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Abstract

In this paper, we give a definition of a cyclostationary function, which specifies and extends usual definitions of
cyclostationary processes. We transform such a cyclostationary function into a series. The property of stationarity
of the series lets us proceed to the Principal Components Analysis in the frequency domain. This technique requires
the introduction of new notions as the conjugated of a spectral measure, the association of a set of unitary operators
with a family of stationary series, and the ampliation. We illustrate this work by a simulated example, and we end
by a particular case of cyclostationary function, where the Principal Components Analysis in the frequency domain is
equivalent to the classical Principal Components Analysis.

Keywords: Cyclostationarity, Orthogonal projectors, Principal Components Analysis, Random measures, Spectral
measures, Stationary processes, Unitary operators.
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1. Introduction

Cyclostationary processes, also refered as periodically correlated random processes, have been explored since the
1960s and before (Voychishin and Dragan [17], is an English translation of articles first published in 1957 and 1960).
It has been firstly mathematically treated by Gladyshev [9], and largely developed by Hurd [10], as a modelling of
phenomena which are periodically correlated, that is as processes for which some statistics present a periodicity. A
renewed interest of mathematical aspects of this field can be observed, as in Bouleux et al. [7], where we find a char-
acterization of these processes using dilation matrices. Periodicity occurs in various phenomena, due for example to
modulation in signal theory, rotation in mechanics, revolution of planets or pulsation of stars for astronomy, season-
ality in economics, or sanguine pulse for medicine. This notion has already been largely employed in applications.
Let us cite some examples such as telecommunications (Gardner [8]), mechanic transmission (Randall et al. [12]),
radioastronomy (Weber and Faye [16]), locomotion (Zakaria [18]), or medical studies (Roussel [13]). A collection of
illustrations can be found in Antoni [1].

Many authors address cyclostationary signals on a temporal level, indexed by R or Z. In that case, the shape
of the process is easy to visualize and to model. In the present paper, we give a definition of cyclostationarity for
random functions (r.f.’s) indexed by Rk, and we propose a way for processing the Principal Components Analysis
(PCA) of such r.f.’s. Indeed, we can imagine phenomena varying on both space and time, as, for example, a flow in
fluid mechanics. This kind of cyclostationarity gives tools for modelling such phenomena, and many other types.

Very often, when considering a process, it is centered, so the scalar product becomes a covariance. We do not
make this hypothesis, because it is not necessary for the mathematical development, and this simplifies the writing.
Nevertheless, this hypothesis can be done, if it makes more sense from a statistical point of view.

Section 2 is devoted to mathematical recalls. We work in the complex field, to be able to use Fourier transform, as
we address signals in the frequency domain.
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The stochastic integral is defined as an isometry. The spectral measure is exposed as a mapping defined on a set
which is a σ−field, what is natural as it is a measure, taking values in a set of projectors, that is idempotent mappings.
We then introduce the association between a unitary operator and a spectral measure. Let us expose hereafter a
particular case for which the notions are easy to write. We consider a C−Hilbert space H, which can be a space of
random variables, where mappings operate. If {P j; j ∈ J} is a finite family of projectors from H into H such that∑

j∈J P j = I, then U =
∑

j∈J eiλ j P j is a unitary operator for which the associated spectral measure is E =
∑

j∈J δλ j (.)P j,
where δλ j is the Dirac measure concentrated on λ j, element from [−π; π[. If X is an element from H, we note
that (Un(X))n∈Z (we further denote Un(X) = UnX) is a stationary series, because 〈UnX,UmX〉 = 〈Un+kX,Um+kX〉, for
which the associated random measure is ZX

E
(.) =

∑
j∈J δλ j (.)P jX, what means that UnX =

∫
ei.ndZX

E
(.) =

∑
j∈J eiλ jnP jX.

We end the section by the recall of the PCA in the frequency domain. We say that a k−dimensional series
(Xn)n∈Z is Ck−stationary when E(Xn

tXm) = E(Xn−m
tX0) (or more generally, E(Xm ⊗ Xn) = E(X0 ⊗ Xn−m), where ⊗

stands for the tensor product), for any pair (n,m) of elements from Z. The first p steps (p < k) of the PCA in
the frequency domain of this series may be presented as the search of a p−dimensional filter (

∑
m CmXn−m)n∈Z (Cm

being an operator from Ck into Cp) which summarizes (Xn)n∈Z. In order to measure the quality of the resulting
summary, we transform the p−dimensional series (

∑
m CmXn−m)n∈Z into a k−dimensional series thanks to a second

filtering operation, (
∑

q Rq
∑

m CmXn−q−m)n∈Z = (
∑

l(
∑

q RqCl−q)Xn−l)n∈Z (Rq is an operator from Cp into Ck, and then∑
q RqCl−q is an operator from Ck into Ck). This last series is a reconstitution of the data. It is stationarily correlated

with (Xn)n∈Z: E(Xm
t∑

l(
∑

q RqCl−q)Xn−l) = E(Xm−n
t∑

l(
∑

q RqCl−q)X−l), and then ‖Xn −
∑

l(
∑

q RqCl−q)Xn−l‖ = ‖X0 −∑
l(
∑

q RqCl−q)X−l‖. The filters are chosen such that this last quantity is as small as possible.
In Sections 3 to 6, we develop mathematical tools which we are going to use in the studies of cyclostationary

functions. We define the conjugate spectral measure. We associate a spectral measure with a family of stationary
series. We study the ampliation, operation which consists, from an operator of H (mapping from H into H), to define
an operator of L2

H(Λ) (space of square-integrable mappings from Λ into H). All these mathematical tools will be
necessary for Section 7, where we study the cyclostationarity. Section 8 is devoted to a simulated example. We
end by an exploration of a particular case of cyclostationary function, which is decomposed into the product of two
independant random variables, one of them is stationary, and the other one is periodic.

Let us expose shortly the case of cyclostationary series.
The set of the random variables {xn; n ∈ Z} is a {0, . . . , k−1}−cyclostationary series when E(xnxm) = E(xn+pk xm+pk),

for any (n,m, p) from Z × Z × Z. So we can easily verify that {(xkn+p)n∈Z; p ∈ {0, . . . , k − 1}} is a family of stationary
series pairwise stationarily correlated. The subset {0, . . . , k − 1} is such that with any n from Z we can associate an
element, and only one, from {0, . . . , k − 1} × kZ, (n − k[ n

k ], k[ n
k ]) such that n = n − k[ n

k ] + k[ n
k ] ([x] is the integer part

of x).
If we consider the k−dimensional random vector XT

n =
(
xnk · · · xnk+k−1

)
, we can easily verify that (Xn)n∈Z

is a Ck−stationary series. So we can define the PCA in the frequency domain of (Xn)n∈Z. The first p steps give a
Cp−stationary series, (X′n)n∈Z, and a Ck−stationary series, (X′′n )n∈Z. Each of the random vectors X′′n is k−dimensional:
(X′′n )T =

(
yn,1 · · · yn,k

)
. We can then verify that {x′′n ; n ∈ Z}, where x′′n = y[ n

k ],n−k[ n
k ]+1, is a {0, . . . , k−1}−cyclostatio-

nary series.
We show that

k−1∑
l=0

‖xnk+l − x′′nk+l‖
2 = ‖Xn − X′′n ‖

2 = ‖X0 − X′′0 ‖
2 =

k−1∑
l=0

‖xl − x′′l ‖
2. (1)

So we can summarize a cyclostationary series by a Cp−stationary series, (X′n)n∈Z. The quantity (1) is a measure of the
quality of this summary. As for the cyclostationary series (X′′n )n∈Z, it enables the reconstruction of the data.

Let us now present a particular case of the foregoing study. This case is similar to the previous one, but concerns
the functions instead of series. Let us consider a family of integrable square module random variables {Xt; t ∈ R} such
that 〈Xt, Xt′〉 = 〈Xt+1, Xt′+1〉, for any pair (t, t′) of reals.

From the process (Xt)t∈R, we build a stationary series (Yn)n∈Z, each element Yn is a random vector, more precisely,
a random variable taking values in the C−Hilbert space L2([0; 1[) (which substitutes to Ck), which is defined from the
family of random variables {Xt+n; t ∈ [0; 1[} (this family substitutes to the family {xnk, . . . , x(n+1)k−1} in the previous
example).

The series (Yn)n∈Z is such that E(Yn⊗Ym) = E(Yn−m⊗Y0) and we can proceed to the PCA in the frequency domain.
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2. Prerequisite

The goal of this section is to define the notation and to recall the mathematical tools for the understanding of this
text. Recalls of Subsection 2.1 to Subsection 2.5 come from Boudou [3] and Boudou and Romain [5].

