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Variational methods are used to optimize convective heat transfer in a channel gas flow. The minimization of a functional objective combining the rate of total entropy generation in the channel on the one hand and the total viscous dissipation on the other hand results in velocity and temperature fields. A weighting factor allows varying the relative importance of these two terms and a virtual body force field is applied to vary the velocity field pattern via the momentum equation source term. The result is velocity configurations that minimize the objective functional. This study shows that the velocity fields determined by the optimization process effectively lead to a reduction in the entropy generation rate in the flow as well as a reduction in the temperatures of the heated plate. In addition, the value of the weighting factor triggers the transition from slightly to highly perturbed velocity and temperature fields when compared to a non-optimized flow. The heat transfer enhancement is assessed and the increase of the Nusselt number is put in perspective with the reduction of the entropy generation rate and the increase of viscous friction. The results could be used to design passive technologies for enhancing wall-to-fluid heat transfer.

Introduction

Improving heat transfer in convective flows is a vast and active area of research that has applications in many industrial fields like nuclear [START_REF] Moon | Single-phase convective heat transfer enhancement by spacer grids in a rod bundle[END_REF] or solar [START_REF] Chang | Heat transfer enhancement and performance of solar thermal absorber tubes with circumferentially non-uniform heat flux[END_REF] [3] [4] [START_REF] Avellaneda | DNS of turbulent low Mach channel flow under asymmetric high temperature gradient: Effect of thermal boundary condition on turbulence statistics[END_REF] [6] [START_REF] Dupuy | Effect of the reynolds number on turbulence kinetic energy exchanges in flows with highly variable fluid properties[END_REF] power plants, process industry [START_REF] Liebenberg | In-tube passive heat trans-830 fer enhancement in the process industry[END_REF], chemical en-5 gineering [START_REF] Bergles | The implications and challenges of enhanced heat transfer for the chemical process industries[END_REF], air-conditioning or cooling of electronic systems [START_REF] Li | Numerical simulation on forced convection cooling of horizontal ionic wind with multi-electrodes[END_REF] and automotive [START_REF] Hussein | Study of forced convection nanofluid heat transfer in the automotive cooling system[END_REF] or aerospace [START_REF] Sunden | Comparison of heat transfer characteristics of aviation kerosene flowing in smooth and enhanced mini tubes at supercritical pressures[END_REF] industries to name but a few. To enhance heat transfer many methods have been studied, generally classified according to whether they are active, passive or using a 10 combination of the latter. Active methods require external energy supply to maintain the enhancement mechanism [START_REF] Lal | An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials[END_REF]: they can be based upon ultrasound [START_REF] Bulliard-Sauret | Heat transfer enhancement using 2 MHz ultrasound[END_REF], wall morphing [START_REF] Yang | A numerical investigation of heat transfer enhancement for electronic devices using an oscillating vortex generator[END_REF] [START_REF] Kumar | Heat transfer enhancement by dynamic corrugated heat exchanger wall: Numerical study[END_REF] and vibrating walls [START_REF] Dey | Enhancement of convective cooling using oscillating fins[END_REF] including piezoelectric fans, impingement jets [START_REF] Nastase | Impinging jets a short review on strategies for heat transfer enhancement[END_REF] [START_REF] Oyakawa | Flow structure and heat transfer of impingement jet[END_REF] or sprays 15 [START_REF] Horacek | Single nozzle spray cooling heat transfer mechanisms[END_REF] [START_REF] Kim | Spray cooling heat transfer: The state of the art[END_REF], and electric field force on a dielectric fluid [START_REF] Laohalertdecha | A review of electrohydrodynamic enhancement of heat transfer[END_REF]. Heat transfer improvement passive methods are based upon three main techniques. Inserts can be placed in the fluid path to extend the exchange surface, redirect the flow, break boundary layers and promote mixing, 20 swirl, vortexes and turbulence. There is a wide variety of inserts [START_REF] Kumar | A review of heat transfer and fluid flow mechanism in heat exchanger tube with inserts[END_REF] [START_REF] Liu | A comprehensive review on passive heat transfer enhancements in pipe exchangers[END_REF]: twisted tapes, coiled wires, conical rings, helical screws and also fins, baffles or ribs. Combinations of techniques such as perforated twisted tapes or those with cut or corrugated edges have also been [START_REF] Chakraborty | Significantly enhanced convective heat transfer through surface modification in nanochannels[END_REF] studied. Another passive method consists in using coatings or surface roughening [START_REF] Chakraborty | Significantly enhanced convective heat transfer through surface modification in nanochannels[END_REF] [START_REF] Everts | The influence of surface roughness on heat transfer in the transitional flow regime[END_REF]. Finally, improving heat transfer can also be performed by changing the characteristics of the fluid (its heat capacity, viscosity and thermal conductivity), one active area of research 30 being the use of nanofluids [START_REF] Olia | Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State of the art[END_REF][START_REF] Gupta | A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids[END_REF][START_REF] Kaka | A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids[END_REF] (i.e. a fluid containing nanoparticles, whose sizes are < 100 nm). Nanoparticles can be made of a metal (e.g. Au or Cu), a metal oxide (e.g. TiO 2 , Fe 3 O 4 , CuO, Al 2 O 3 ) or other chemical substances (e.g. SiC, Carbon nanotubes) dis-35 persed in a fluid, in particular: water, oil, molten salts or ethylene-glycol. The use of nanoparticles can be combined with passive [START_REF] Akyrek | Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger[END_REF] methods and applied for example in the nuclear [START_REF] Liu | Enhancement 930 of heat transfer performance in nuclear fuel rod using nanofluids and surface roughness technique[END_REF] or solar industry [START_REF] Benabderrahmane | Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids[END_REF]. Higher size (micro-metric) particle suspensions are also promising 40 to improve the performance of concentrated solar power plants [START_REF] Li | The fluidized bed air heat exchanger in a hybrid Brayton-cycle solar power plant[END_REF] [START_REF] Gallo | Prelimi-945 nary design and performance analysis of a multi-megawatt scale dense particle suspension receiver[END_REF] [START_REF] Flamant | Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: On-sun proof of concept[END_REF].

