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Entropy generation minimization in a channel flow: application to different
advection-diffusion processes and boundary conditions
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aPROMES-CNRS, UPR 8521, University of Perpignan Via Domitia, 66100 Perpignan, France
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Abstract

Heat and mass transfer enhancement in a convective flow is studied using a variational optimization technique. En-
tropy generation rate is minimized while allowing to vary the relative weight of the total viscous dissipation in the
objective functional to determine optimized velocity and scalar field patterns. The resulting velocity, thermal and mass
concentration fields are analyzed as well as the influence of boundary conditions. The relative improvement of the
optimized solutions is assessed and heat transfer vs. mass diffusion results are compared. The optimization approach
leads to improved entropy generation rates. The viscous dissipation weighting factor influences the entropy genera-
tion rates and the velocity and scalar field patterns. A transition between two levels of perturbation by comparison to
non-optimized flows occurs at a critical value of the weighting factor that depends on the boundary conditions. The
flow patterns obtained by variational optimization can be the basis for enhanced exchanger design.

Keywords: Second law, Heat and mass transfer, Optimization, Variational analysis, Entropy minimization

1. Introduction

This study addresses the application of variational
methods to improve heat and mass transfers in convec-
tive flows with optimal velocity fields as a result. In
many industries and engineering applications, it is nec-5

essary to optimize heat or mass transfers in order to im-
prove the technical or economic efficiency of machines,
plants or processes. The intensification of heat transfer
is sought in thermal power plants like concentrated solar
[1, 2, 3, 4], nuclear [5] or geothermal [6] ones, but also10

in the process, automotive or aerospace industries and
for cooling systems. Heat transfer enhancement is an in-
novative field of research [7] that uses many techniques
whether active (requiring an external energy input) such
as the use of oscillating walls, or passive such as the ad-15

dition of mixing promoters in the flow channel [8] [9]
or the search for optimized transfer fluids. Convective
mass transfer enhancement is also an area of particular
interest for chemical processes [10] and biotechnology
[11, 12] that take advantage of passive [13, 14] or active20

methods [15, 16]. In both heat transfer and mass diffu-
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sion, the use of suspended fine particles [17] or nanoflu-
ids [18, 19] is also being studied to increase exchanges.
The intensification of heat or mass transfers is often pro-
duced by the passive promotion or the active realization25

of mixing [20] whose performance is dependent on the
fluid flow pattern [21, 22, 23]. Therefore, searching for
optimal flow patterns can be useful to improve heat or
mass transfer in convective flows.

One way to address this issue is applying thermody-30

namic optimization by using the entropy generation rate
as a criterion [24, 25]. In convective flow heat and mass
transfer, the total entropy generation rate is generally a
sum of several terms. In the absence of radiative heat
transfer [26], chemical reaction [27, 28], cross effects35

such as Dufour or Soret ones [29] and dissipation re-
lated to electric or magnetic fields [30, 31], the entropy
generation rate originates from viscous friction, on the
one hand, and from the diffusion of heat or mass through
finite temperature or mass concentration differences, on40

the other hand. Acting on one of the two terms, for ex-
ample by reducing the rate of heat conduction entropy
generation, can lead to an increase in viscous friction
entropy generation and it is necessary to seek the right
compromise between two opposing effects. The total45

generated entropy rate can be minimized in order to find
this optimal trade-off [32, 33, 34]. It is also possible to
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look for a minimum of entropy generation while fixing
a constraint on the total viscous dissipation in the flow
[35, 36], the latter being related to the pressure drop,50

which is a quantity to be controlled in industrial appli-
cations.

In the present study, the calculus of variations is used
to minimize a functional objective constructed as a lin-
ear combination of the entropy generation rate main55

contributor on the one hand and the viscous dissipation
on the other hand [37, 38, 39, 40]. A weighting coeffi-
cient allowing to give more or less importance to the vis-
cous dissipation during the optimization process is used.
For each value of this weighting factor, the optimal ve-60

locity and scalar fields are obtained by varying a volume
force field source term and the resulting improvement in
entropy generation rate is calculated. The method is ap-
plied to heat transfer and mass diffusion cases in order
to identify common behaviors or differences. In addi-65

tion, the influence of the following boundary conditions
is analyzed: the inlet velocity and the intensity of the
incoming heat flow or minor chemical species injection.
Depending on the value of the total viscous dissipation
weighting coefficient, two different flow patterns appear70

and the robustness of the transition between these two
regimes is analyzed.

2. Numerical method

Two types of diffusion processes in a convective flow
are analyzed: heat transfer on the one hand and mass75

diffusion of a chemical minor species on the other hand.
The corresponding equations are presented below.

2.1. Governing equations
We consider the incompressible steady-state two-

dimensional flow of a Newtonian fluid with constant80

properties. The corresponding mass and momentum
conservation equations are the following:

∇.V = 0 (1)

ρV.∇V = −∇P + µ∇2V + F (2)

In this set of equations, V is the velocity vector of
the fluid, ρ its density, P its pressure, µ its dynamic vis-
cosity and F is a volume force field that will be used85

in the optimization process described below: F can be
considered as a virtual force field allowing the velocity
field to be varied in order to examine all possible flow
configurations and find the one that minimizes the ob-
jective functional (and respects the conservation equa-90

tions and boundary conditions), without a priori on its

pattern. The practical realization of the resulting opti-
mal velocity field can be approached by passive means,
such as baffles placed in the fluid path, or by the use of
porous materials as described in [36] and [35].95

Depending on the diffusion process, the transported
scalar is respectively the temperature (for heat transfer)
or the mass fraction of the minor species (for mass trans-
fer).

In the case of heat transfer, viscous heating and grav-100

ity are neglected and there is no source term in the en-
ergy equation nor any radiative exchange. The energy
equation writes:

V.∇T =
k
ρCp
∇2T (3)

where T is the fluid temperature, k its thermal con-
ductivity and Cp its thermal capacity at constant pres-105

sure.
In the case of mass diffusion, a two species high dilu-

tion ideal solution is considered and the diffusion equa-
tion writes:

V.∇w1 = D.∇2w1 (4)

where w1 is the mass fraction of the minor species110

and D is the diffusion coefficient. Eqs. 3 and 4 have
similar mathematical form and differ in the diffusivity
coefficient physical meaning and magnitude.