2.1. Measurable spaces and Hilbert spaces

All along this text, k denotes a non null positive integer (hence possibly equal to 1). When H is a C−Hilbert
space, we denote by P(H) the set of the projectors of H. The adjoint of a continuous operator L is denoted L∗. If
H and H′ are two separable C−Hilbert spaces, we denote by σ2(H,H′) the family of the Hilbert-Schmidt operators
from H in H′, which is also a C−Hilbert space, for which the scalar product is 〈K, L〉σ2 = tr KL∗. For any (K, h, h′) of
σ2(H,H′) × H × H′, we have 〈K, h ⊗ h′〉σ2 = 〈Kh, h′〉.

In this text, (Ω,A, P) and (Λ, ξ, η) are two probability spaces such that the C−Hilbert spaces L2(Ω,A, P), shortly
denoted, when there is no ambiguity, L2(Ω), and L2(Λ, ξ, η), shortly denoted L2(Λ), are separable. According to the
context, x stands for the conjugate complex of x or for the coset of x. Then, an element X from L2

H(Ω,A, P) (resp.
of L2

H(Λ, ξ, η)) is a measurable mapping from Ω (resp. from Λ) to the C−Hilbert space H, of P−integrable (resp.
η−integrable) square norm. The coset X is an element from the C−Hilbert space L2

H(Ω,A, P), shortly denoted L2
H(Ω)

(resp. L2
H(Λ, ξ, η), shortly denoted L2

H(Λ)). We will say that X is a representative of X. So when X = X′ P−almost
everywhere (resp. η−almost everywhere), then X = X′. When there is no ambiguity, the symbol ◦ of composition
between two mappings will be omitted, as well as the parentheses for an element to which a mapping is applied (for
example, K ◦ L will be denoted KL, and K(h) will be denoted Kh).

The mapping γ : y ∈ L2(Ω) 7→ y ∈ L2(Ω) (resp. Γ : h ∈ L2(Λ) 7→ h ∈ L2(Λ)) is involutive, antilinear, and preserves
the norm. This implies that 〈y1, y2〉 = 〈γy2, γy1〉 (resp. 〈h1, h2〉 = 〈Γh2,Γh1〉), for any pair (y1, y2) of elements from
L2(Ω) (resp. (h1, h2) of elements from L2(Λ)).

The σ−field BΠk of subsets of Πk (Π = [−π; π[), stands for the trace of BRk , Borel σ−field of Rk, on Πk.
We denote by WΠ the mapping α ∈ Π 7→ −α − 2π

[
−α+π

2π

]
∈ Π, by WΠk the mapping (α1, . . . , αk) ∈ Πk 7→

(WΠα1, . . . ,WΠαk) ∈ Πk, and by P j, j ∈ {1, . . . , k}, the coordinate mapping: (α1, . . . , αk) ∈ Πk 7→ α j ∈ Π. The
mapping P j is measurable (because for any A from BΠ, P−1

j A = Π × · · · × A × · · · × Π ∈ BΠ ⊗ · · · ⊗ BΠ = BΠk ),
and so is it for WΠ (because for any A of BΠ, we have W−1

Π
A = (−A∩] − π; π[) ∪ (A ∩ {−π})). If we remark that

P j ◦WΠk = WΠ ◦ P j, we can deduce the measurability of WΠk .

2.2. Random measure and stochastic integral

In this subsection, (E, ζ) and (F,F ) stand for two measurable spaces, H and H′ stand for two C−Hilbert spaces.
We start by the definition of the well-known random measure.

Definition 1. A random measure (r.m.) Z, defined on ζ and taking values on H, is a mapping from ζ in H such that:
(i) for any pair (A, A′) of disjoint elements of ζ, Z(A ∪ A′) = ZA + ZA′ and 〈ZA,ZA′〉 = 0;
(ii) for any sequence (An)n∈N which decreasingly converges to ∅, limZAn = 0.

The “orthogonality” condition of ZA and ZA′, as soon as A ∩ A′ = ∅, implies the following.

Proposition 1. The mapping µZ : A ∈ ζ 7→ ‖ZA‖2 ∈ R+ is a finite measure.

For any set E, we denote by vectE the space generated by the elements from E, and by vectE its closure. For any
pair (A, A′) of elements from ζ, we have 〈ZA,ZA′〉 = 〈1A, 1A′〉L2(µZ ), and, as vect{1A; A ∈ ζ} = L2(E, ζ, µZ), we can
define the stochastic integral with respect to the r.m. Z.

Definition 2. The stochastic integral with respect to the r.m. Z is the unique isometry from L2(E, ζ, µZ) on HZ =

vect{1A; A ∈ ζ}, which associates ZA with 1A, for any A from ζ.

The image of an element ϕ from L2(E, ζ, µZ) by this isometry is named stochastic integral of ϕ with respect to the
r.m. Z and is denoted

∫
ϕdZ. The composition of a r.m. with a bijection gives a new stochastic integral as follows:
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Proposition 2. Let L be a linear (resp. antilinear) bijection from H on H′, which preserves the norm. We have
(i) L ◦ Z is a r.m.;
(ii) µL◦Z = µZ;
(iii) for any ϕ from L2(µL◦Z),

∫
ϕdL ◦ Z = L(

∫
ϕdZ) (resp.

∫
ϕdL ◦ Z = L(

∫
ϕdZ)).

Just as we can define the image of a probability measure, we can define the image of the r.m. Z.

Proposition 3. If f is a measurable function from E into F, then
(i) the mapping f (Z) : A ∈ F 7→ Z f −1A ∈ H is a r.m. named image of Z by f ;
(ii) the image of µZ by f equals µ f (Z);
(iii) if ϕ belongs to L2(F,F , µ f (Z)), then ϕ ◦ f belongs to L2(E, ζ, µZ) and

∫
ϕd f (Z) =

∫
ϕ ◦ f dZ.

Let us notice that, when H = L2(Ω,A, P), the qualification of random for these measures takes its full meaning,
because Z(A), element of L2(Ω), is a random variable.

2.3. Stationary series

Let us first define a stationary series taking values in a C−Hilbert space H.

Definition 3. A stationary series taking values in H is a family (Xn)n∈Zk of elements from H such that 〈Xn, Xm〉 =

〈Xn−m, X0〉, for any pair (n,m) of elements from Zk.

When k = 1 and H = L2(Ω,A, P), if EXn = 0, we get the usual definition of the wide sense of the stationarity,
because 〈Xn, Xm〉 = cov (Xn, Xm). With a stationary series of elements from H, we can associate a r.m. This r.m. is
defined on BΠk . For any (n1, . . . , nk) of Zk, we denote by e〈.,(n1,...,nk)〉 the measurable mapping which, to (α1, . . . , αk)
from Πk associates the complex ei(α1n1+...+αknk). Of course, in the particular case where k = 1, we have e〈.,n〉 : α ∈ Π 7→

eiαn ∈ C, for any n of Z. Any stationary series is a Fourier transform of a r.m.

Proposition 4. If (Xn)n∈Zk is a stationary series of elements from H, there exists a r.m. Z, and only one, defined on
BΠk , and taking values in H, such that Xn =

∫
ei〈.,n〉dZ, for any n of Zk.

Then it is natural to consider the r.m. associated with a stationary series.

Definition 4. We name r.m. associated with a stationary series (Xn)n∈Zk the unique r.m. such that Xn =
∫

ei〈.,n〉dZ, for
any n from Zk.

Proposition 4 has got a converse.

Proposition 5. If Z is a r.m. defined on BΠk , (
∫

ei〈.,n〉dZ)n∈Zk is a stationary series of associated r.m. Z.

In statistics, we often use the notion of stationarily correlated processes.

Definition 5. Two stationary series (Xn)n∈Zk and (X′n)n∈Zk are stationarily correlated when 〈Xn, X′n〉 = 〈Xn−n′ , X′0〉, for
any pair (n, n′) of elements from Zk.

The stationary correlation can also express in the frequency domain.

Definition 6. Two r.m.’s Z and Z′ defined on BΠk taking values in H are said to be stationarily correlated when
〈ZA,Z′A〉 = 0, for any pair (A, A′) of disjoint elements from BΠk .

We have then the following equivalence.

Proposition 6. Two stationary series (Xn)n∈Zk and (X′n)n∈Zk , taking values in H, are stationarily correlated if and only
if their respective associated r.m.’s Z and Z′ are stationarily correlated.
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2.4. Spectral measure
In this subsection, (E, ζ), (F,F ) and H have the same meaning as in Section 2.2. Let us start by the definition of

the spectral measure.

Definition 7. A spectral measure (s.m.) on ζ for H is a mapping E, from ζ into P(H), such that
(i) EE = IH;
(ii) E(A ∪ B) = EA + EB, for any pair (A, B) of disjoint elements from ζ;
(iii) limnEAnX = 0, for any sequence (An)n∈N of elements from ζ which decreasingly converge to ∅, and for any X
from H.

With a s.m., we can define a r.m. for any X from H as follows.

Proposition 7. If E is a s.m. on ζ for H, then, for any X from H, the mapping ZX
E

: A ∈ ζ 7→ EAX ∈ H is a r.m.

Conversely, from a family of r.m.’s, we can define a s.m.