Whatever the method used to increase heat exchange, it is necessary to ensure that this improvement is not accompanied by the harmful degradation of another performance criterion. In particular, one of the challenges in optimizing forced convective heat transfers is the balance between intensifying thermal exchange while minimizing or controlling pressure drop increase, both having to be taken into account [START_REF] Baba | Heat transfer enhancement and pressure drop of Fe 3 O 4 -water nanofluid in a double tube counter flow heat exchanger with internal longitudinal fins[END_REF] [START_REF] Chang | Heat transfer and pressure drop in rectangular channel with compound roughness of v-shaped ribs and deepened scales[END_REF]. One way to address this trade-off consists in minimizing the entropy generation rate, which includes all the available power lost due to irreversibility in the flow whether it comes from the viscous friction responsible for the pressure drop or from the conduction phenomena through finite temperature differences [START_REF] Bejan | Entropy generation minimization[END_REF] [39] [START_REF] Jankowski | Minimizing entropy generation in internal flows by adjusting the shape of the cross-section[END_REF]. As total viscous dissipation is related to the drop in pressure that can be a constrained element in industrial applications, it is also interesting to seek a minimization of the entropic power generated while maintaining control of total viscous dissipation [START_REF] Li | A novel optimization approach to convective heat transfer enhancement for solar receivers[END_REF] [START_REF] Avellaneda | Similarities between heat and mass transfer enhancement in convective flow, using variational optimization technique[END_REF], which can be done by using a weighted objective functional.

In this study, we consider situations where the entropy generation rate by heat transfer is largely dominant when related to the viscous friction entropy generation rate (which corresponds to Be ≈ 1, where Be is the thermodynamic Bejan number [START_REF] Awad | The science and the history of the two bejan numbers[END_REF]). We look for velocity and temperature fields that minimize a functional objective combining the entropy generation rate by the overwhelmingly dominant factor (i. e. heat conduction) on the one hand and the total viscous dissipation on the other hand, the latter being weighted by a factor that can be freely fixed in order to give more or less weight to the pressure drop in the optimization process. Several simulations were carried out for three Reynolds number values, by varying this total viscous dissipation weighting factor, in order to observe its influence on the entropy generation rates as well as on key physical variables such as the temperature of the heated wall, the total viscous dissipation, the maximum temperature and velocity in the channel and the outlet mean temperature.

Numerical method

Governing equations

We consider the two-dimensional steady-state incompressible flow of a Newtonian fluid with constant properties. Viscous heating and gravity are neglected and there is no source term in the energy equation nor any radiative exchange. Taking into account these assumptions, the conservation of mass, momentum and energy lead respectively to the following equations [START_REF] Panton | Incompressible Flow[END_REF]:

∇.V = 0 (1) ρV.∇V = -∇P + µ∇ 2 V + F (2) V.∇T = k ρC p ∇ 2 T (3) 
In this set of equations, V is the velocity vector of the fluid, ρ = 1.177 kg.m -3 its density, P its pressure, µ = 1.846 × 10 -5 Pa.s its dynamic viscosity, T its temperature, k = 0.02624 W.m -1 .K -1 its thermal conductivity, C p = 1004.9 J.kg -1 .K -1 its thermal capacity at con-95 stant pressure and F is a volume force field that will be used in the optimization process described below. The body force F can be considered as a virtual force field allowing to vary the velocity field pattern via the momentum equation source term to find the velocity con-100 figuration that minimizes the objective functional. The practical implementation of the resulting optimal velocity field can be approached by passive means, such as baffles positioned in the fluid path, or by the use of porous material structures as described in [START_REF] Li | A novel optimization approach to convective heat transfer enhancement for solar receivers[END_REF] and [START_REF] Jia | An optimization approach to find the thermodynamic limit on convective mass transfer enhancement for a given viscous dissipation[END_REF].
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Viscous heating is neglected in the heat equation (Eq. 3) as the simulations are done for very low values of the Brinkman number (Br ≈ 10 -5 << 1) [START_REF] Glicksman | Modeling and approximation in heat transfer[END_REF]. The Brinkman number Br = PrEc, where Ec is the Eckert number, appears explicitly when the heat equation 110 is written in dimensionless form [START_REF] Madapati | Effect of axial conduction and viscous dissipation on heat transfer for laminar flow through a circular pipe[END_REF] and accounts for the relative importance of the viscous dissipation term when compared to the conductive heat term. Viscous heating would not be negligible for high Mach number flows [START_REF] Bird | Transport phenomena, 2nd Edition[END_REF], very narrow channels [START_REF] Li | Encyclopedia of microfluidics and nanofluidic, 2nd Edition[END_REF] in particular for 115 liquid flows [START_REF] Aynur | Viscous dissipation effect on heat transfer characteristics of rectangular microchannels under slip flow regime and H1 boundary conditions[END_REF] or very viscous fluids like oils [START_REF] Romano | Temperature effect on rheological behavior of silicone oils. a model for the viscous heating[END_REF] or polymers.