In the case of heat transfer, the local entropy genera-
tion rate (by unit of volume, which is expressed by the115

triple prime superscript notation) can be calculated us-
ing the following expression, where Φ is the viscous dis-
sipation function [33] and u and v are the longitudinal
and normal (to the heated wall) components of the ve-
locity respectively:120

Ṡ ′′′gen =
k

T 2 (∇T )2 +
Φ

T
(5)

Φ = µ
{
2
[
(
∂u
∂x

)2 + (
∂v
∂y

)2
]

+ (
∂u
∂y

+
∂v
∂x

)2
}

(6)

Equation 5 is obtained by considering a finite-size
control volume ∆x∆y∆z located at any position in
the flow field and small enough so that the thermo-
dynamic state inside the control volume may be re-
garded as homogeneous. The first and second laws125

of thermodynamics as well as the fundamental relation
du = Tds − Pd(1/ρ) (u and s being the specific inter-
nal energy and entropy respectively) are applied to this
control volume considered as an open system to deduce
the local equation Ṡ ′′′gen = −(1/T 2)q + Φ/T , where q is130

the heat flux vector. The heat transfer being carried out
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by thermal conduction, the Fourier law q = −k∇T is ap-
plied and Eq. 5 is deduced, revealing two causes of local
irreversibility: viscous (linked to the dynamic viscosity
µ) and conductive (linked to the thermal conductivity k)135

as underlined in [33].
In the case of mass diffusion, the expression of the

local entropy generation rate is more complex [41] and
takes into account the existence of two species in the
fluid:140

Ṡ ′′′gen =
ρ2R̄D

M̄1M̄2w1(1 − w1)c̄
(∇w1)2 +

Φ

T
(7)

In Eq. 7, R̄ is the (molar) ideal gas constant, M̄1 and
M̄2 are the molar masses of the minor species and of the
solvent respectively and c̄ is the total molar concentra-
tion in [mol.m−3], which is assumed to be constant for
the high dilution ideal solution.145

2.2. Variational problem
Since the aim is to minimize the entropy generation

rate due to the diffusion phenomenon while taking into
account the total viscous dissipation, it is reasonable to
consider a linear combination of these two terms. The150

objective functionals to be minimized are provided in
Eqs. 8 and 9, corresponding to the case of heat trans-
fer and mass diffusion respectively (Ω being the control
volume domain):

J =

∫∫∫
Ω

( k
T 2 (∇T )2 + WΦΦ

)
dΩ (8)

J =

∫∫∫
Ω

(
ρ2R̄D

M̄1M̄2w1(1 − w1)c̄
(∇w1)2+WΦΦ

)
dΩ (9)

Viscous heating has been neglected in the heat equa-155

tion (Eq. 3) as the simulations are done in the case
of very low values of the Brinkman number. This as-
sumption must be changed for high Reynolds number
flows or fluids with high viscosity (like oils or polymers,
which can also be non-Newtonian). Moreover, although160

the rate of entropy generation in Eqs. 5 or 7 is the
sum of two terms, we consider situations where the en-
tropy generation rate due to viscous friction is negligible
when compared to the heat (or mass) transfer part and
the objective functional in Eqs. 8 or 9 takes consistently165

into account the heat or mass transfer contributor only
in the entropy generation term: Ṡ ′′′gen = (k/T 2)(∇T )2 or
Ṡ ′′′gen = (ρ2R̄D)/(M̄1M̄2w1(1 −w1)c̄)(∇w1)2. The second
term of the objective functional is WΦΦ, the product of
the weighting factor WΦ by the viscous dissipation Φ,170

which represents the pressure drop objective in the opti-
mization problem. WΦ can be seen as a weighting factor
in a multi-objective optimization problem. Minimizing
the entropy generation rate and the pressure drop, while
these two objectives are contradictory, does not lead to175

a single solution. The use of a weighting factor allows
to find a whole range of optimized trade-offs: with high
values of WΦ, the emphasis is on the reduction of pres-
sure drop (and more precisely of the total viscous dissi-
pation Φtot, which corresponds to the mechanical power180

required to maintain the flow). Conversely, small values
of WΦ correspond to a focus on minimizing the entropy
generation rate in the channel. Each value of WΦ leads
to an optimal velocity field that minimizes differently
the two contradictory objectives pursued since they are185

assigned different weighting factors.
In order to take into account the constraints expressed

by Eqs. 1 and 3 or 4, Lagrange multipliers λ1 and λ2 (de-
pending on the position) are introduced. Finally, the La-
grangian criteria to minimize are Eq. 10 for heat transfer190

and Eq. 11 for mass diffusion.

J? =

∫∫∫
Ω

{ k
T 2 (∇T )2 + WΦΦ

+λ2

[ k
ρCp
∇2T − V.∇T

]
+ λ1∇.V

}
dΩ

(10)

J? =

∫∫∫
Ω

{
ρ2R̄D

M̄1M̄2w1(1 − w1)c̄
(∇w1)2 + WΦΦ

+λ2

[
D.∇2w1 − V.∇w1

]
+ λ1∇.V

}
dΩ

(11)

The function to be minimized (the entropy generation
rate and the viscous dissipation combined linearly in or-
der to cope with a multi-objective optimization prob-
lem) is a functional (a function of functions, which is195

also non-linear) and the solution sought is a set of func-
tions of the position (the velocity vector field and the
scalar field) and not a simple number or even a single
vector or tensor. These solution fields must also comply
with the conservation equations (also non-linear) and200

the boundary conditions. One way to find the minimum
of the functional could be to use iterative search algo-
rithms (starting from an initial possible field and trying
to get closer to the minimum by calculating gradients
and penalty functions, for example) or methods based205

on meta-heuristics (such as genetic approaches) [42].
This implies to carry out a potentially high number of
resolutions of the fluid flow equations and of evalua-
tions of the objective functional. On the other hand, the
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calculus of variations allows to transform the optimiza-210

tion problem into a system of differential equations [43]
[44] (the Euler-Lagrange equations) and the optimiza-
tion is therefore carried out mathematically and not nu-
merically. One single numerical resolution of the re-
sulting differential equation system is then carried out215

to find the velocity and scalar fields. In this method, the
standard procedure for taking into account the equal-
ity constraints that must be respected by the solutions
(here: the conservation equations) is done using La-
grange multipliers. The continuity equation and the en-220

ergy conservation (or mass diffusion) equation are thus
taken into account by two Lagrange multipliers. Given
the presence of the volume force field F in the momen-
tum equation, Eq. 2 is taken into account after obtaining
the Euler-Lagrange equations. This procedure allows to225

find the expression of the volume force field F that min-
imizes the objective functional J?: it is described in a
synthetic way in the following paragraphs and an ap-
pendix at the end of the paper provides the details of the
calculations.230

Making the first variation of J? with respect to u and
v vanish and taking into account the momentum conser-
vation equation (Eq. 2) gives the formula for the volume
force field F in Eq. 12 and Eq. 13 for heat transfer and
mass diffusion respectively.235

F =
λ2

2WΦ
∇T + ρV.∇V (12)

F =
λ2

2WΦ
∇w1 + ρV.∇V (13)

In addition, equaling to zero the first variation of J?

with respect to T leads to the transport equation of the
λ2 Lagrange multiplier in Eq. 14 and Eq. 15 for the heat
transfer and mass diffusion case respectively.