Proposition 8. If {ZX; X ∈ H} is a family of r.m.’s, defined on ζ and taking values in H, such that
(a) ZXE = X, for any X from H,
(b) for any pair (X, X′) of elements from H, the r.m.’s ZX and ZX′ are stationarily correlated,
we can state that
(i) for any A from ζ, the mapping EA : X ∈ H 7→ ZXA ∈ H is a projector;
(ii) the mapping E : A ∈ ζ 7→ EA ∈ P(H) is a s.m. on ζ for H.

Let us consider a measurable mapping f from E into F and E a s.m. on ζ for H. We can define the image of E by
f .

Proposition 9. The mapping fE : A ∈ F 7→ E f −1A ∈ P(H) is a s.m. on F for H, named image of E by f . Moreover,
for any X from H, ZX

fE = f (ZX
E

).

2.5. Association between spectral measure and unitary operator
A s.m. on BΠ for the C−Hilbert space H can be associated with a unitary operator of H in a bijective way.

Proposition 10. With any unitary operator U of H, we can associate a s.m. E, and only one, on BΠ for H, such that
UX =

∫
ei.1dZX

E
, for any X from H.

So we can define the s.m. associated with a unitary operator.

Definition 8. We name s.m. associated with a unitary operator U of H, the unique s.m. E, on BΠ for H, such that
UX =

∫
ei.1dZX

E
, for any X from H.

The converse of Proposition 10 can be expressed as follows.

Proposition 11. If E is a s.m. on BΠ for H, then the mapping X ∈ H 7→
∫

ei.1dZX
E
∈ H is a unitary operator of

associated s.m. E.

Thanks to these properties, we extend the field of validity of this association.

Definition 9. Let E be a s.m. on BΠk for H, and let us denote by U j the unitary operator of H of associated s.m. P jE.
We name group of the unitary operators of H deduced from the s.m. E the family of unitary operators {Un; n ∈ Zk}

where, for any (n1, . . . , nk) from Zk, U(n1,...,nk) =
∏k

j=1 Un j

j .

So we have the following property.

Proposition 12. If {Un; n ∈ Zk} is the group of the unitary operators deduced from E, s.m. on BΠk for H, then
(i) U0 = IH;
(ii) for any pair (n,m) from Zk, UnUm = Un+m;
(iii) (Un)∗ = U−n, for any n from Zk;
(iv) (UnX)n∈Zk is a stationary series of associated r.m. ZX

E
, this for any X from H.

5



Let us finally examine some relations which we will use in Section 6. For any integer p ≥ 1 and for any n from
{0, . . . , 2p − 1}, let us set λpn = −π + n π

p and Apn = [−π + n π
p ;−π + (n + 1) πp [. We remark that {Apn; n = 0, . . . , 2p − 1}

is a partition of Π. So we have the following property.

Proposition 13. If U is a unitary operator of H, of associated s.m. E, then
(i) for any integer p ≥ 1, Up =

∑2p−1
n=0 eiλpnEApn is a unitary operator;

(ii) for any X from H, we have UX = limpUpX = limp
∑2p−1

n=0 eiλpnEApnX.

2.6. Principal Components Analysis in the frequency domain
The Principal Components Analysis (PCA) in the frequency domain has been first studied by Brillinger [2], and

then extended by Boudou and Dauxois [4]. In particular, Z becomes Zk, and Ck becomes a separable C−Hilbert space
H. We present here this analysis.

Definition 10. A H−stationary series (Xn)n∈Zk is a family of elements of L2
H(Ω,A, P) such that

∫
Xn1 ⊗ Xn2 dP =∫

Xn1−n2 ⊗ X0dP, for any pair (n1, n2) from Zk.

The PCA in the frequency domain aims to extract, from a H−stationary series (Xn)n∈Zk , a p−dimensional summary
(X′n)n∈Zk , which must be a Cp−stationary series, stationarily correlated with (Xn)n∈Zk , that is to say, such that

∫
Xn1 ⊗

X′n2
dP =

∫
Xn1−n2 ⊗ X′0dP, for any pair (n1, n2) from Zk.

Let us denote by Pp the projector from L2
H(Ω) on vect{K ◦ X′n; n ∈ Zk,K ∈ σ2(Cp,H)}. We can prove that

(PpXn)n∈Zk is a H−stationary series, stationarily correlated with (Xn)n∈Zk . Consequently, the quantity ‖Xn − PpXn‖

does not depend on n, and therefore we choose it as a measure of the quality of the p−dimensional summary (X′n)n∈Zk ,
of (Xn)n∈Zk . Of course, among all the possible p−dimensional summaries, we retain the one which is the most efficient,
according to the following definition.

Definition 11. We name the first p steps of the PCA in the frequency domain of a H−stationary series (Xn)n∈Zk the
search of a Cp−stationary series (X′n)n∈Zk , stationarily correlated with (Xn)n∈Zk , such that ‖X0 − PpX0‖, where Pp is the
projector on vect{K ◦ X′n; n ∈ Zk,K ∈ σ2(Cp,H)}, is as small as possible.

The first p steps provide then a Cp−stationary series (X′n)n∈Zk , and a H−stationary series (X′′n )n∈Zk = (PpXn)n∈Zk .
The series (X′n)n∈Zk is a p−dimensional summary, (X′′n )n∈Zk is a reconstruction of the data.

A H−stationary series (Xn)n∈Zk is stationary and then we can associate with it a r.m. Z, this last is such that∫
ZA ⊗ ZBdP = 0, for any pair (A, B) of disjoint elements from BΠk . We say that Z is a H−r.m. It plays a great role

in the achievement of the PCA in the frequency domain. For example, if {Z j; j ∈ J} is a finite family of elements
from L2

H(A) such that
∫

Z j ⊗ Z j′dP = 0, for any pair ( j, j′) of distinct elements from J, and if {λ j, j ∈ J} is a finite
family of pairwise distinct elements from Πk, then (

∑
j∈J ei〈λ j,n〉Z j)n∈Zk is a H−stationary series of associated H−r.m.

Z =
∑

j∈J δ j(.)Z j, where δ j is the Dirac measure defined on BΠk and concentrated on λ j. The PCA in the frequency
domain amounts to performing the PCA of each of the random vectors Z j, hence the name “PCA in the frequency
domain”.

In the introduction, we have presented the particular case where k = 1, and we have formulated it as defined by
Brillinger [2]. Generally, this PCA gives better results than the PCA of each of the elements Xn from L2

H(Ω). In
particular cases, the two analyses can be identical, as in the following example. Let B1 and B2 be two independent
σ−fields of A and such that {A1 ∩ A2; (A1, A2) ∈ B1 × B2} generates A, what is equivalent to A = T−1(B1 ⊗ B2),
where T is the mapping ω ∈ Ω 7→ (ω,ω) ∈ Ω × Ω. Let X be an element from L2

H(Ω,B1, P) and (yn)n∈Zk a stationary
series taking values in L2(Ω,B2, P). We have the following.

Proposition 14. The sequence (ynX)n∈Zk is a H−stationary series of elements from L2
H(Ω,A, P).

Moreover, if X′ and X′′ denote elements of respectively L2
Cp (Ω,B1, P) and L2

H(Ω,B1, P), which result from the p
first steps of the PCA of X, then what precedes can be completed by the following.

Proposition 15. With the above notation, we can state:
(i) ynX′ and ynX′′ are respectively elements from L2

Cp (Ω,A, P) and from L2
H(Ω,A, P), resulting from the p first steps

of the PCA of ynX, element from L2
H(Ω,A, P).

(ii) (ynX′)n∈Zk and (ynX′′)n∈Zk are respectively the Cp−stationary and H−stationary series which result from the p first
steps of the PCA in the frequency domain of the H−stationary series (ynX)n∈Zk .
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3. Conjugate of a spectral measure

In this section we define what is natural to name the conjugate of a spectral measure. We will need this notion in
Section 7.4. If K is a bounded endomorphism of L2(Ω), then it is the same for γ ◦ K ◦ γ, and we get the following
property.

Proposition 16. If K is a bounded endomorphism of L2(Ω), then (γ ◦ K ◦ γ)∗ = γ ◦ K∗ ◦ γ.

Proof: It comes from the following equalities:
〈(γKγ)∗u, v〉 = 〈u, γKγv〉 = 〈Kγv, γu〉 = 〈γv,K∗γu〉 = 〈(γK∗γ)u, v〉.

Then it is easy to verify that, if K is a projector (resp. a unitary operator of L2(Ω)), then γKγ is a projector
(resp. a unitary operator of L2(Ω)), and that, if E is a s.m. on BΠk for L2(Ω), then the same happens for the mapping
A ∈ BΠk 7→ γ ◦ EA ◦ γ ∈ P(L2(Ω)). This lets us define the conjugate of a s.m.

Definition 12. We name conjugate of E, s.m. onBΠk for L2(Ω), the s.m. defined by A ∈ BΠk 7→ γ◦EA◦γ ∈ P(L2(Ω)).