The local entropy generation rate (by unit of volume, which is symbolized by a three-prime superscript) in the case of a homogeneous, non-reactive and electri-120 cally non-conductive fluid can be calculated using the following expression, where Φ is the viscous dissipation function [START_REF] Bejan | Entropy generation minimization[END_REF]:

Ṡ gen = k T 2 (∇T ) 2 + Φ T (4) 
Φ = µ 2 ( ∂u ∂x ) 2 + ( ∂v ∂y ) 2 + ( ∂u ∂y + ∂v ∂x ) 2 (5) 
This general expression consists in two terms. As stated before, in the present study the viscous dissipa-125 tion term Φ is negligible in the energy equation. Moreover, the integral of Φ/T over the fluid domain is also negligible in the entropy generation rate when compared to the integral of the entropy generation rate by heat transfer k T 2 (∇T ) 2 .

Variational problem

Finding a minimum of a linear combination of the following two terms (Ω being the control volume) results in minimizing the generation of entropy by heat conduction while taking into account the total viscous 135 dissipation:

J = Ω k T 2 (∇T ) 2 + W Φ Φ .dΩ (6) 
In Eq. 6, W Φ is a weighting factor allowing to control the relative importance given to the viscous dissipation. Using two positive weighting factors in the objective functional, one for the thermal term (W th ) and the 140 other one for the viscous dissipation term (W visc ) would result in the same optimized velocity and temperature fields than using Eq. 6 with W Φ = W visc /W th because W Φ represents the relative weight given to the viscous dissipation vs. the entropy generation rate in the op-145 timization. As already stated, the viscous dissipation term is negligible in the entropy generation rate when compared to the entropy generation rate by heat transfer. Consistently, the objective functional (Eq. 6) takes into account the entropy generation by integrating only 150 the heat transfer term k T 2 (∇T ) 2 , the term Φ/T in Eq. 4 being dropped. The second term of the objective functional is W Φ Φ, i.e., the product of the weighting factor W Φ by the viscous dissipation (which integral corresponds to the total mechanical power to supply in order 155 to maintain the flow).

The constraints expressed by the mass and energy conservation equations (Eqs. 1 and 3) are taken into account through two Lagrange multipliers (respectively λ 1 and λ 2 that are functions of the x and y coordinates).
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This leads to the following Lagrangian criterion to minimize:

J = Ω k T 2 (∇T ) 2 + W Φ Φ +λ 2 k ρC p ∇ 2 T -V.∇T + λ 1 ∇.V .dΩ (7) 
The expression of the volume force field is obtained by equaling to zero the first variation of J with respect to the components u and v of the velocity in order to de-165 duce the corresponding Euler-Lagrange equations and taking into account the equation of the conservation of momentum (Eq. 2):

F = λ 2 2W Φ ∇T + ρV.∇V (8) 
Making the first variation of J with respect to T vanish leads to a transport-like equation for the λ 2 Lagrange 170 multiplier:

∇. ρVλ 2 - -k C p ∇λ 2 = 2kρ T ∇. ∇T T (9) 
The boundary conditions applicable to equation Eq. 9 depend on those concerning the temperature: if the temperature is imposed on a boundary of the domain, Eq. 10 applies and if the heat flux density is imposed, 175 Eq. 11 must be taken into account (where ∂/∂n is the normal derivative to the boundary):

λ 2 = 0 ( 10 
)
∂λ 2 ∂n = 2ρC p T 2 ∂T ∂n (11) 
Finally, the differential equation system to be solved consists in Eqs. 1 to 3 (supplemented by boundary conditions for temperature, velocity and/or pressure) and 180 Eqs. 8 and 9 (supplemented by the boundary conditions in Eqs. 10 or 11). The λ 1 Lagrange multiplier is not necessary but can be computed by:

∇λ 1 = -2W Φ ∇P (12) 
In the present study, F is an unknown of the optimization problem to be determined in order to minimize the 185 objective functional. To find F, an approach could have consisted in starting from an initial body force field and to apply an iterative optimization technique to get close to the optimum force field [START_REF] Rao | Engineering Optimization[END_REF]. This would have required a large number of resolutions of the governing 190 equations and computations of the objective functional, especially since the unknown F is here a vector field to be set for a large number of cells in the domain and not a simple real parameter. Moreover, the function J to be minimized is a functional (a function of functions) 195 depending on fields (the velocity, the temperature and their derivatives) and not on mere real variables. Finally, the governing equations and the functional are non-linear. The calculus of variations allows to find directly the expression of the body force field that mini-200 mizes the objective functional (Eq. 8) by transforming the optimization problem into a set of Euler-Lagrange equations [START_REF] Gelfand | Calculus of variations[END_REF] [START_REF] Troutman | Variational calculus and optimal control[END_REF]. The optimization is thus carriedout mathematically and not numerically. For each value of W Φ in the objective functional a particular body force 205 field is applied in the channel (Eq. 8) via the momentum equation (Eq. 2). The numerical resolution of the usual flow governing equations (Eqs. 1 to 3) combined with the expression of the body-force (Eqs. 8 and 9) and the boundary conditions results in a unique velocity field and a unique temperature field. This set of equations is highly coupled as the body force field itself depends on the temperature and the velocity fields.

W Φ can be considered as a weighting factor in a multi-objective optimization problem: minimizing the entropy generation rate and the pressure drop while these two objectives are often contradictory does not result in a single optimum. Using a weighting factor allows to find a wide range of trade-offs depending on the relative focus put on reducing the entropy generation rate or the viscous dissipation. For high values of W Φ , the emphasis is put on the reduction of pressure drop (and more precisely of the total viscous dissipation, which corresponds to the mechanical power required to maintain the flow). Conversely, small values of W Φ correspond to a focus on minimizing the entropy generation rate in the channel. Each value of W Φ leads to an optimal velocity field that minimizes differently the two contradictory objectives pursued since they are assigned different weighting factors. W Φ is the key parameter in the multi-objective optimization allowing to browse the spectrum of trade-offs between the solutions focused on the entropy generation and those where viscous dissipation has to be reduced or at least limited in its increase: this is why a large part of the results are presented as functions W Φ in section 3.