∇.
(
ρVλ2 −

−k
Cp
∇λ2

)
=

2kρ
T
∇.

(
∇T
T

)
(14)

∇.[ρVλ2 − (−ρD)∇λ2] =

ρ3R̄D
M̄1M̄2w1(1 − w1)c̄

[
∇.

(
∇w1

w1(1 − w1)

)
+
∇.(∇w1)

w1(1 − w1)

])
(15)

The boundary conditions to be used for Eqs. 14 or 15240

depend on those defined for the transported scalar (the
temperature or the mass fraction of the minor species):
if the scalar function is set at a boundary (Dirichlet con-
dition), Eq. 16 applies. On the other hand, if the flux
density of the scalar function is set at the boundary (Von245

Neumann condition), Eq. 17 or Eq. 18 are used for heat
transfer and mass diffusion respectively.

λ2 = 0 (16)

∂λ2

∂n
=

2ρCp

T 2

∂T
∂n

(17)

∂λ2

∂n
=

ρ2R̄
M̄1M̄2c̄

2
w1(1 − w1)

∂w1

∂n
(18)

In these equations, ∂/∂n is the normal derivative to
the boundary.

Finally, in the case of heat transfer, for each selected250

value of the WΦ weighting coefficient, Eqs. 1, 2, 3, 12
and 14 are solved with the boundary conditions 16 or
17 complemented by the dynamical and thermal bound-
ary conditions. In the case of mass diffusion, the solved
equations are Eqs. 1, 2, 4, 13 and 15 and the bound-255

ary conditions are Eqs. 16 or 18 complemented by the
dynamical and mass fraction boundary conditions.

For a fixed force field (e.g. if F = 0 or any other value
that may be non-uniform) and for given boundary con-
ditions, Eqs. 1 and 2 determine a single velocity field260

dependent on the selected field F, and Eq. 3 or 4 lead
to the corresponding unique scalar field. These velocity
and scalar fields determine the value of the total entropy
generation rate and the total viscous dissipation. In this
paper, the volume force field F is considered as an un-265

known of the optimization problem and the calculus of
variations is used to find directly the expression (in Eqs.
12 or 13) of F that leads to the velocity and temperature
fields minimizing the objective functional.

To summarize, in this paper, optimal theoretical ve-270

locity fields are obtained by minimizing the entropy
generation rate for different values of the mechanical
power required to maintain fluid flow (by varying the
weighting factor WΦ). These suggested velocity fields
provide a target to be approached using passive physi-275

cal means like porous media or modifications of the ge-
ometry inside the channel. They also provide a better
understanding of how flow structures are related to the
minima of entropy generated and the values of the total
viscous dissipation. The volume force field F is a vir-280

tual force allowing to vary the velocity field pattern in
order to find the one that minimizes the objective func-
tional.

2.3. Numerical model

The fluid is water (a pure substance when the heat285

transfer case is considered and a highly dilute solution
where water is the solvent when the mass diffusion case
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is studied). The domain dimensions are 30 mm × 5 mm
and a 1200 × 200 uniform mesh is used (Fig. 1).
Mesh independence checks have been performed with290

2400 × 400 and 3600 × 600 meshes and are described
in section 3.3. The top and bottom plates are imper-
meable and the no-slip boundary condition is applied.
The inlet velocity Vin is uniform and constant and the
gage pressure is set to zero at the outlet. In the case of295

heat transfer, the inlet temperature is set to Tin = 300 K
and the walls are adiabatic except for the middle third
of the lower plate where a uniform and constant sur-
face heat flux density q′′ is set to 15000 W.m−2 unless
otherwise indicated. In the case of mass diffusion, the300

inlet mass fraction of the minor species is set to a fixed
value w1,in = 0.01 unless otherwise stated and the mid-
dle third of the lower wall is subjected to a fixed pro-
duction rate per unit area of the minor species ṁ1 set to
0.01 kg.m−2.s−1 unless otherwise indicated.305

The CFD code is ANSYS Fluent 15.0 with the SIM-
PLE velocity-pressure coupling algorithm. UDF scripts
have been developed to solve the additional transport
equation (14 or 15) and to define the source terms (in
particular the F volume force field that is applied in the310

central region of the domain).

Figure 1: Domain characteristics.

Second-order discretization schemes are used for
pressure and energy. Momentum and λ2 equations are
solved with a QUICK scheme.

In the present paper, 2D flows have been considered.315

Two-dimensional simulations can be useful in the case
of high aspect ratio cross-sections with a large transver-
sal dimension with respect to the height of the chan-
nel (which are considered in the context of solar re-
ceivers in concentrating solar power plants, for exam-320

ple). The method discussed in this paper can be applied
to three-dimensional flows while requiring significantly
more computational resources. The analysis carried out
in two dimensions enables to establish qualitative be-

haviors that are likely to persist in three dimensions (for325

laminar flows) and will facilitate identifying the work to
be carried out for three-dimensional flows.

In total, about a hundred simulations were performed
to simulate heat transfer or mass diffusion situations,
with different values of the WΦ weighting coefficient330

that spans across four orders of magnitudes. Moreover,
several parameters have been varied in order to analyze
their influence: the inlet velocity, the heat flux density
(in the heat transfer case), the mass flux density and the
inlet mass fraction of the minor species (in the mass dif-335

fusion case).

3. Results and discussion

3.1. Heat transfer optimization

In this section, we consider the heat transfer case
where the channel is heated from the middle third of340

its bottom plate with a constant and uniform heat flux
density q′′. The mass diffusion case will be examined
later in section 3.2.

Figure 2: Velocity magnitude fields with no optimization, slightly and
highly perturbed profiles (Re = 20).