The following property defines the unitary operator associated with the conjugate of a s.m.

Proposition 17. If U is a unitary operator of associated s.m. E, then the unitary operator γUγ has as associated s.m.
WΠEc, where Ec is the conjugate s.m. of E.

Proof: Let V be the unitary operator of associated s.m. WΠEc, where Ec is the conjugate of E. From the recalls of
Section 2, we can write

VX =

∫
ei.1dZX

WΠEc
=

∫
ei.1dWΠ(ZX

Ec
) =

∫
ei.1 ◦WΠdZX

Ec
=

∫
ei.−1dZX

Ec
, (2)

and as ZX
Ec

= γ ◦ ZγX
E

, (2) can be completed by

VX =

∫
ei.−1dγ ◦ ZX

E = γ(
∫

ei.1dZγX
E

) = γUγX, (3)

this for any X from L2(Ω), so the property stands.

We can now generalize this property.

Proposition 18. If {Un; n ∈ Zk} is the group of the unitary operators deduced from E, s.m. on BΠk for L2(Ω), then
{γUnγ; n ∈ Zk} is the group of the unitary operators of L2(Ω) deduced from the s.m. WΠkEc, where Ec is the conjugate
s.m. of E.

Proof: Let us denote by {Vn; n ∈ Zk} the group of the unitary operators of L2(Ω) deduced from WΠkEc. If (n1, . . . , nk)
is an element from Zk, we have V(n1,...,nk) =

∏k
j=1 Vn j

j , where V j is the unitary operator of associated s.m. P jWΠkEc =

WΠP jEc, for j ∈ {1, . . . , k}. Let U j be the unitary operator of associated spectral measure P jE. From what precedes,
the unitary operator γU jγ has as associated s.m. WΠ(P jE)c (where (P jE)c is the conjugate measure of P jE), but as
(P jE)c = P jEc ((P jE)cA = γ ◦ (P jEA) ◦ γ = EcP−1

j A = P jEcA, for any A from BΠ), the s.m. associated with γU jγ is
WΠP jEc.

So V j = γU jγ, and we can write V(n1,··· ,nk) =
∏k

j=1 Vn j

j =
∏k

j=1(γU jγ)n j =
∏k

j=1(γUn j

j γ) = γ
∏k

j=1 Un j

j γ = γUnγ.
As a conclusion, {γUnγ; n ∈ Zk} is the group of the unitary operators deduced from the s.m. WΠkEc.
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4. Isometry from L2
L2(Ω)

(Λ) on L2
L2(Λ)

(Ω)

The aim of this section is to recall the definition of a well-known isometry (cf. Schaefer [15]) between the
C−Hilbert spaces L2

L2(Ω)(Λ) and L2
L2(Λ)(Ω), and to obtain new properties which will deserve the conversion cyclostationarity-

stationarity.
For any (y, h) from L2(Ω) × L2(Λ), we denote by yh (resp. hy) the mapping ω ∈ Ω 7→ y(ω)h ∈ L2(Λ) (resp.

λ ∈ Λ 7→ h(λ)y ∈ L2(Ω)), which is measurable and of P−integrable (resp. η−integrable) square norm.
If X is an element from L2

L2(Λ)(Ω) and y an element from L2(Ω), then y(.)X(.) is measurable and of P−integrable

norm. We can then consider
∫

yXdP, which is an element from L2(Λ), such that 〈
∫

yXdP, h〉 =
∫

y(ω)〈X(ω), h〉dP(ω),
for any h from L2(Λ). So we can enunciate the following properties.

Proposition 19. If X is an element from L2
L2(Λ)(Ω), then the mapping X̃ : y ∈ L2(Ω) 7→

∫
yXdP ∈ L2(Λ) is an

Hilbert-Schmidt operator. The mapping : X ∈ L2
L2(Λ)(Ω) 7→ X̃ ∈ σ2(L2(Ω), L2(Λ)) is an isometry.

Especially, taking into account our convention of writing, it is easy to verify that ỹh = (γy)⊗ h, for any (y, h) from
L2(Ω)× L2(Λ). If K is a bounded endomorphism of L2(Λ) and if X is an element from L2

L2(Λ)(Ω), then K ◦ X is also an

element from L2
L2(Λ)(Ω), and we can verify that K̃ ◦ X = K ◦ X̃. Indeed,

〈K̃ ◦ Xy, h〉 = 〈
∫

KX(ω)y(ω)dP(ω), h〉 =
∫
〈X(ω)y(ω),K∗h〉dP(ω) = 〈X̃y,K∗h〉 = 〈K ◦ X̃y, h〉.

Let us now examine another expression of a covariance operator.

Proposition 20. For any pair (X, X′) of elements of L2
L2(Λ)(Ω), we have

∫
X(ω) ⊗ X′(ω)dP(ω) = X̃′ ◦ X̃∗.

Proof: The mapping 〈X′(.),K(X(.))〉, and so the mapping 〈X(.) ⊗ X′(.),K〉σ2 , is measurable, this for any K from
σ2(L2(Λ)). Therefore the mapping ω ∈ Ω 7→ X(ω) ⊗ X′(ω) ∈ σ2(L2(Λ)) is measurable, as σ2(L2(Λ)) is separable.

Moreover,
∫
‖X(ω) ⊗ X′(ω)‖σ2 dP(ω) =

∫
‖X(ω)‖‖X′(ω)‖dP(ω) ≤ ‖X‖‖X′‖. So the mapping ω ∈ Ω 7→ X(ω) ⊗

X′(ω) ∈ σ2 is measurable and of P−integrable norm. We can then consider the element
∫

X(ω) ⊗ X′(ω)dP(ω) of
σ2(L2(Λ)). From the previous remark, we can write 〈

∫
X(ω) ⊗ X′(ω)dP(ω),K〉σ2 =

∫
〈X(ω) ⊗ X′(ω),K〉dP(ω) =∫

〈X′(ω),KX(ω)〉dP(ω) = 〈X′,K ◦ X〉 = 〈X̃′,K ◦ X̃〉 = 〈X̃′ ◦ X̃∗,K〉, this for any K of σ2, hence the property.

Remark 1. A family (Xn)n∈Zk of elements of L2
L2(Λ)(Ω) is L2(Λ)−stationary when, for any pair (n,m) from Zk, X̃n ◦

X̃m
∗

=
∫

Xm(ω) ⊗ Xn(ω)dP(ω) =
∫

X0(ω) ⊗ Xn−m(ω)dP(ω) = X̃n−m ◦ X̃0
∗
.

Propositions 19 and 20 regard the C−Hilbert spaces L2
L2(Λ)(Ω) and σ2(L2(Ω), L2(Λ)). Exchanging the roles of

(Ω,A, P) and of (Λ, ξ, η), we get the following dual properties.

Proposition 21.
(i) For any Y of L2

L2(Ω)(Λ), the mapping Ỹ : h ∈ L2(Λ) 7→
∫

h(λ)Y(λ)dη(λ) ∈ L2(Ω) is an Hilbert-Schmidt operator;

(ii) the mapping Y ∈ L2
L2(Ω)(Λ) 7→ Ỹ ∈ σ2(L2(Λ), L2(Ω)) is an isometry;

(iii) for any (y, h) from L2(Ω) × L2(Λ), we have h̃y = (Γh) ⊗ y.

For any pair ((y, h), (y′, h′)) of elements of L2(Ω) × L2(Λ), we have 〈hy, h′y′〉 = 〈Γh ⊗ y,Γh′ ⊗ y′〉 = 〈h, h′〉〈y, y′〉 =

〈γy ⊗ h, γy′ ⊗ h′〉 = 〈yh, y′h′〉. So there exists an isometry I, and only one, from vect{hy; (y, h) ∈ L2(Ω) × L2(Λ)}
on vect{yh; (y, h) ∈ L2(Ω) × L2(Λ)} such that I(hy) = yh, for any (y, h) from L2(Ω) × L2(Λ). As vect{hy; (y, h) ∈
L2(Ω) × L2(Λ)} = L2

L2(Ω)(Λ) and as vect{yh; (y, h) ∈ L2(Ω) × L2(Λ)} = L2
L2(Λ)(Ω), what precedes can be expressed as

following.

Proposition 22. There exists an isometry I, and only one, from L2
L2(Ω)(Λ) on L2

L2(Λ)(Ω), such that I(hy) = yh, for any
(y, h) of L2(Ω) × L2(Λ).

Juggling with the various isometries that we have just studied, we have the last result of this section.
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Proposition 23. For any Y of L2
L2(Ω)(Λ), we have γ ◦ Ỹ ◦ Γ = ĨY

∗
.

Proof: For any (y, h) from L2(Ω) × L2(Λ),we can write
〈γ ◦ Ỹ ◦ Γh, y〉 = 〈γy, Ỹ ◦ Γh〉 = 〈Γh ⊗ γy, Ỹ〉 = 〈h.(γy),Y〉

= 〈(γy).h,IY〉 = 〈y ⊗ h, ĨY〉 = 〈h, ĨYy〉 = 〈ĨY
∗
h, y〉,

so we get as expected: γ ◦ Ỹ ◦ Γ = ĨY
∗
.