Numerical model

The fluid is dry air, flowing between two transversely infinite flat plates (Fig. 1) that are impermeable and comply with the no-slip boundary condition. The walls are adiabatic except for the middle third of the lower wall that is subjected to a uniform and constant heat flux density (1000 W.m -2 for all simulations) over 1 cm length, which results in a 10 W heat flux added in the headed area. The domain dimensions are 30 mm × 5 mm and a uniform 1200 × 200 mesh is applied. At the inlet, the velocity and the temperature of the fluid are fixed and at the outlet, the gage pressure is set to zero. The atmospheric pressure is 101325 Pa. The average inlet gage pressure resulting from simulations varies from 0.02 Pa to 1.76 Pa depending on the Reynolds number and the value of W Φ .

The ANSYS Fluent 15.0 code is used to solve the flow equations with the SIMPLE velocity-pressure coupling algorithm. UDF scripts have been developed to solve the additional λ 2 equation (Eq. 9) and to define the F volume force field that is applied in the central area of the domain (between x = 10 mm and x = 20 mm) in order to avoid side effects and to keep simple inlet and outlet boundary conditions. For steady-state simulations, the SIMPLE [START_REF] Patankar | A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[END_REF] or SIMPLEC pressure-velocity coupling methods are recommended [START_REF] Inc | FLUENT 15.0 user's guide[END_REF]. PISO (Pressure-Implicit with Splitting of Operators algorithm) would be recommended for transient calculations or steadystate computations on highly skewed meshes, which is 265 not the case in the present study. As the problem to be solved is complicated by the presence of a momentum source term (the body-force F that furthermore depends on the solution of an additional partial differential equation for the second Lagrange multiplier λ 2 in 270 Eq. 9), the SIMPLEC algorithm, which could speedup the calculations but may lead to more instability, has been discarded. ANSYS Fluent (14.5 or prior versions) and the SIMPLE pressure-velocity coupling algorithm have been used to solve fluid flow equations combined 275 with additional scalar transport equations and with customized momentum and scalar source terms as reported in published studies dealing with mass transfer enhancement in laminar flow [START_REF] Jia | An optimization approach to find the thermodynamic limit on convective mass transfer enhancement for a given viscous dissipation[END_REF], chemical reaction optimization in reactive flow [START_REF] Cao | Multi-objective optimization method for enhancing chemical reaction process[END_REF] [58] or convective heat transfer 280 optimization in turbulent flow [START_REF] Li | A novel optimization approach to convective heat transfer enhancement for solar receivers[END_REF]. For pressure and energy, second-order discretization schemes are applied. Momentum is solved with a QUICK scheme and λ 2 is solved with a first order scheme.
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The dimensionless distance to the wall of the first resolved point above the heated plate y + 1 = y 1 u τ /ν (where u τ is the friction velocity at the wall) increases with the Reynolds number and the weighting coefficient W Φ and lies between y + 1 = 0.03 and y + 1 = 0.26. These posi-290 tions are all under y + 1 = 1. Moreover y 1 √ V in /(νx 1 ) < 1 (where x 1 is the abscissa of the first resolved point) even for the highest simulated Reynolds number, which allows to solve the boundary layer in the dynamically developing entry length of the channel [START_REF] Schlichting | Boundary layer theory[END_REF] [START_REF] Inc | FLUENT 15.0 user's guide[END_REF]. Mesh 295 independence has been checked with a two times finer mesh (2400 × 400) and is described hereunder.

About forty simulations were performed, divided into three groups corresponding to three Reynolds number (based upon the channel height): Re = 20, Re = 30 300 and Re = 320, obtained by varying the inlet velocity V in . In each group several values of the weighting factor W Φ were tested, the global span of values ranging from W Φ ≈ 0.5 K -1 to W Φ ≈ 1.2 × 10 5 K -1 so as to provide a wide range of situations from cases where viscous dissipation is of significant importance in optimizing the objective functional to cases where its relative weight is a priori negligible. In all simulation the inlet temperature is set to T in = 300 K: the optimization results in modified temperatures inside the channel and at the bottom plate in particular.

A mesh sensitivity analysis has been performed for Re = 30 with a 2400 × 400 mesh (twice as fine as the 1200 × 200 reference mesh). The entropy generation rates in the channel are changed by less than 1% and the variations of the entropy generation rate as a function of the weighting factor W Φ are in good match for both mesh definitions (Fig. 2). Slightly and highly perturbed velocity and temperature fields (described in Section 3 are still observed with the same approximate critical value of W Φ,critical triggering the transition between these two field patterns. As the results are practically mesh independent, using a finer mesh would lead to a marginal precision improvement with a significant increase in computer resource and time. 

Results and discussion

In the following sections, the figures presenting the variation of various physical quantities as a function of W Φ or Φ tot = Ω Φ.dΩ combine points and dashed lines: each point correspond to the result of an effective simulation and dashed lines are used for readability and trend representation only.