Depending on the importance of the weighting fac-
tor WΦ, the velocity (Fig. 2) and temperature (Fig.345

3) fields exhibit different shapes corresponding to flow
regimes more or less perturbed when compared to a ref-
erence simulation for which no optimization is activated
(i.e. when the applied volume force field F is zero)
[40]. For very large values of WΦ (for example, when350

WΦ = 107 K−1) these fields are very close to those ob-
tained without optimization. For smaller WΦ values,
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Figure 3: temperature fields with no optimization, slightly and highly
perturbed profiles (Re = 20)

like WΦ = 1.05× 105 K−1, the fields are modified with-
out being disrupted: in particular, the flow is slightly
pressed against the heated area. For even smaller WΦ355

values, for example WΦ = 1.047× 105 K−1, the temper-
ature and velocity profiles are clearly perturbed com-
pared to the situation without optimization: the fluid
is still pushed towards the heated zone but a clockwise
vortex also appears (Fig. 4) that tends to capture the360

heated fluid at the beginning of the heat exchange zone
near the lower plate to move it up in the channel and
then accelerate it, before pushing it towards the lower
plate. This velocity field results in a thermal plume
shape at the beginning of the heated zone. The pres-365

ence of a vortex in the velocity field resulting from vari-
ational optimization is also observed in other physical
situations, such as the improvement of chemical reac-
tion [38] or diffusion [36] processes and the optimiza-
tion of heat transfer in a turbulent gas flow [35]. Vortex370

generation is also a subject of numerical simulation [9]
and experimental [8] work aimed, for example, at asso-
ciating and optimizing actuators and riblets to produce
vortexes.

The transition from a low to a highly perturbed375

regime occurs around a critical value of WΦ that de-
pends in particular on the Reynolds number. When
Re = 10, the transition takes place around WΦ =

2.53 × 105 K−1 while for Re = 20 it occurs around
WΦ = 1.05 × 105 K−1. As can be seen in Figs. 2 and380

3, a small change in the WΦ value can lead to a signif-
icant change in flow: when Re = 20, reducing WΦ by

Figure 4: Zoom of velocity vector and stream function fields when
WΦ = 1.047 × 105K−1. The vertical lines materialize the abscissa
x = 10 mm and x = 20 mm of the heated region. Re = 20.

about 0.3 % is enough to induce the transition. Due to
this relatively abrupt change, the evolutions of the key
variables in the channel (such as the total entropy gen-385

erated) as a function of WΦ show a disruption.
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Figure 5: Entropy generation rate as a function of WΦ.

When the optimization is applied (i.e. the force field
F is computed and used in the momentum equation), the
total entropy generated in the channel is smaller than
the case with no optimization (see Fig. 5 where the390

two vertical bars materialize the critical WΦ values trig-
gering the transition between the slightly to the highly
perturbed velocity and temperature profiles). The re-
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Figure 6: Improvement factor (Eq. 19) as a function of WΦ.

duction in entropy generated is all the more important
as WΦ is small and the gain obtained compared to the395

case without optimization can be estimated using an im-
provement factor Is defined in Eq. 19 and presented
in Fig. 6. When Re = 20 and WΦ = 2.3 × 104 K−1,
Is ≈ 30% and the total entropy generation rate in the
channel is about 70% of non-optimized case. For high400

values of WΦ, decreasing this factor by one order of
magnitude leads to a small (or even zero) marginal gain
in entropy rate reduction. On the other hand, when WΦ
approaches its critical value and below this point, the
slope of the marginal gain is higher (around 8 mW.K−1

405

by order of magnitude of WΦ).

IS = 1 −
Ṡ gen, optimized

Ṡ gen, no optimization
(19)

315

320

325

330

335

1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
m

ax
,v

o
l 
[K

]

Wφ [K
-1

]

Re = 10
Re = 20

Figure 7: Maximum temperature in the channel as a function of WΦ.

As can be seen in Fig. 7, the maximum tempera-
ture inside the channel decreases significantly as WΦ
declines and for medium values of WΦ the curve slope

increases when the Reynolds number decreases. The410

velocity fields resulting from the optimization increase
the homogeneity of the temperature field: the standard
deviation of the temperature is reduced from 3.74 K
to 3.32 K when WΦ changes from 2.09 × 108 K−1 to
1.047 × 105 K−1 at Re = 20.415
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Figure 8: Entropy generation rate due to viscous friction as a function
of WΦ.
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Figure 9: Total viscous dissipation as a function of WΦ.

The entropy generation rate by viscous friction in-
creases as WΦ decreases (Fig. 8) and so does the total
viscous dissipation Φtot (Fig. 9) and the maximum ve-
locity within the flow (Fig. 10). The order of magnitude
of the viscous friction entropy generation rate Ṡ gen, f420

(between 1 nW.K−1 and 10 nW.K−1, depending on the
Reynolds number) is much lower than that of the heat
conduction entropy generation rate Ṡ gen,c (10 mW.K−1),
which is by far the main contributor to the total entropy
generation rate Ṡ gen = Ṡ gen,c + Ṡ gen, f . The smaller WΦ,425

the higher the velocities in the channel, leading to in-
creased velocity gradients, viscous dissipation and gen-
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Figure 10: Maximum velocity magnitude in the channel as a function
of WΦ.

eration of entropy of viscous origin. At the same time,
the better thermal mixing obtained with the optimized
velocity fields results in a reduction in entropy gener-430

ation by thermal conduction through finite temperature
differences. The two components of the entropy gener-
ation rate evolve in opposite directions. However, since
heat conduction entropy generation is the overwhelming
majority, decreasing WΦ ultimately results in a decrease435

in the total entropy generation rate.
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Figure 11: Objective functional J as a function of WΦ.

The objective functional defined in Eq. 8 decreases
as WΦ gets smaller (Fig. 11). It is a linear combina-
tion of two terms, Ṡ gen,c ≈ Ṡ gen and Φtot that evolve in
opposite ways when WΦ varies (Fig. 12). Taking the440

case Re = 20 as an example, when WΦ falls by approx-
imatively four orders of magnitude from 2.1 × 108 K−1

to 2.3 × 104 K−1, the entropy generation rate by heat
conduction decreases from 27 mW.K−1 to 19 mW.K−1

and the total viscous dissipation raises from 1.43 µW to445

2.60 µW. Since the entropy generation by heat conduc-
tion and the total dissipation do not change their order of
magnitude, the evolution of WΦ has the decisive effect
and leads to a decrease of the objective functional.
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Figure 12: Total entropy generation rate as a function of the total dis-
sipation.

The boundary conditions have an effect on the opti-450

mized solutions. the influence of the heat flux density
q′′ and of the inlet velocity Vin are discussed below.
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Figure 13: Total entropy generation rates as a function of WΦ for two
values of the input heat flux. Re = 20.