From now on, I will keep standing for the same isometry as that we have defined and studied in this section.

5. Family of stationary series pairwise stationarily correlated

In this section, we associate a s.m., on BΠk for the C−Hilbert space H, with a family of stationary series.

Proposition 24. If {(Xλ
m)m∈Zk ; λ ∈ Λ} is a family of stationary series, of elements from H, pairwise stationarily

correlated, then there exists a s.m. E, on BΠk for H, such that if {Un; n ∈ Zk} is the group of the unitary operators of
H deduced from E, then UmXλ

n = Xλ
m+n, this for any (λ,m, n) of Λ × Zk × Zk.

Proof: Let P be the projector from H onto H′ = vect{Xλ
n ; (λ, n) ∈ Λ × Zk} and L the canonical injection h ∈ H′ 7→

h ∈ H.
Let us consider an element m from Zk. For any pair ((λ1, n1); (λ2, n2)) of elements from Λ × Zk, we have

〈Xλ1
n1 , X

λ2
n2 〉 = 〈Xλ1

n1+m, X
λ2
n2+m〉. If we notice that vect{Xλ

n+m; (λ, n) ∈ Λ × Zk} = H′, we can affirm that there exists a
unitary operator Vm, and only one, of H′, such that VmXλ

n = Xλ
n+m, for any (λ, n) of Λ × Zk. It is easy to verify that

V0 = IH′ . If (p, q) is a pair of elements of Zk, for any (λ, n) of Λ × Zk, it comes VpVqXλ
n = VpXλ

n+q = Xλ
n+q+p. So,

taking into account the property of unicity of Vp+q, we have VpVq = Vp+q, and so V∗p = V−p (V−p = V−p(VpV∗p) =

(V−pVp)V∗p = V0V∗p = V∗p). For any m from Zk, let us denote Um = P⊥ + L ◦Um ◦ L∗, where P⊥ stands for I − P. If we
notice that L∗h = Ph, for any h from H, that L∗L = IH′ , LL∗ = P, PL = L, and that P⊥L = 0, it is easy to verify the
following assertions:

(i) Um is a unitary operator of H, for any m from Zk;
(ii) U0 = IH;
(iii) UpUq = Up+q, for any pair (p, q) from Zk;
(iv) U∗p = U−p, for any p from Zk.
Obviously, {(UmX)m∈Zk ; X ∈ H} is a family of stationary series pairwise stationarily correlated, and if we denote

by ZX the r.m. associated with the stationary series (UmX)m∈Zk , {ZX; X ∈ H} is a family of r.m.’s such that ZXΠk = X,
for any X from H and such that, for any pair (X, X′) from H × H, the r.m.’s ZX and ZX′ are stationarily correlated.
From the recalls of Section 2, we have

(i) for any A from BΠk , the mapping EA : X ∈ H 7→ ZXA ∈ H is a projector;
(ii) the mapping E : A ∈ BΠk 7→ EA ∈ P(H) is a s.m.
Let us denote by {Wm; m ∈ Zk} the group of the unitary operators of H deduced from E, (WmX)m∈Zk is a stationary

series of associated r.m. ZX
E

, but as ZX
E

= ZX (ZX
E

A = EAX = ZXA), we have (WmX)m∈Zk = (UmX)m∈Zk . So WmX =

UmX, for any X from H, so Wm = Um, for any m from Zk. We can then affirm that {Um; m ∈ Zk} is the group
of the unitary operators of H deduced from the s.m. E, what ends the proof (UmXλ

n = Xλ
n+m, for any (λ, n,m) of

Λ × Zk × Zk).

According to Proposition 24, it is natural to consider the notion of s.m. compatible with a family of stationary
series.

Definition 13. We say that a s.m. E, onBΠk for H, is compatible with a family of stationary series pairwise stationarily
correlated, {(Xλ

m)m∈Zk ; λ ∈ Λ} when, denoting by {Um; m ∈ Zk} the group of the unitary operators deduced from E, we
have UmXλ

n = Xλ
n+m, for any (λ, n,m) of Λ × Zk × Zk.

Remark 2. From Proposition 24, it is clear that with any family of stationary series pairwise stationarily correlated,
{(Xλ

m)m∈Zk ; λ ∈ Λ}, we can associate a compatible s.m.
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Thanks to Proposition 24, we can link a s.m. with a family of stationary series pairwise stationarily correlated.
This is one of the main results of this text, and we can enunciate it as follows.

Theorem 1. If E is a s.m., on BΠk for the C−Hilbert space H, compatible with the family of stationary series pairwise
stationarily correlated {(Xλ

m)m∈Zk ; λ ∈ Λ}, then, for any (λ,m) from Λ × Zk, we have Xλ
m =

∫
ei〈.,m〉dZ

Xλ
0
E

.

Proof: Let us denote by {Um; m ∈ Zk} the group of the unitary operators of H deduced from E. We have (UmXλ
0 )m∈Zk =

(Xλ
m)m∈Zk . So the stationary series (Xλ

m)m∈Zk has as associated r.m. Z
Xλ

0
E

(because {Um; m ∈ Zk} is the group of the unitary

operators of H deduced from E). For any m from Zk, we have Xλ
m =

∫
ei〈.,m〉dZ

Xλ
0
E

, for any λ from Λ.

6. Ampliation

In this section, for X element fromL2
H(Λ, ξ, η), we denote by X its coset, which consequently belongs to L2

H(Λ, ξ, η).
Let K be a bounded endomorphism of H. If X a measurable and of η−integrable square norm mapping from Λ into H,
then it is the same for K ◦ X. Moreover, if X = X′ η−almost everywhere, then K ◦ X = K ◦ X′ η−almost everywhere.
So we can consider the mapping from L2

H(Λ) into itself, which, with the coset of X associates the coset of K ◦ X. We
name this mapping the ampliation of K and we denote it K̂. Of course, H stands for a separable C−Hilbert space, and
L(H) for the Banach space of the continuous bounded linear operators from H into H.

Definition 14. We name ampliation of an element K of L(H), the mapping K̂ : X ∈ L2
H(Λ) 7→ K ◦ X ∈ L2

H(Λ).

Giving an element K of L(H), it is easy to establish the linearity of K̂. Moreover, as ‖K̂X‖2 = ‖K ◦ X‖2 =∫
‖KX(λ)‖2dη(λ) ≤

∫
|‖K‖|2‖X(λ)‖2dη(λ) = |‖K‖|2‖X‖2, we have the following result.

Proposition 25. The ampliation K̂ of an element K from L(H) is linear and continuous.

We let to the reader the exercice of the proof of the following properties.

Proposition 26.
(i) The ampliation of the identity of H is the identity of L2

H(Λ);
(ii) for any pair (K1,K2) of elements from L(H), we have K̂1 ◦ K2 = K̂1 ◦ K̂2.

The adjoint of the ampliation is the ampliation of the adjoint.

Proposition 27. For any K from L(H), we have K̂∗ = K̂∗.

Proof: This results from the equalities:
〈K̂∗X,Y〉 = 〈X, K̂Y〉 = 〈X,K ◦ Y〉 =

∫
〈X(λ),KY(λ)〉dη(λ)

=
∫
〈K∗X(λ),Y(λ)〉dη(λ) = 〈K∗ ◦ X,Y〉 = 〈K̂∗X,Y〉,

for any pair (X,Y) of elements from L2
H(Λ).

We can deduce the following from the two previous propositions.

Proposition 28. If K is a projector (resp. a unitary operator) of H, then K̂ is a projector (resp. a unitary operator) of
L2

H(Λ).

Now we have the necessary tools in order to define the ampliation of a s.m.

Proposition 29. If E is a s.m. on BΠk for H, then the mapping A ∈ BΠk 7→ ÊA ∈ P(L2
H(Λ)) is a s.m. on BΠk for

L2
H(Λ).
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Proof: The first two axioms of Definition 7 are easy to verify. So it remains to prove that, if (An)n∈N is a sequence
of elements from BΠk which decreasingly converges to ∅, then limnÊAnX = 0, for any X from L2

H(Λ). As E is a s.m.,
for any λ from Λ, we have limn‖EAnX(λ)‖2 = 0. As, on another side, ‖EAnX(λ)‖2 ≤ ‖X(λ)‖2, the theorem of the
dominated convergence lets us get

limn
∫
‖EAnX(λ)‖2dη(λ) =

∫
0dη(λ) = 0,

so limn‖ÊAnX‖2 = 0, and we can conclude.

So we get the definition.

Definition 15. We name ampliation of E, s.m. on BΠk for H, the s.m. on BΠk for L2
H(Λ) defined by Ê : A ∈ BΠk 7→

ÊA ∈ P(L2
H(Λ)).