Total entropy generation rates

As shown in Fig. 3, whatever the value of W Φ , the optimized cases lead to a reduced total entropy genera-

0% 20% 40% 60% 80% 1e-01 1e+00 1e+01 1e+02 1e+03 1e+04 Improvement factor I s W φ [K -1 ]
No optimization: I s = 0% tion rate in the channel, when compared to the case with no optimization, the relative reduction being quantified by using an improvement factor I S (Eq. 13) that is increasing when W Φ decreases. For high values of W Φ (10 5 K -1 or more), the improvement factor is near zero.
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For W Φ = 1 K -1 , I S is around 74% when Re = 30. The total entropy generation rate increases with W Φ (Fig. 4). For high values of W Φ , the slope of the curve is small and approaches zero. The slope is higher for intermediate values of the weighting factor and it flattens 345 when reaching small values of W Φ . An unevenness of the slope also appears (it is embodied by vertical lines in Fig. 4), whose localization depends on the Reynolds number: the higher the Reynolds number, the lower the value of W Φ for which this irregularity occurs (around W Φ = 325 K -1 if Re = 30 and around W Φ = 5 K -1 when Re = 320). The entropy generation rate in the channel is the sum of heat conduction ( Ṡ gen,c , in Fig. 5) and viscous friction ( Ṡ gen, f , in Fig. 6) contributions. The order of magnitude of the heat conduction part is the mW.K -1 while the viscous part ranges between ≈ 10 nW.K -1 and ≈ 10 µW.K -1 , depending on the Reynolds number. Because of the very small relative importance of the viscous part in comparison to the heat conduction 360 part, the entropy generation rate by heat conduction is almost equal to the total entropy generation rate. The entropy generation rate by viscous friction (Fig. 6) is increasing when W Φ decreases because the total viscous dissipation Φ tot is increasing (Fig. 7), while the temperature remains in the order of 300 K. This means that the improvement observed on heat conduction entropy The decreasing behavior of the total entropy generation rate when the total viscous dissipation increases is even clearer when observing the direct relationship between these two physical integrals (Fig. 8). As 2 .dΩ, the entropy generation rate in the channel is essentially the consequence of the temperature distribution in the fluid domain, which comes from the velocity field that in turn depends on the bodyforce F applied. The weighting factor plays a key role 380 as it appears in the first term of the expression of the body-force in Eq. 8. Each chosen value of W Φ leads to a different body-force F and to a different velocity field (which determines the total viscous dissipation Φ tot ) and a different temperature field (which determines the total 385 entropy generation rate Ṡ gen ). A decrease of W Φ results in an increase of Φ tot (because the velocities are higher) and a decrease of Ṡ gen (because the temperature is more homogeneous). As a result, the total entropy generation in the channel is decreasing function of the total viscous 390 dissipation (Fig. 8). The pressure work is taken into account through the viscous dissipation Φ in the objective functional. From the steady-state balance of kinetic energy, one can deduce that Φ tot = Ω Φ.dΩ corresponds to the sum of the following terms: the pressure power, 395 the body-force power, the viscous force power (acting at the inlet and the outlet of the channel, which is negligible) and the net increase of kinetic energy flux from the inlet to the outlet (that stays practically constant as the kinetic energy at the inlet is fixed and the veloc-400 ity profile at the outlet is very close to the Poiseuille parabolic profile). While reducing the entropy generation rate through optimization, the total viscous dissipation increases (Fig. 8) by including the combination of pressure power and body-force power changes. For The weighted objective functional J is an increasing function of W Φ (see Fig. 9) even for high values of the weighting factor. Indeed, when W Φ gets high in Eq. 6, the entropy generation rate by heat conduction (Fig. 5) 420 and the total viscous dissipation (Fig. 7) stabilize, while the weighting factor W Φ increases.

I S = 1 - Ṡ gen, optimized Ṡ gen, no optimization (13) 
375 Ṡ gen ≈ Ω k T 2 (∇T )

Flow regimes

Depending on the value of W φ , the velocity and temperature fields exhibit different profiles [START_REF] Avellaneda | Similarities between heat and mass transfer enhancement in convective flow, using variational optimization technique[END_REF], being more 425 or less perturbed when compared to the case where no optimization is applied at all. For high values of W Φ , for example 5900 K -1 , the temperature and velocity fields are very similar to the case where no optimization is applied (see figs. For smaller values of W Φ , the influence of the optimization process becomes more significant and the perturbation level (when compared to the case where no optimization is performed) increases as W Φ decreases 440 (see Figs. 12 and13): if W Φ = 400 K -1 , the temperature profile exhibits a squeeze above the heated zone and this phenomenon becomes more pronounced as W Φ decreases. At W Φ = 300 K -1 and even more at W Φ = 200 K -1 , a protrusion (plume) appears above the 445 beginning of the heated area. The velocity magnitude field at W Φ = 400 K -1 is also stuck towards the bottom plate and this observation is still valid when decreasing W Φ . Moreover, as W Φ gets smaller, areas of the channel exhibit higher velocities, in particular around the beginning of the heated zone (above a round structure circling an area of small velocities which looks like a vortex) and in a large central part of the heated segment above the bottom plate. The transition between the slightly perturbed velocity and temperature fields (when W Φ = 400 K -1 , for example) and the highly perturbed ones (when W Φ = 300 K -1 , for example) takes place at W Φ ≈ 325 K -1 and corresponds to the irregularity observed in section: 3.1.

The stream function presented in Fig. 14 confirms the presence of a vortex (also found in [START_REF] Li | A novel optimization approach to convective heat transfer enhancement for solar receivers[END_REF] for a turbulent flow of heated air subject to variational optimization) in the initial part of the heated segment as soon as W Φ is small enough: there is no apparent vortex when W Φ = 1200 K -1 and a single vortex is clearly visible if