The higher the heat flux density, the higher the en-
tropy generation rate by heat conduction and the higher
the total entropy generation rate in the channel (Fig. 13).455

The critical value of WΦ is lower for a reduced heat flux
density: when Re = 20, changing the heat flux bound-
ary condition from 15000 W.m−2 to 10000 W.m−2 leads
to a fall of the critical WΦ from about 1 × 105 K−1 to
4 × 104 K−1. This change in the critical WΦ values460

directly affects the behavior of the entropy generation
rate by viscous friction (Fig. 14) as well as the maxi-
mum velocity in the channel (Fig. 15): as long as WΦ
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Figure 14: Total entropy generation rates by viscous friction as a func-
tion of WΦ for two values of the input heat flux.
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Figure 15: Maximum velocity magnitude in the channel as a function
of WΦ for two values of the input heat flux.

is large enough, these two quantities are almost inde-
pendent of the value of the flow density applied to the465

heated wall. On the other hand, as soon as WΦ falls be-
low the highest critical value (here, the one correspond-
ing to 15000 Wm−2), the curves are dissociated and the
rate of generation of viscous entropy is higher in the
case where q′′ = 15000 Wm−2 compared to that where470

q′′ = 10000 Wm−2.
For a fixed WΦ value, a reduction in the heat flux

density applied to the wall results in a reduction in the
rate of entropy generation by heat conduction and there-
fore in the rate of total entropy generation (Fig. 16),475

the conductive component still remaining largely dom-
inant in the entropy generation mix when compared to
the viscous component. Similarly, the maximum tem-
perature reached inside the channel decreases with the
imposed heat flow density (Fig. 17). The maximum ve-480

locity reached in the channel as well as the rate of vis-

0.0e+00

5.0e-03

1.0e-02

1.5e-02

2.0e-02

2.5e-02

3.0e-02

3.5e-02

4.0e-02

4.5e-02

5.0e-02

5.5e-02

5000 10000 15000 20000 25000
4.6e-09

4.8e-09

5.0e-09

5.2e-09

5.4e-09

5.6e-09

5.8e-09

6.0e-09

6.2e-09

6.4e-09

6.6e-09

S .

g
en

 [
W

.K
-1

]

S .

g
en

,f
 [

W
.K

-1
]

q" [W.m
-2

]

S
 .

gen
S
 .

gen,f

Figure 16: Total and viscous entropy generation rates as functions
of the heat flux input from the bottom of the channel (Re = 20 and
WΦ = 1.23 × 105 K−1).
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Figure 17: Maximum temperature and maximum velocity magnitude
in the channel (Re = 20 and WΦ = 1.23 × 105 K−1).

cous entropy generation also decrease as the imposed
heat flux density is reduced (while keeping Re and WΦ
fixed). For high values of q′′, the flow regime is of the
highly perturbed type when compared to the case with-485

out optimization, whereas for a small applied heat flux
density, the flow regime is of the slightly or very slightly
perturbed type. The transition between the two regimes,
visible in Figs. 16 and 17 takes place for a critical value
q′′critical, which is about 18000 W.m−2 for Re = 20 and490

WΦ = 1.23 × 105 K−1. Indeed, as observed during the
examination of Figs. 13 to 15, a reduction in the heat
flux density applied to the heated wall leads to a reduc-
tion in the critical value of WΦ. As a result, WΦ being
set to a given value WΦ,0 (= 1.25 × 105 K−1 for ex-495

ample), reducing q′′ from a value corresponding to a
highly perturbed (24000 W.m−2) regime ends up mak-
ing WΦcritical

(q′′), coincide with WΦ,0, which induces the
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transition to a low perturbed flow regime where viscous
entropy generation rates and maximum velocities are500

lower and stabler.
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Figure 18: Total and viscous entropy generation rates as functions of
Vin (WΦ = 1.23 × 105 K−1).
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Figure 19: Maximum velocity magnitude and maximum scalar value
in the channel as functions of Vin (WΦ = 1.23 × 105 K−1).

If now WΦ is fixed (at 1.23 × 105 K−1) and q′′ is also
fixed (at 15000 W.m−2) while varying the inlet velocity
Vin between 6 mm.s−1 (Re ≈ 30) and 1 mm.s−1 (Re ≈ 5),
one can observe that the entropy generation rate of vis-505

cous origin as well as the maximum velocity in the flow
decrease with Vin (Figs. 18 and 19). However, the max-
imum velocity curve exhibits a significant disruption: a
transition appears for a critical value Vin,critical approxi-
mately equal to 3.2 mm.s−1 (Re = 15.8) between highly510

perturbed flow regimes (when the inlet velocity is lower
than Vin,critical) and slightly perturbed ones. Indeed, as
already observed in Fig. 5, a reduction in the Reynolds
number leads to an increase of the critical WΦ. If one
sets WΦ to a fixed value WΦ,0 and reduces the inlet515

velocity, there is a point where the increasing critical
weighting parameter WΦ,critical(Vin) reaches the value
WΦ,0 and triggers the transition from slightly to highly
perturbed profiles.

At fixed WΦ and q′′, lowering the inlet velocity leads520

to an increase of the maximum temperature in the chan-
nel (Fig. 19). The total entropy generation rate also
growths as Vin decreases with the exception of a behav-
ior change for very small inlet velocities (when Vin ≤

2 mm.s−1) as exhibited in Fig. 18.525

3.2. Mass transfer optimization

In this section, we consider the mass transfer case
where at the middle third of the bottom plate a minor
species diffuses at a constant and uniform mass produc-
tion time rate by unit of surface ṁ1. The objective is to530

verify if the behaviors described in section 3.1 are sim-
ilar in a different advection-diffusion phenomenon but
with close mathematical model. The comparison be-
tween heat and mass transfer simulations is done at the
same Reynolds number Re = 10.535

Figure 20: Velocity magnitude with no optimization, slightly and
highly perturbed profiles (Re = 10).

First, one finds again the presence of slightly and
highly perturbed flow regimes (Figs 20 and 21) when
compared to the non-optimized case, whose shapes are
very similar to that of the velocity and transported scalar
profiles of the heat transfer case (Figs. 2 and 3), the540

key scalar quantity being here the mass fraction of the
chemical minor species whereas this was previously the
temperature.
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Figure 21: Mass fraction of the minor species with no optimization,
slightly and highly perturbed profiles (Re = 10).