Let us now study the s.m. which is associated with Û, unitary operator of L2
H(Λ), ampliation of the unitary operator

U of H.

Proposition 30. The s.m. associated with the unitary operator Û, ampliation of the unitary operator U, of associated
s.m. E, is Ê, ampliation of E.

Proof: Let X be an element from L2
H(Λ). From the recalls of Section 2.5, for any λ from Λ, we have

limp‖
∑2p−1

n=0 eiλpnEApnX(λ) − UX(λ)‖2 = 0.
As, for any λ from Λ, ‖

∑2p−1
n=0 eiλpnEApnX(λ) − UX(λ)‖2 ≤ 4‖X(λ)‖2, the theorem of the dominated convergence

lets us write
0 = limp

∫
‖
∑2p−1

n=0 eiλpnEApnX(λ) − UX(λ)‖2dη(λ) = limp‖
∑2p−1

n=0 eiλpnEApn ◦ X − U ◦ X‖2

= limp‖
∑2p−1

n=0 eiλpn ÊApnX − ÛX‖2.
Hence ÛX = limp

∑2p−1
n=0 eiλpn Ê(Apn)X, so the property stands.

This result can be generalized as follows.

Proposition 31. If {Un; n ∈ Zk} is the group of the unitary operators of H deduced from E, s.m. on BΠk for H,
then {Ûn; n ∈ Zk} is the group of the unitary operators of L2

H(Λ) deduced from the s.m. Ê, s.m. on BΠk for L2
H(Λ),

ampliation of E.

Proof: If U j, j ∈ {1, . . . , k}, stands for the unitary operator of H, of associated s.m. P jE, we know that U(n1,...,nk) =∏k
j=1 Un j

j , for any (n1, . . . , nk) from Zk. As U j is a unitary operator of associated s.m. P jE, from what precedes, the

unitary operator Û j has as associated P̂ jE, and so P j(Ê) (for any A of BΠ, P̂ jEA = P̂ jEA = ÊP−1
j A = Ê(P−1

j A) =

P jÊ(A)). The group of unitary operators of L2
H(Λ) deduced from the s.m. Ê, s.m. on BΠk for L2

H(Λ), is then

{
∏k

j=1 Û j
n j ; (n1, . . . , nk) ∈ Zk} that is {

∏k
j=1 Ûn j

j ; (n1, . . . , nk) ∈ Zk}, or evenmore {
∏̂k

j=1 Un j

j ; (n1, . . . , nk) ∈ Zk}.

7. Cyclostationary random function

This section is the main part of this text. After a sketch of the problem of decomposition of an element from
Rk, we give a definition of the cyclostationarity. Then we will show how, from such a function, we can define a
L2(Λ)−stationary series and hence perform the PCA in the frequency domain. Finally, we will perform, in a certain
way, the converse operation: from a L2(Λ)−stationary series, we will deduce a cyclostationary r.f. This last operation
is useful for the reconstruction of the data.
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7.1. Decomposition of an element from Rk

Let us set Λ = [0; ∆1[× · · · × [0; ∆k[, where ∆1, . . . ,∆k are k elements (k ≥ 1) of R∗+. We set ∆ = (∆1, . . . ,∆k). As
the topology of Rk is of countable basis, its Borel σ−field, BRk , is generated by a countable family, and so it is for the
σ−field of subsets of Λ, trace of BRk on Λ, that we will denote ξ. From now on, we denote by η a bounded measure
defined on ξ. Therefore, the C−Hilbert space L2(Λ, ξ, η) is separable (because ξ is generated by a countable family).

Let us now examine the decomposition of an element from Rk into the sum of an element from Λ and an element
from the subgroup ∆1Z × · · · × ∆kZ. For this, if n = (n1, . . . , nk) is an element from Zk, let us denote by n � ∆ the
element (n1∆1, . . . , nk∆k) of ∆1Z×· · ·×∆kZ. It is easy to verify that 0Rk �∆ = 0Rk and that n�∆+m�∆ = (n+m)�∆,
for any pair (n,m) of elements from Zk. Let us examine the following property of decomposition.

Proposition 32. Let (t1, . . . , tk) be an element from Rk. There exists an element from Λ × Zk, and only one, ((t1 −
∆1

[
t1
∆1

]
, . . . , tk−∆k

[
tk
∆k

]
), (

[
t1
∆1

]
, . . . ,

[
tk
∆k

]
)), such that (t1, . . . , tk) = (t1−∆1

[
t1
∆1

]
, . . . , tk−∆k

[
tk
∆k

]
)+ (

[
t1
∆1

]
, . . . ,

[
tk
∆k

]
)�∆.

Proof: If (t1, . . . , tk) is an element from Rk, it is clear that (t1 −∆1

[
t1
∆1

]
, . . . , tk −∆k

[
tk
∆k

]
) belongs to Λ (as

[
t j

∆ j

]
≤

t j

∆ j
<[

t j

∆ j

]
+ 1, we have 0 ≤ t j − ∆ j

[
t j

∆ j

]
< ∆ j, that is t j − ∆ j

[
t j

∆ j

]
∈ [0; ∆ j[, j ∈ {1, . . . , k}).

So ((t1 − ∆1

[
t1
∆1

]
, . . . , tk − ∆k

[
tk
∆k

]
), (

[
t1
∆1

]
, . . . ,

[
tk
∆k

]
)) is indeed an element from Λ × Zk, and (t1 − ∆1

[
t1
∆1

]
, . . . , tk −

∆k

[
tk
∆k

]
) + (

[
t1
∆1

]
, . . . ,

[
tk
∆k

]
) � ∆ = (t1, . . . , tk).

Now we have to prove the unicity of this decomposition. Let then ((λ1, . . . , λk), (n1, . . . , nk)) be an element from
Λ × Zk such that (λ1, . . . , λk) + (n1, . . . , nk) � ∆ = (t1, . . . , tk). For j ∈ {1, . . . , k}, we have then λ j + n j∆ j = t j, so
λ j

∆ j
+n j =

t j

∆ j
, and

[
λ j

∆ j

]
+n j =

[
t j

∆ j

]
. But as

[
λ j

∆ j

]
= 0 (because 0 ≤ λ j < ∆ j), it comes n j =

[
t j

∆ j

]
. We deduce that (λ j, n j) =

(t j − ∆ j

[
t j

∆ j

]
,
[

t j

∆ j

]
), and then that ((λ1, . . . , λk), (n1, . . . , nk)) = ((t1 − ∆1

[
t1
∆1

]
, . . . , tk − ∆k

[
tk
∆k

]
), (

[
t1
∆1

]
, . . . ,

[
tk
∆k

]
)), what

ends the proof.

In the following, for any t from Rk, we denote by (λt, nt) the unique element from Λ×Zk such that t = λt + nt �∆.
We can verify that, for any (t,m) of Rk×Zk, λt+m�∆ = λt, and that nt+m�∆ = nt +m (because t+m�∆ = λt +(nt +m)�∆).

7.2. Definition of the cyclostationarity and first properties

Now we have got the tools and the mathematical frame to define the cyclostationarity.

Definition 16. A family {Xt; t ∈ Rk} of elements from L2(Ω) is a Λ−cyclostationary r.f. if
(i) the mapping λ ∈ Λ 7→ Xλ ∈ L2(Ω) is ξ−measurable and of η−integrable square norm;
(ii) 〈Xt, Xt′〉 = 〈Xt+m�∆, Xt′+m�∆〉, for any (t, t′,m) from Rk × Rk × Zk.

Point (ii) is tipically used for the definition of the cyclostationarity, in the particular case where k = 1: 〈Xt, Xt′〉 =

〈Xt+m∆, Xt′+m∆〉, for any (t, t′,m) from R×R×Z. Let us notice that Point (i) is little restrictive, it is verified as soon as
the mapping t ∈ Rk 7→ Xt ∈ L2(Ω) is continuous. Indeed, in that case, this mapping is BRk−measurable (because BRk

is the Borel σ−field), so its restriction to Λ, that is the mapping λ ∈ Λ 7→ Xt ∈ L2(Ω), is ξ−measurable (because ξ is
the σ−field trace of BRk on Λ). Moreover, as [0; ∆1]× · · ·× [0; ∆k] is a compact set (because it is closed and bounded),
its image by the continuous mapping ψ : t ∈ Rk 7→ ‖Xt‖ ∈ R is a compact subset of R, hence is bounded, as well as
ψ(Λ), because Λ ⊂ [0; ∆1] × · · · × [0; ∆k]. This lets us write

∫
‖Xλ‖

2dη(λ) < +∞.
The following of the subsection is dedicated to the association of a s.m. with a Λ−cyclostationary r.f., just as we

can associate a r.m. with a stationary series.

Proposition 33. If {Xt; t ∈ Rk} is a Λ−cyclostationary r.f., then we can affirm that {(Xλ+m�∆)m∈Zk ; λ ∈ Λ} is a family
of stationary series, pairwise stationarily correlated.