W Φ = 200 K -1
. for a smaller value like W Φ = 1 K -1 , the main vortex at the heated zone entry is larger and exhibits a more complex shape. Furthermore, additional recirculating vortexes appear above the heated zone. A zoom of the velocity vector above and around the central heated zone of the channel is presented in Fig. 15) along with a schematic representation of the main flow directions and of the rotational directions of the vortexes (the + sign meaning that the vortex has a clock- vortex is located just after the beginning abscissa of the heated zone. Nevertheless, for low values of W Φ , this center is located before this abscissa (this is the case when W Φ = 1 K -1 , but also when W Φ = 6 K -1 for instance). The vertical extension of the main vortex in-485 creases when W Φ decreases and so does the barycentric position of the accelerated area above the vortex: when W Φ = 1 K -1 (Fig. 15), this high speed area is very close to the top plate of the channel. The Lagrange multiplier λ 2 field is presented in Fig. 16 when W Φ = 200 K -1 . The highest values are concentrated in the first third of the heated area and mainly close to the plate. This is to be related to the magnitude of the corresponding force field F presented in Fig. 17. Indeed, high λ 2 values contribute to the increase of the first term of the expression defining F in Eq. 8 and this term also involves the temperature gradient that reaches high values near the heated plate segment. The main effect of the force field applied in the central third of the channel is to push down the fluid in the direction of the plate and to the starting point of the heated segment. Moreover, the force field tends to squeeze the flow and to crutch the thermal boundary layer above the heated segment of the bottom plate. As can be seen in Figs. 13, 14, 15 and 17, there is a strong relationship between 505 the applied force field and the velocity vector. The local entropy generation rate fields by heat conduction and by viscous friction are presented in Figs. 18 and 19 respectively (the latter using a logarithmic color scale for the sake of visibility). Significant entropy generation rates by heat conduction are located above the heated segment and are mainly due to the vertical conduction of heat. A convective trail appears at the exit of the heated zone. As W φ decreases, the region of higher entropy generation rate by heat conduction is flattened and closer to the bottom plate. For values of W φ small enough to make appear the thermal protrusion before the beginning of the heating zone, a plume appears in this area (see figs. 12 and 18 when W φ = 200 K -1 ). The behavior of the local entropy generation rate by viscous friction is more complex (Fig. 19). The highest entropy generation rates by viscous friction are located at the channel inlet wall ordinates y = 0 and y = H because of the discontinuity of the velocity that changes from U in to zero at the walls. Just after this entry zone, the main viscous dissipation comes generally from areas close to the walls, at least when the velocity filed is not too disturbed. Concentrating mainly to the part of the channel located above the heated segment, the perturbation of the entropy generation rate field by viscous friction becomes apparent even for high values of the weighting factor, like W φ = 5900 K -1 or W φ = 1200 K -1 : the narrow longitudinal region of low entropy generation rate located in the center of the channel is deviated when crossing the entry of the heated zone and even almost broken when W φ = 1200 K -1 . For lower values (W φ = 200K -1 ), the entropy generation rate by viscous friction (and the viscous dissipation) is more perturbed and higher generation rates concentrate above the heated segment but also at the top wall around x = 10 mm and along a closed curve enclosing the main velocity vortex. Indeed, the velocity field pattern is the main contributor to the complex shape of the entropy generation rate by viscous friction because the temperature field is simpler and kept in a smaller rela-545 tive interval of values.

Key physical quantities

The volume average of the temperature in the channel (Fig. 20) is an increasing function of W Φ , while staying in a narrow interval: as an example, when Re = 30, 550 the mean temperature is located between 309.8 K and 307.9 K while W Φ decreases from 5900 K -1 to 6 K -1 . The maximum temperature inside the channel (Fig. 21) also decreases as W Φ gets smaller and it is the same for the standard deviation of the temperature that drops 555 from 15.54 K to 8.06 K over the same range of W Φ , in accordance with a better thermal mixing due to the applied force field. Higher Reynolds numbers lead to lower maximal and average temperatures: the total injected thermal power is a constant and an increase of the 560 inlet velocity leads to a higher exchange coefficient that induces lower temperature gaps. The average temperature of the heated wall is also lower as W Φ decreases (Fig. 22) and the same behavior can be observed for the maximum temperature at the 565 same wall (Fig. 23): Using the example of simulations where Re = 30, the maximum temperature of the lower wall is 373.5 K when no optimization is applied. For a high value of W Φ like 5900 K -1 , this temperature is 372.2 K, a value very close to the non-optimized situa- No optimization such as W Φ = 0.74 K -1 , the heated plate peak temperature is only 330.1 K, corresponding to a gain of 42K. The temperature profiles of the bottom plate as a function of the abscissa are shown in Fig. 24 for several val-575 ues of W Φ and demonstrate the narrowing of the temperature range at the heated plate as W Φ decreases. The reduction of the maximum temperature and the better thermal homogeneity of the heated plate are an advantage in applications like concentrated solar power where 580 materials are subjected to high temperature stress that can be the cause of damage or accelerate aging due to thermo-mechanical [START_REF] Lalau | A method for experimental thermo-mechanical aging of materials submitted to concentrated solar irradiation[END_REF] [61] or chemical [START_REF] Raccurt | In air durability study of solar selective coating for parabolic trough technology[END_REF] [63] constraints (oxidation for example [START_REF] Galiullin | High tempera-1065 ture oxidation and erosion of candidate materials for particle receivers of concentrated solar power tower systems[END_REF]).

W Φ =1200 K -1 W Φ =200 K -1 W Φ =1 K -1
The average temperature at the outlet of the channel is practically independent on the value of W Φ (Fig. 25) and is very close to the mass flow averaged temperature at the outlet. The steady flow is incompressible and the fluid properties are constant. As the inlet temperature and the heat flow input into the channel are fixed and 590 as the viscous heating is neglected, the mass flow av-eraged temperature at the outlet is practically fixed for a given value of the Reynolds number and equals approximatively 327 K, 317 K and 301.7 K for Re = 20, Re = 30 and Re = 320 respectively. On the other hand,

595

the smaller the value of W Φ , the more homogeneous the temperature at the outlet of the channel as demonstrated in Fig. 26.