2.0e-02

2.2e-02

2.4e-02

2.6e-02

2.8e-02

3.0e-02

3.2e-02

3.4e-02

3.6e-02

1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

S .

g
en

 [
W

.K
-1

]

Wφ [K
-1

]

heat
mass

Figure 22: Total entropy generation rate as a function of WΦ.

The evolution of entropy generation and viscous dis-
sipation quantities as a function of the weighting pa-545

rameter WΦ are presented in Figures 22 to 27 by com-
paring the case of heat transfer with that of mass dif-
fusion at Re = 10. A decrease in WΦ leads to a re-
duction in the total entropy generation rate (Fig. 22)
and in the objective functional (Fig. 23), unlike the en-550

tropy generation rate by viscous dissipation (Fig. 24)
and the total viscous dissipation (Fig. 25) that increase
as WΦ decreases. These behaviors are quite similar to
those observed previously in the case of heat transfer
and it is the same for the relationship between the to-555

tal entropy generation rate and the total viscous dissi-
pation (Fig. 26). The entropic improvement factor Is
defined in Eq. 19 becomes higher as WΦ gets lower
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Figure 23: Objective functional J as a function of WΦ.
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Figure 24: Entropy generation rate due to viscous friction as a func-
tion of WΦ.
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Figure 25: Total viscous dissipation as a function of WΦ.

(Fig. 27). Whether it is a heat transfer case or a mass
diffusion case, there is a critical WΦ value that triggers560

the transition from the slightly perturbed regime (when
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Figure 26: Total entropy generation rate as a function of the total dis-
sipation.
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Figure 27: Improvement factor as a function of WΦ.

WΦ is large) to the highly perturbed regime (for WΦ
smaller than WΦ,critical). The critical value of WΦ is
about 2.5×105 K−1 for the heat transfer case and around
1.8 × 105 K−1 for the mass diffusion case. As a conclu-565

sion, without being strictly identical, the optimization
of heat transfer and mass diffusion exhibit very similar
behaviors.

If the value of WΦ is set to 1.67 × 105 K−1 at a fixed
Reynolds number (Re = 10) and the mass production570

rate at the exchange section of the bottom part of the
channel is varied, the total and viscous entropy gener-
ation rates have profiles similar to those of heat trans-
fer: all entropy generation rates decrease as the input
flux density decreases (Fig. 28). In addition, a crit-575

ical value of ṁ1 exists, for which the transition takes
place between the very disturbed flow regime (for large
values of ṁ1) and the slightly disturbed regime (below
ṁ1,critical ≈ 9 × 10−3 kg.m−2.s−1). As ṁ1 gets lower,
the maximum and average mass fraction of the minor580
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Figure 28: Total and viscous entropy generation rates as functions of
the diffusion intensity from the bottom plate (WΦ = 1.67 × 105 K−1

and Re = 10).
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Figure 29: Maximum and average mass fraction of the minor species
and maximum velocity as functions of the diffusion intensity from the
bottom plate (WΦ = 1.67 × 105 K−1 and Re = 10).

species decrease as does the maximum velocity in the
channel (Fig. 29), which exhibits the disruption at the
critical value ṁ1,critical.

If now, for a fixed value of the weighting factor
(WΦ = 1.67 × 105 K−1), the Reynolds number (Re =585

10) and the bottom plate mass flux density are fixed
(0.01 kg.m−2.s−1), while varying the minor mass frac-
tion w1,in at the inlet from 10−5 to 0.03, all velocity and
mass fraction fields stay in the highly perturbed flow
regime and there is no observed critical value of w1,in590

in the tested value range. A decrease in the inlet mass
fraction of the minor species leads to an increase in all
entropy generation rates whether it comes from mass
diffusion or from viscous friction (Fig. 30). Correla-
tively, a lower value of w1,in corresponds to a reduction595

in the maximum and the average mass fraction of the
minor species in the channel and to an increase of the
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Figure 30: Total and viscous entropy generation rates in the channel
as functions the inlet mass fraction of the minor species (WΦ = 1.67×
105 K−1 and Re = 10).
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Figure 31: Maximum velocity magnitude in the channel as functions
the inlet mass fraction of the minor species (WΦ = 1.67 × 105 K−1

and Re = 10).

maximum velocity (Fig. 31).

3.3. Robustness of the transition
In sections 3.1 and 3.2, the presence of a regime tran-600

sition between slightly and highly perturbed velocity
and scalar fields has been pointed out, as the existence
of critical values of the WΦ weighting parameter in the
functional objective that trigger this transition. This has
been observed for different Reynolds numbers, different605

values of the physical diffusivity coefficients and differ-
ent boundary conditions. It is also useful to examine the
mesh independence of this regime transition, whether it
depends on initial conditions and what could be its un-
derlying cause.610

Keeping the same physical domain size, two finer
meshes have been tested for the heat transfer case when
Re = 20 and q′′ = 15 kW.m−2: in addition to the base
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Figure 32: Total entropy generation rate as a function of WΦ, com-
plemented by finer mesh simulations. Re = 20.
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Figure 33: Total entropy generation rate as a function of WΦ - zoom
on transition zone showing the influence of the grid resolution and the
initial conditions (I.C.). Re = 20.

1200×200 mesh, 2400×400 and 3600×600 meshes have
been used and the corresponding results for the total en-615

tropy generation rate as a function of WΦ are presented
in Fig. 32. The Ṡ gen curve has been extended to smaller
values of WΦ (down to 103 K−1) and the corresponding
extended part of the graph is consistent with the above
results: the total entropy generation rate keeps declining620

as WΦ decreases.
A zoom around the critical WΦ value is provided

in Fig. 33. In the case of finer grids, the critical
WΦ still exists but at a lower value while keeping the
same order of magnitude (≈ 8.5 × 104 K−1 in place of625

≈ 1×105 K−1). Furthermore, tests have been performed
with the 1200 × 200 mesh by approaching the critical
value of WΦ step by step in a smooth manner, each sim-
ulation starting from the results of the converged pre-
vious one with a value of WΦ slightly lower (while all630

the simulations presented above are started from the ho-
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mogeneous initial conditions where the temperature of
the channel is set to Tin and the longitudinal velocity is
set to Vin, the normal velocity being zero at the initial
time of the simulation). The corresponding results are635

presented in Fig. 33: the existence of the critical WΦ is
still confirmed at a value close to the one obtained with
the finer grids (≈ 8.4 × 104 K−1). So, the existence and
the approximate critical WΦ value are quite robust.