Proof: This comes from Point (ii) of Definition 16: for any pair ((λ,m), (λ′,m′)) of elements from Λ × Zk, we have
〈Xλ+(m−m′)�∆, Xλ′+0�∆〉 = 〈Xλ+(m−m′)�∆+m′�∆, Xλ′+0�∆+m′�∆〉 = 〈Xλ+(m−m′+m′)�∆, Xλ′+(0+m′)�∆〉 = 〈Xλ+m�∆, Xλ′+m′�∆〉.
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Section 5 gives us tools for considering a s.m. compatible with a Λ−cyclostationary r.f.

Definition 17. We say that E, s.m. on BΠk for L2(Ω), is compatible with the Λ−cyclostationary r.f. {Xt; t ∈ Rk}, when
E is compatible with the family of stationary series pairwise stationarily correlated {(Xλ+m�∆)m∈Zk ; λ ∈ Λ}.

Such a s.m. exists, as {(Xλ+m�∆)m∈Zk ; λ ∈ Λ} is a family of stationary series pairwise stationarily correlated. Then
we can get the following property.

Proposition 34. If E is a s.m. on BΠk for L2(Ω), compatible with the Λ−cyclostationary r.f. {Xt; t ∈ Rk}, then for any
t from Rk, we have Xt =

∫
ei〈.,nt〉dZXλt

E
.

Proof: From Proposition 33, {(Xλ+m�∆)m∈Zk ; λ ∈ Λ} is a family of stationary series, pairwise stationarily correlated,
and if E is a s.m. compatible with the Λ−cyclostationary r.f. {Xt; t ∈ Rk}, then E is compatible with the fam-
ily of stationary series, pairwise stationarily correlated {(Xλ+m�∆)m∈Zk ; λ ∈ Λ}. Theorem 1 lets us write Xλ+m�∆ =∫

ei〈.,m〉dZXλ+0�∆

E
, this for any (λ,m) from Λ×Zk. Let t be an element from Rk, as (λt, nt) ∈ Λ×Zk and as t = λt +nt �∆,

we have Xt = Xλt+nt�∆ =
∫

ei〈.,nt〉dZXλt
E

.

7.3. Construction of a stationary series from a cyclostationary function

The following result, which is the major result of this text, shows how we use the ampliation to obtain a stationary
series from a cyclostationary function. The PCA in the frequency domain of the resulting stationary series provides
the spectral analysis of the associated cyclostationary function.

Theorem 2. If E is a s.m., on BΠk for L2(Ω), compatible with the Λ−cyclostationary r.f. {Xt; t ∈ Rk}, we can affirm
that
(i) for any m from Zk, the mapping λ ∈ Λ 7→ Xλ+m�∆ ∈ L2(Ω) is a representative of an element X′m from L2

L2(Ω)(Λ);
(ii) (X′m)m∈Zk is a stationary series of elements from L2

L2(Ω)(Λ);
(iii) if ZX′ is the r.m. associated with the stationary series (X′m)m∈Zk , for any A from BΠk , ZX′A, element from L2

L2(Ω)(Λ),
has as representative the mapping λ ∈ Λ 7→ EAXλ ∈ L2(Ω);

(iv) (IX′m)m∈Zk is a L2(Λ)−stationary series;
(v) if Z is the r.m. associated with (IX′m)m∈Zk , for any A from BΠk , we have Z̃A

∗
= γ ◦ EA ◦ X̃′0 ◦ Γ.

Proof: When E is a s.m. compatible with the Λ−cyclostationary r.f. {Xt; t ∈ Rk}, for any t from Rk, we have

Xt =

∫
ei〈.,nt〉dZXλt

E
(cf. Proposition 34). (4)

Let (λ,m) be an element from Λ × Zk. The unicity of the decomposition of an element of Rk gives: nλ+m�∆ = m
and λλ+m�∆ = λ. From (4), we have Xλ+m�∆ =

∫
ei〈.,m〉dZXλ

E
. This means that the stationary series (Xλ+m�∆)m∈Zk has as

associated r.m. ZXλ
E

.
Let us denote {Um; m ∈ Zk} the group of the unitary operators of L2(Ω) deduced from the s.m. E. From the recalls

of Section 2, (UmXλ)m∈Zk is a stationary series of associated r.m. ZXλ
E

, and so the stationary series (UmXλ)m∈Zk and
(Xλ+m�∆)m∈Zk having the same associated r.m., are equal. Then UmXλ = Xλ+m�∆, for any (λ,m) of Λ × Zk.

From Section 6, {Ûm; m ∈ Zk} is the group of the unitary operators of L2
L2(Ω)(Λ), deduced from the s.m. Ê,

ampliation of E.
If we denote X′0 the coset of λ ∈ Λ 7→ Xλ ∈ L2(Ω), ÛmX′0 is an element from L2

L2(Ω)(Λ), which has as representative
the mapping Um ◦ (λ ∈ Λ 7→ Xλ ∈ L2(Ω)), that is to say the mapping λ ∈ Λ 7→ UmXλ ∈ L2(Ω), or evenmore
λ ∈ Λ 7→ Xλ+m�∆ ∈ L2(Ω)),

hence Point (i). Point (ii) comes from ÛmX′0 = X′m. As (X′m)m∈Zk = (ÛmX′0)m∈Zk , we have ZX′ = ZX′0
Ê

.

For any A of BΠk , ZX′0 A = ÊAX′0 = ÊAX′0 has as representative the mapping EA ◦ (λ ∈ Λ 7→ Xλ ∈ L2(Ω)), that is
the mapping λ ∈ Λ 7→ EAXλ ∈ L2(Ω), hence Point (iii).

Let m be an element from Zk, for any (h, y) from L2(Λ) × L2(Ω), we have
〈X̃′m(h), y〉 = 〈

∫
h(λ)UmXλdη(λ), y〉 =

∫
h(λ)〈Xλ,U−my〉dη(λ) = 〈

∫
h(λ)Xλdη(λ),U−my〉 = 〈X̃′0h,U−my〉 = 〈Um ◦ X̃′0h, y〉,
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so X̃′m = Um ◦ X̃′0.
From Section 4, we can write:

ĨX′m
∗

= γ ◦ X̃′m ◦ Γ = γ ◦ Um ◦ X̃′0 ◦ Γ.
For any pair (n,m) from Zk, it comes
ĨX′nĨX′m

∗
= (γ ◦ Un ◦ X̃′0 ◦ Γ)∗γ ◦ Um ◦ X̃′0 ◦ Γ = ΓX̃′0

∗
U−nγγUmX̃∗Γ = ΓX̃′0

∗
Um−nX̃′0Γ = ĨX′m−nĨX′0

∗
,

what lets us affirm that (IX′m)m∈Zk is a L2(Λ)−stationary series. From recalls of Section 2, I ◦ ZX′ is a r.m. and∫
e〈.,m〉dI ◦ ZX′ = I

∫
e〈.,m〉dZX′ = IX′m,

this for any m from Zk. We deduce that Z = I ◦ ZX′ . Let us consider an element A from BΠk , we have, for any
(h, y) from L2(Λ) × L2(Ω),
〈Z̃X′Ah, y〉 = 〈

∫
h(λ)EAXλdη(λ), y〉 =

∫
h(λ)〈Xλ,EAy〉dη(λ) = 〈

∫
h(λ)Xλdη(λ),EAy〉 = 〈X̃′0h,EAy〉 = 〈EA ◦ X̃′0h, y〉,

so Z̃X′A = EA ◦ X̃′0. Considering that ZA = I(ZX′A), Proposition 23 lets us write Z̃A
∗

= Ĩ(ZX′A)
∗

= γ ◦ Z̃X′A ◦ Γ =

γ ◦ EA ◦ X̃′0 ◦ Γ, what ends the proof.

We can then define the L2(Λ)−stationary series deduced from a Λ−cyclostationary r.f.

Definition 18. We name L2(Λ)−stationary series deduced from the Λ−cyclostationary r.f. {Xt; t ∈ Rk} the L2(Λ)−stat-
ionary series (Ym)m∈Zk such that, for any m from Zk, I−1Ym, element from L2

L2(Ω)(Λ) has as representative the mapping
λ ∈ Λ 7→ Xλ+m�∆ ∈ L2(Ω).

Remark 3. Let us consider notation of Theorem 2, and denote by Zλ the r.m. associated with the stationary series
(Xλ+m�∆)m∈Zk . We have then Zλ = ZXλ

E
, and, for any A of BΠk , ZλA = EAXλ. Point (iii) of Theorem 2 can be expressed

in the following way: ZX′A has as representative the mapping λ ∈ Λ 7→ ZλA ∈ L2(Ω).