The different temperature profiles and fields presented above show that the velocity field pattern ob-600 tained by variational optimization leads to a better homogeneity of the thermal field, compatible with a reduction in the entropy generation rate in the channel. This improvement is achieved at the cost of an increase in entropy generation by viscous dissipation, which is linked 605 to velocity gradients: the maximum velocity magnitude observed in the channel increases when W Φ gets smaller (Fig. 27). Its profile is similar in appearance to that of the total viscous dissipation (Fig. 7) or the rate of entropy generation by viscous dissipation (Fig. 6): for 610 large values of W Φ , the maximum velocity magnitude is practically stable (and close to that which would be observed without optimization). From the transition to disturbed flow regimes, the maximum velocity magnitude in the channel increases rapidly as W Φ decreases, the 615 slope being higher as the Reynolds number gets higher. The heat transfer improvement can be measured through the Nusselt number. The decrease in the entropy generation rate is consistent with the increase in the heat transfer coefficient and the Nusselt number 620 (Fig. 28). When Re = 30, the mean Nusselt number computed over the heated segment of the bottom plate (Eqs. 14 and 15, where D H is the hydraulic diameter and L q the length of the heated area) is increased from 8.6 to 37.9 as the entropy generation rate in the channel drops 625 from 4.22 × 10 -3 W.K -1 to 1.04 × 10 -3 W.K -1 . For large No optimization values of W Φ , while still searching for a reduction in the entropy generation rate, the focus is heavily put on not increasing the viscous dissipation. This results in velocity and thermal fields that are little changed with respect 630 to the case without optimization and the improvement factor is low. As W Φ decreases, the constraint on the containment of the viscous dissipation is released progressively and the temperature field gets more homogeneous, which leads to a decrease of the entropy gen-635 eration rate, an increase of the improvement factor I s (Eq. 13) and consequently an improvement of the Nusselt number.

W Φ =1200 K -1 W Φ =200 K -1 W Φ =1 K -1
Nu = hD H k (14) h = 1 L q heated area q T bottom (x) -T bulk (x)
.dx

Simultaneously, as the entropy generation rate de- creases and the Nusselt number becomes larger, the 640 Fanning friction factor C f (Eq. 16, where τ w is the mean shear stress at the bottom plate and V b the bulk velocity) increases (Fig. 29). In the optimized solutions, the reduced temperature gaps for the same heat flux density lead to increased Nusselt numbers. These optimized so-645 lutions also correspond to and homogenization of the temperature field induced by a more complex and accelerated velocity field resulting in more viscous friction at the plate. In the present study, the fluid properties are consid-650 ered to be constant. However, real gas properties do vary with temperature and this is the case for air within the temperature range observed in the simulations (from 300 K to about 380 K). Compressibility or temperature dependent viscosity and thermal conductivity can influence the particular value of the critical weighting factor that triggers the transition between the different levels of perturbation of the flows. Analyzing the impact of variable fluid properties requires solving more intricate governing equations as the temperature field would additionally impact the flow dynamics. The variational problem would also result in a more complex expression of the body-force field (Eq. 8 and 9 would be modified and more challenging). The study of flows involving a fluid with thermo-dependent properties is a research 665 work in itself and is a natural extension of the present work to be performed in the future.

C f = τ w 1 2 ρV 2 b ( 16 
)

Conclusion

In this paper, convective heat transfer optimization in channel flow is addressed using variational meth-670 ods applied to an objective functional built as a linear combination of the entropy generation rate in the channel (more precisely, the entropy generation rate by heat conduction, which is overwhelmingly dominant in the cases studied) and the total viscous dissipation, a coefficient that acts as a weighting factor being assigned to the latter. Optimal velocity field patterns are induced by a virtual volume force field that is a solution of the variational problem. Several simulations have been performed, at different Reynolds numbers and for a wide range of weighting factor values, in order to assess the improvement in terms of entropy generation reduction. The resulting velocity, temperature and local entropy generation rate fields are described, as well as the influence of the viscous dissipation function weighting factor on the flow and on the key physical quantities like the average and maximum temperatures in the channel, at the heated plate and at the outlet.

Depending on the value of the weighting factor, the optimized velocity and temperature fields are more or less perturbed by comparison to the case where no optimization is applied and a critical value of this factor determines the transition from low to high-disruption solutions. The higher the Reynolds number, the lower the critical value of the weighting factor. Small values of the weighting factor lead to highly perturbed velocity patterns exhibiting one or more vortexes and a tightening of the flow closer to the heated area. The corresponding thermal field is influenced by this mixing and the temperatures are lower and more homogeneous in the channel, at the heated plate and at the outlet. This improvement is reflected in the total entropy generation rate that is significantly reduced (the lower the weighting factor, the lower the entropy generation rate in the channel) and in the corresponding increase of the Nus-705 selt number. The reduction in entropy generation rate is done at the expense of an increase of the total viscous dissipation, the velocity magnitudes being higher in the channel and the velocity field being more complex. The entropy generation rate by viscous friction in-710 creases alongside but has no effect on the improvement in total entropy generation rate, due to its small order of magnitude. From the application point of view, it is found that a significant wall temperature reduction can be obtained, while maintaining the same power trans-715 fered to the fluid. This result shows an increase of heat transfer efficiency at the wall. The weighting factor allows to find a wide range of trade-offs depending on the relative focus put on reducing the entropy generation rate or the total viscous dissipation: from a practical 720 point of view, a designer could select from this range of solutions a sub-set that meets additional technical criteria (e.g. a total mechanical power input limited to a certain value or a maximum hot wall temperature not to be exceeded). Then a selected solution in this sub-725 set could be picked-up by taking into consideration the practical realization of the velocity pattern (e.g., those with slightly perturbed patterns are likely to be easier to implement than more complex solutions with one or several vortexes). The range of values selected for the weighting factor allows to investigate a wide range of trade-offs depending on the relative focus put on reducing the entropy generation rate (small W Φ ) or containing the total viscous dissipation (large W Φ ), while including the 750 critical value W Φ,critical that triggers the transition between highly and slightly perturbed flow patterns. For high values of the weighting factor, the first term in the expression of the body-force (Eq. 8) approaches zero and the volume force becomes practically inde-755 pendent on W Φ . The physical quantities like the total entropy generation rate or the total viscous dissipation present an asymptotic behavior. The highest values of W Φ presented allow to show this asymptotic behavior (for Re = 20 in particular) without continuing towards 760 larger values of little practical interest, especially since the improvement factors are low and decreasing as W Φ increases (Fig. 3). For small values of W Φ , the first term in the expression of the body-force becomes significant and creates a coupling between the velocity and the tem-765 perature fields. As W Φ decreases, the velocity field becomes more and more complex and the maximum velocity in the flow increases, which ends by requiring finer meshes and larger computation times to ensure the numerical convergence of the simulations. In this study 770 we went down to W Φ ≈ 0.5 K -1 (for Re = 320) and the total range of values of the weighting factor spans across six orders of magnitude, while staying into accessible computation times.

