI)) and the number of mutant pollen grains with undivided generative cells determined using confocal microscopy. Pollen tube germination and growth defects were monitored in vitro or through semi in vivo assays. To grow pollen tubes in vitro, we used a modified version of the protocol from (Boavida and McCormick, 2007). Freshly prepared pollen tube growth medium (0.01% boric acid, 5 mM CaCl₂, 5 mM KCl, 1 mM MgSO₄, 10% sucrose, pH 7.5 (KOH), 1.5% Phytagel) was directly poured onto a microscope slide. Mature pollen was deposited on the solid medium and slides incubated for 8 h in a humid chamber at 20-22°C in the dark. Pollen tubes were photographed (with a Hamamatsu camera (Sunayama-cho, Shizuoka, Japan)) and pollen tube lengths measured with NIS-element software from Nikon (Nikon Instruments, Melville, NY USA). Pollen tube density and length were also determined through semi in vivo analyses. Following hand pollination with wild-type or larp6c homozygous mutant pollen, the pistils were excised at the shoulder and incubated for 16 h on a plate containing pollen tube solid growth medium. Pistil explants and pollen tubes were photographed and images analyzed with the plugin Bio-format (Open microscopy environment) from Image J software (Rasband, W.S. ImageJ, NIH, Bethesda USA) (Abràmoff et al., 2004) to determine pollen tube length and density per pistil.

Ovule attraction assays

larp6c-3 or *larp6c-4* pistils were emasculated at stage 12C and left to mature for 2 days. Limited pollination was performed on day 3 using LAT52-GUS homozygous pollen grains in the *qrt-/-* background alongside *ms1-/-* pistils as the control. Eighteen hours after pollination, pollinated pistils were collected and gently dissected with a 25G needle to expose fertilized ovules. Dissected pistils were stained for GUS activity in GUS staining buffer (50 mM PBS, pH7, 0.2% Triton-X100, 10 mM potassium ferrocyanide and 1 mM X-Glu). Pistils were vacuum infiltrated for 10 min and stained o/n at 37°C. For microscopy analyses, stained pistils were cleared using an ethanol series (70%-30%), mounted on 30% glycerol, and analyzed with a Nikon TE2000 equipped with DIC modulation contrast and NIS-element software. Images were processed with ImageJ.

Supplemental data. Billey, Hafidh et al. (2021). LARP6C orchestrates post-transcriptional reprogramming of gene expression during hydration to promote pollen tube guidance. Plant Cell.

SUPPLEMENTAL REFERENCES

- Abràmoff, M., Magalhaes, P., and Ram, S. (2004). Image processing with ImageJ. Biophotonics Int. 11: 36–41.
- **Boavida, L.C. and McCormick, S.** (2007). TECHNICAL ADVANCE: Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. **52**: 570–582.
- Johnson-Brousseau, S.A. and McCormick, S. (2004). A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically- expressed genes. Plant J. 39: 761–775.
- Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14: R36.
- Klepikova, A. V, Logacheva, M.D., Dmitriev, S.E., and Penin, A.A. (2015). RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genomics **16**: 466.
- Langmead, B. and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359.
- **Robinson, S.J. et al.** (2009). An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol. **9**: 101.
- Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28: 511–515.
- Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., and Provart, N.J. (2007). An "Electronic Fluorescent Pictograph" Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS One 2: e718.