For the high values of WΦ, the product ΦWΦ is much640

higher than the diffusion entropy generation rate (by
heat conduction or mass diffusion, depending on the
type of simulation performed) and the second term of
the objective functional is predominant. Conversely, for
small values of WΦ, the first term of J in Eq. 8 or 9 is645

the majority. In the critical value area of WΦ, in which
the change in flow regime takes place, the two terms
composing the objective functional have close orders of
magnitude: the difference in orders of magnitude, esti-
mated by Log10(ΦtotWΦ/Ṡ gen,d), where Ṡ gen,d is the en-650

tropy generation rate by diffusion of heat or mass, lies
between 0.37 and 0.85 depending on the Reynolds num-
ber and the transfer type. The flow regime transition
could therefore be related to the fact that the optimiza-
tion program focuses on viscous dissipation when WΦ655

is large and on entropy generation by heat conduction or
mass diffusion when WΦ is small. In the second case,
the optimized solution can rely on a more complex and
intense velocity field to produce a thermal mixture, at
the expense of an increase in viscous dissipation which660

effect on the objective criterion is negligible due to the
small size of the WΦ factor. The transition from one
regime to another would then be linked at least in part to
the shift from an optimization focused on viscous dissi-
pation to an optimization focused on entropy generation665

by diffusion.
When WΦ becomes very large, the first term in Eqs.

12 or 13 cancels and the resulting momentum con-
servation equation corresponds to that of Stokes flow
∇P = µ∇2V, for which the advection term is negligible670

when compared to the viscous term. This corresponds
to low Reynolds number flows without optimization. If
WΦ tends towards zero, the first term in Eqs. 12 or
13 becomes large and leads to a coupling between the
pressure, the velocity and the temperature (or the mass675

fraction of the minor species) in the momentum con-
servation equation. The smaller WΦ, the more intense
(in magnitude) and complex the velocity field becomes
due to the presence of vortexes in particular. Explor-
ing the behavior of optimized velocity fields for smaller680

and smaller values of WΦ requires working with finer
meshes and demands more computing resources. In this
paper, we went down as far as WΦ = 103K−1 (Fig. 32)

in order to stay within reasonable limits in terms of com-
putation time, while observing a wide range of values685

for this weighting parameter. Conversely, large values
of the weighting factor (up to WΦ ≈ 108K−1) allow to
examine the effect of the optimization when the over-
whelming emphasis is on reducing (or increasing as lit-
tle as possible) the pressure drop, even if it means an690

increase (or a smaller reduction) of the entropy genera-
tion rate in the channel.

A discontinuity appears at a precise critical value
of the weighting factor. The criterion for identifying
WΦ,critical is the jump in the maximum velocity within695

the channel (Figs. 10, 15, 17, 19, 29). Other physical
quantities also exhibit a discontinuity for the same value
of WΦ,critical. This is the case for the entropy generation
rates (due to viscous friction in particular) and the total
viscous dissipation (Figs. 5, 8, 9, 12, 13, 14, 16, 18, 22,700

24, 25, 26, 28). Simultaneously, a change in the pattern
of the velocity field occurs at WΦ = WΦ,critical as can
be seen in Figs. 2 and 3 or 20 and 21: if WΦ is higher
than the critical value, the flow streamlines are a little
closer to the lower plate above the heated zone but the705

flow remains close to the one without optimization. We
have labeled this configuration as “slightly perturbed”
as opposed to the one that appears for WΦ below the
critical value: in this case, a vortex is present and, as
indicated previously, the velocity magnitude increases710

sharply. We have referred to this second configuration
as “highly perturbed”. The present study shows that the
critical value WΦ,critical depends on the boundary condi-
tions and the Reynolds number in particular. The physi-
cal properties of the fluid may surely have an influence,715

as this critical value seems to correspond to an approx-
imate balance between the two terms of the objective
functional (the entropy generation rate in the channel
on the one hand and the weighted product WΦ times
Φ, on the other hand). The optimizations carried out720

in the present work have all been performed at constant
physical properties in order to examine in detail the be-
havior of the method in this first case. This enables to
start from initial solutions known in the literature [36]
and then to vary the boundary conditions and the opti-725

mization parameters. However, the properties of fluids
generally depend on temperature. In the case of heat
transfer for real water, the dynamic viscosity varies sig-
nificantly [45] over the temperature range observed in
the simulations (from 300K to 335K depending on the730

Reynolds number or the heat flux density provided - see
Figs. 7 and 17). The temperature dependence of vis-
cosity can have an impact on the precise value of the
critical weighting factor WΦ,critical that determines the
transition between different flow regimes. Taking into735
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account thermo-dependent properties involves solving
more complex fluid governing equations, as the temper-
ature field would influence the flow dynamics due to the
coupling between the energy and momentum equations.
In addition, the variational problem is modified and the740

equations determining the force field F are made more
complex. A detailed study of the influence of the char-
acteristics of the fluid (including its viscosity and ther-
mal conductivity and their dependence on temperature,
in particular) is a research work in itself to be carried745

out as a continuation of the present work.

4. Conclusion

In the present paper, convective flow transfer is sub-
mitted to variational methods in order to find optimized
velocity and scalar fields that minimize the entropy gen-750

eration rate and the total viscous dissipation in a chan-
nel. This two-objective optimization is addressed by a
linear combination of the two criteria to be minimized
using a weighting factor allowing to control the rela-
tive importance of the total viscous dissipation in the755

objective functional. Heat transfer and mass diffusion
cases are studied and the influence of the weighting fac-
tor on the resulting fields and the key physical quantities
is analyzed. The velocity patterns suggested by the op-
timization program lead to a reduced total entropy gen-760

eration rate in the channel, the relative improvement be-
ing larger as the weighting factor or the Reynolds num-
ber are lower. These patterns can be a reference for the
design of enhanced exchangers. Improved scalar homo-
geneity (of the temperature or the minor species mass765

fraction, depending on the type of transfer) is observed
as the scalar maximum value and standard deviation are
lower while the weighting factor is reduced. This en-
hancement is achieved at the expense of an increase in
the entropy generation rate by viscous friction, which770

stays nevertheless at a negligible level. The maximum
velocity and the total viscous dissipation also increase
when the weighting factor decreases. Two main flow
regimes are observed, depending on the level of pertur-
bation of the velocity and scalar fields. In highly per-775

turbed regimes, a more complex flow is observed with
a vortex and a displacement of the flow towards the dif-
fusion entry area (the heated segment or the mass dif-
fusion entry zone, depending on the transfer process).
The transition from a slightly to a highly perturbed flow780

is triggered by a critical value of the weighting factor,
the highest perturbation level corresponding to the low-
est weighting factors. This critical value depends on the
Reynolds number, the heat or mass transfer intensity at

the exchange plate and on the inlet velocity. At iden-785

tical Reynolds number, the optimization of mass diffu-
sion and heat transfer exhibit similar behaviors. The ex-
istence of the transition between two perturbation flow
regimes and the corresponding critical value of the vis-
cous dissipation weighting factor is confirmed with finer790

meshes and smoother initial conditions.
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6. Appendix

In this appendix, the transport equation for the λ2 La-
grange multiplier (Eq. 14) and the volume force field
F (Eq. 12) are found by applying the calculus of varia-
tions in the case of heat transfer optimization. The same805

procedure can be used to obtain the corresponding equa-
tions in the case of mass diffusion (Eqs. 15 and 13).