The balance of mass, kinetic energy, enthalpy and 775 entropy have been checked: for Re = 20 and W Φ = 200 K -1 the net mass flux is zero to the nearest 10 -7 kg.s -1 . The kinetic energy is balanced with an error of 0.16% of the total viscous dissipation. The bulk temperature at the outlet deduced from the enthalpy bal-780 ance and computed directly at the outlet are identical to the nearest mK. The entropy is balanced with an error of 0.08% of the total entropy generation rate. These balances show that the numerical errors are small compared to the quantities presented (total viscous dissipa-785 tion, total entropy generation rate, temperatures).

The results of the present study are qualitatively in accordance with [START_REF] Jia | An optimization approach to find the thermodynamic limit on convective mass transfer enhancement for a given viscous dissipation[END_REF] and [START_REF] Li | A novel optimization approach to convective heat transfer enhancement for solar receivers[END_REF], which deal with convective transfer enhancement: the optimized velocity fields can exhibit a vortex and result in a better homogenization of 790 the scalar field while the dropping entropy generation rate (which is lower in the optimized cases) changes in the opposite direction to the rising total viscous dissipation. 
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 5 Figure 5: Entropy generation rate due to heat conduction Ṡ gen,c as a function of W Φ

Figure 6 :
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 30 405example, when Re = 30 and W Φ = 200 K -1 , the net increase in kinetic energy flux is 1.59 × 10 -6 W and is not significantly changed with respect to the case without optimization. On the other hand, Φ tot is increased by 1.4 × 10 -5 W, which corresponds to an increase of 410 pressure power by 1.25 × 10 -5 W and an increase in body-force power by 0.15 × 10 -5 W.The viscous related quantities Ṡ gen, f and Φ tot in Figs. 6, 7 and 8 exhibit the irregularity already observed in Fig.4, which is particularly visible when Re = 20 or 415
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 9 Figure 9: J objective functional as a function of W Φ
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 10 Figure 10: Temperature field with no optimization and when W Φ = 5900 K -1 . Re = 30. Differences with the baseline are in shades of gray.
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 11 where the abscissa at the beginning and end of the heated zone are materialized by two black vertical lines). Nevertheless, the optimization process has already an influence: when Re = 30, the maximum temperature in the channel without optimization is 373.5 K 435 and 372.2 K when W Φ = 5900 K -1 .
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 11 Figure 11: Velocity magnitude field with no optimization and when W Φ = 5900 K -1 . Re = 30. Differences with the baseline are in shades of gray.
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 12 Figure 12: Temperature field for W Φ = 400 K -1 , 300 K -1 and 200 K -1 . Re = 30. Differences with the baseline are in shades of gray.
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 13 Figure 13: Velocity magnitude field for W Φ = 400 K -1 , 300 K -1 and 200 K -1 . Re = 30. Differences with the baseline are in shades of gray.
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 14 Figure 14: Stream function [kg.s -1 ]. Re = 30.
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 15 Figure 15: Velocity vector (zoom) with an indication of the main flow directions and of the rotational direction of vortexes: " + " means clockwise. Re = 30.
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 16 Figure 16: λ 2 Lagrange multiplier [J.m -3 .K -2 ] field (Re = 30).
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 17 Figure 17: Force field F applied above the heated segment area [N.m -3 ] (Re = 30).
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 18 Figure 18: Local entropy generation rate by heat conduction in [W.K -1 .m -3 ] for W Φ = 5900 K -1 , 1200 K -1 , 200 K -1 and when no optimization is applied. Differences with the baseline are in gray.
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 192021 Figure 19: Local entropy generation rate by viscous friction in [W.K -1 .m -3 ] for W Φ = 5900 K -1 , 1200 K -1 , 200 K -1and when no optimization is applied. Color scale is logarithmic. Positive and negative differences with the baseline are in gray.
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 22 Figure 22: Average temperature on the bottom plate [K].
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 23 Figure 23: Maximum temperature on the bottom plate [K].
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 24 Figure 24: Temperature along the bottom plate [K].
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 25 Figure 25: Average temperature at outlet [K]. Horizontal solid lines indicate the mass flow averaged temperature T bulk,out .
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 2627 Figure 26: Temperature profile at outlet [K].

Figure 28 :

 28 Figure 28: Mean Nusselt number as a function of the total entropy generation rate.
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 29 Figure 29: Mean Nusselt number as a function of the mean friction factor C f .
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tion. On the other hand, for a smaller weighting factor,