The Lagrangian criterion to minimize writes:

J? =

∫∫∫
Ω

{ k
T 2 (∇T )2 + WΦΦ

+λ2

[ k
ρCp
∇2T − V.∇T

]
+ λ1∇.V

}
dΩ

=

∫∫∫
Ω

FJ?dΩ

(20)

In this equation, the term to be integrated has been
named FJ? and a compact notation is used in the fol-810

lowing calculations: the subscript (.),X stands for the
derivative with respect to X and (.),XX stands for the
second derivative (T,xx means ∂2T/∂x2 and T 2

,x means
(∂T/∂x)2). FJ? can be rewritten:

FJ? =
k

T 2 (T 2
,x + T 2

,y)

+WΦµ[2(u2
,x + v2

,y) + (u,y + v,x)2]

+λ2

[ k
ρCp

(T,xx + T,yy) − (uT,x + vT,y)
]

+λ1(u,x + v,y)

(21)
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For functional in Eq. 20 to have a minimum, its first815

variation (or differential) must cancel out and making
this first variation of J? with respect to the temperature
vanish implies the following Euler-Lagrange equation
[43] [44]:

∂FJ?

∂T
−
∂

∂x
∂FJ?

∂T,x
−
∂

∂y
∂FJ?

∂T,y

+
∂2

∂x2

∂FJ?

∂T,xx
+
∂2

∂y2

∂FJ?

∂T,yy
= 0

(22)

Each term of Eq. 22 writes:820

∂FJ?

∂T
=
−2k
T 3 (T 2

,x + T 2
,y)

∂

∂x
∂FJ?

∂T,x
=

2k
T 3 T,xx −

4k
T 2 T 2

,x − λ2u,x − uλ2,x

∂

∂y
∂FJ?

∂T,y
=

2k
T 3 T,yy −

4k
T 2 T 2

,y − λ2v,y − vλ2,y

∂2

∂x2

∂FJ?

∂T,xx
=

k
ρCp

λ2,xx

∂2

∂y2

∂FJ?

∂T,yy
=

k
ρCp

λ2,yy

(23)

Injecting the above expressions into Eq. 22 and tak-
ing into account the continuity equation u,x + v,y = 0
leads to Eq. 24 that can be written in the form of a trans-
port equation for the λ2 scalar (Eq. 25, corresponding
to Eq. 14).825

2k
T 3 (T 2

,x + T 2
,y) −

2k
T 2 (T,xx + T,yy) + uλ2,x + uλ2,y

+
k
ρCp

(λ2,xx + λ2,yy )
(24)

∇.
(
ρVλ2 −

−k
Cp
∇λ2

)
=

2kρ
T
∇.

(
∇T
T

)
(25)

The same method can be used to find the expression
of the volume force field F by making the first vari-
ation of J? vanish with respect to the longitudinal and
wall-normal components of the velocity (u and v respec-
tively) and by using the continuity equation, which leads830

to:

λ2T,x + λ1,x + 2WΦµ(u,xx + u,yy) = 0
λ2T,y + λ1,y + 2WΦµ(v,xx + v,yy) = 0

(26)

These two equations can be combined into a more
compact vector equation (Eq. 27) that can be compared

with the momentum equation (Eq. 28), which leads [36]
to identify ∇P (Eq. 29) and F (Eq. 30), the expression835

searched for the volume force.

−λ2

2WΦ
∇T −

1
2WΦ

∇λ1 = µ∇2V (27)

ρV.∇V + ∇P − F = µ∇2V (28)

∇P = −
1

2WΦ
∇λ1 (29)

F =
λ2

2WΦ
∇T + ρV.∇V (30)
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Nomenclature1025

c̄ Total molar concentration (molarity) [mol.m−3]

M̄i Molar mass of chemical species number i
[kg.mol−1]

R̄ Ideal gas constant (molar) [J.K−1.mol−1]

F Volume force vector by unit of volume [N.m−3]1030

V Velocity vector [m.s−1]

ṁ1 Mass production time rate by unit of surface of
the chemical minor species (mass flux density)
[kg.m−2.s−1]

Ṡ ′′′gen Local entropy generation rate [W.K−1.m−3]1035

(eq. 5 or 7)

Ṡ gen,d Entropy generation rate from the diffusion pro-
cess (heat conduction or mass diffusion) in the
channel [W.K−1]

Ṡ gen, f Viscous friction entropy generation rate in the1040

channel [W.K−1]

Ṡ gen Total entropy generation rate in the channel
[W.K−1]

λi Lagrange multiplier

µ Dynamic viscosity [Pa.s]1045

φ Viscous dissipation function [W.m−3] (eq. 6)

Φtot Total viscous dissipation in the channel [W]

ρ Density [kg.m−3]

Cp Thermal capacity [J.kg−1.K−1]

D Diffusion coefficient [m2.s−1]1050

Is Improvement factor (Eq. 19)

J, J? Objective functional and Lagrangian criterion
respectively [W.K−1]

k Thermal conductivity [W.m−1.K−1]

P Pressure [Pa]1055

q′′ Heat flux density [W.m−2]

Re Reynolds number (based upon the channel
height)

Tin Inlet temperature [K]

u, v Longitudinal and normal components of the ve-1060

locity [m.s−1]

Uin Inlet (longitudinal) velocity [m.s−1]

wi Mass fraction of chemical species number i
[kg.kg−1]

w1,in Inlet mass fraction of chemical minor species1065

[kg.kg−1]

WΦ Weighting factor in objective functional and
Lagrangian criterion [K−1]

x, y Longitudinal and normal coordinates [m]

T Temperature [K]1070

19