Remark 4. If (Ym)m∈Zk is a L2(Λ)−stationary series deduced from the Λ−cyclostationary r.f.’s {X1
t ; t ∈ Rk} and

{X2
t ; t ∈ Rk}, then, for any m from Zk, I−1Ym, element from L2

L2(Ω)(Λ) has as representatives the mappings λ ∈ Λ 7→

X1
λ+m�∆

∈ L2(Ω), and λ ∈ Λ 7→ X2
λ+m�∆

∈ L2(Ω). This implies that η({λ ∈ Λ; X1
λ+m�∆

, X2
λ+m�∆

}) = 0, for any m from
Zk.

Remark 5. Point (v) of Theorem 2 is major. It explicits the r.m. Z associated with the L2(Λ)−stationary series
(IX′m)m∈Zk . This step is necessary to proceed to the PCA in the frequency domain.

7.4. Cyclostationary random function deduced from a stationary series
In the last main result of this text we show how, considering a L2(Λ)−stationary series (Yn)n∈Zk , we define a

Λ−cyclostationary r.f. for which the deduced L2(Λ)−stationary series is (Yn)n∈Zk .

Theorem 3. Let (Yn)n∈Zk be a L2(Λ)−stationary series. We can affirm that {(Ỹn
∗
h)n∈Zk ; h ∈ L2(Λ)} is a family of

stationary series pairwise stationarily correlated. Moreover, if {Um; m ∈ Zk} is the group of the unitary operators of
L2(Ω) deduced from E, s.m. on BΠk for L2(Ω), compatible with the family {(Ỹn

∗
h)n∈Zk ; h ∈ L2(Λ)}, and if X is a repre-

sentative of I−1Y0, then {γ ◦ Untγ(X(λt)); t ∈ Rk} is a Λ−cyclostationary r.f. for which the deduced L2(Λ)−stationary
series is (Yn)n∈Zk .

Proof: As, for any pair ((n, h), (n′, h′)) from Zk × L2(Λ), we have 〈Ỹn
∗
h, Ỹn′

∗
h′〉 = 〈Ỹn′ Ỹn

∗
h, h′〉 = 〈Ỹ0Ỹn−n′

∗
h, h′〉 =

〈Ỹn−n′
∗
h, Ỹ0

∗
h′〉. We deduce that {(Ỹn

∗
h)n∈Zk ; h ∈ L2(Λ)} is a family of stationary series pairwise stationarily correlated.

Let us denote by {Um; m ∈ Zk} the group of the unitary operators of L2(Ω) deduced from a s.m. E, on BΠk for
L2(Ω), compatible with the family {(Ỹn

∗
h)n∈Zk ; h ∈ L2(Λ)} . For any t from Rk, let us set Xt = γUntγX(λt) (we recall

that (λt, nt) is the unique element from Λ×Zk such that t = λt + nt �∆). Let t be an element from Λ, λt = t, and nt = 0
((t, 0) ∈ Λ × Zk and t + 0 � ∆ = t), so Xt = γU0γX(t), we deduce that the mapping t ∈ Λ 7→ Xt ∈ L2(Ω), equal to X, is
indeed ξ−measurable and of η−integrable square norm. We have then issue (i) of Definition 16. For any (t,m) from
Rk × Zk, we have

Xt+m�∆ = γUnt+m�∆
γX(λt+m�∆) = γUnt+mγX(λt) = γUmγγUntγX(λt) = γUmγXt.

So we can write 〈Xt, Xt′〉 = 〈γUmγXt, γUmγXt′〉 = 〈Xt+m�∆, Xt′+m�∆〉, this for any (t, t′,m) from Rk×Rk×Zk, hence
issue (ii) of Definition 16 stands. We have just proved that {Xt; t ∈ Rk} = {γUntγX(λt); t ∈ Rk} is a Λ−cyclostationary
r.f.
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Let us now define the L2(Λ)−stationary series deduced from {Xt; t ∈ Rk}. Let us firts notice that UmỸ0
∗

= Ỹm
∗
, for

any m from Zk (because {Um; m ∈ Zk} is the group of the unitary operators of L2(Ω) deduced from E, s.m. compatible
with the family {(Ỹn

∗
h)n∈Zk ; h ∈ L2(Λ)}, and then UmỸ0

∗
h = Ỹm+0

∗
h = Ỹm

∗
h, for any h from L2(Λ)). From Section 7.3,

we know that
(i) for any m from Zk, the mapping λ ∈ Λ 7→ Xλ+m�∆ ∈ L2(Ω) is a representative of an element X′m from L2

L2(Ω)(Λ);

(ii) (IX̃′m)m∈Zk is the L2(Λ)−stationary series deduced from {Xt; t ∈ Rk}.
Let m be an element from Zk. For any (h, y) of L2(Λ) × L2(Ω), we have

〈X̃′mh, y〉 = 〈

∫
h(λ)Xλ+m�∆dη(λ), y〉 =

∫
h(λ)〈γUmγXλ, y〉dη(λ) =

∫
h(λ)〈X(λ), (γUmγ)∗y〉dη(λ)

= 〈

∫
h(λ)Xλdη(λ), (γUmγ)∗y〉 = 〈X̃′0h, (γUmγ)∗y〉 = 〈γUmγX̃′0h, y〉.

So X̃′m = γUmγ ◦ X̃′0.
Results of Proposition 23 let us complete what precedes by

ĨX′m
∗

= γ ◦ X̃′m ◦ Γ = γ ◦ γ ◦ Um ◦ γ ◦ X̃′0 ◦ Γ = Um ◦ ĨX′0
∗
.

But X′0, element from L2
L2(Ω)(Λ), has as representative the mapping λ ∈ Λ 7→ Xλ ∈ L2(Ω), that is the mapping X and

then X′0 = I−1Y0. So what precedes can be writen ĨX′m
∗

= Um ◦ Ỹ0
∗
, and as Um ◦ Ỹ0

∗
= Ỹm

∗
, we have ĨX′m

∗
= Ỹm

∗
and

ĨX′m = Ỹm, or evenmore IX′m = Ym. The series (Ym)m∈Zk = (IX′m)m∈Zk is indeed the L2(Λ)−stationary series deduced
from the Λ−cyclostationary r.f. {γUntγX(λt); t ∈ Rk}.

7.5. Principal Components Analysis

Let {Xt; t ∈ Rk} be a Λ−cyclostationary r.f., and let us denote by (Y p
n )n∈Zk the L2(Λ)−stationary series issued

from the p first steps of the PCA in the frequency domain of the L2(Λ)−stationary series (Yn)n∈Zk deduced from
{Xt; t ∈ Rk}. From Section 7.4, we know how to define a Λ−cyclostationary r.f. {Xp

t ; t ∈ Rk} from which the
deduced L2(Λ)−stationary series is (Y p

n )n∈Zk . As I−1Yn (resp. I−1Y p
n ), element from L2

L2(Ω)(Λ), has as representative
the mapping λ ∈ Λ 7→ Xλ+n�∆ ∈ L2(Ω) (resp. λ ∈ Λ 7→ Xp

λ+n�∆
∈ L2(Ω)), we can write, for any n from Zk,

‖Y0 − Y p
0 ‖

2
L2

L2(Λ)
(Ω)

= ‖Yn − Y p
n ‖

2
L2

L2(Λ)
(Ω)

= ‖I−1Yn − I
−1Y p

n ‖
2
L2

L2(Ω)
(Λ)

=
∫
‖Xλ+n�∆ − Xp

λ+n�∆
‖2L2(Ω)dη(λ).

The quantity
∫
‖Xλ+n�∆ − Xp

λ+n�∆
‖2dη(λ), which is independent of n, measures the quality of the reconstruction of

the data. In Boudou and Viguier-Pla [6], we consider the particular case where k = 1, ∆ = 1, and Ω = {ω1, . . . , ω10}.

8. Simulation

We consider the very particular case where k = 1, Λ = [0; 1[, η is the Lebesgue measure defined on ξ, σ−field
of the subsets of [0; 1[, trace of BR on [0; 1[. and Ω = {ω1, . . . , ωm}, with P(ωi) = 1

m , i ∈ {1, . . . ,m}. If we set
y j =

√
m1{ω j}, (y1, . . . , ym) is an orthonormal basis on L2(Ω).

Let us consider a [0; 1[−cyclostationary r.f. {Xt; t ∈ R}. As the mapping t ∈ [0; 1[7→ Xt ∈ L2(Ω) is ξ−measurable
and of η−integrable square norm, the mapping f j : t ∈ [0; 1[7→ 〈Xt, y j〉 ∈ C, that is the mapping t ∈ [0; 1[7→

1
√

m Xt(ω j) ∈ C, is ξ−measurable and of η−integrable square norm. Let U be a unitary operator of L2(Ω) such
that UXt = Xt+1, for any real t (we know that at least one of such operators exists). For any real t, we then have
Xt =

∑m
j=1 f j(t − [t])U[t]y j, what lets us get the m temporal trajectories:

Xt(ωl) =
√

m
∑m

j=1 f j(t − [t])(B[t])l j,
where B is the matrix expression of U relatively to the basis (y1, . . . , ym):

(B[t])l j = 〈U[t]y j, yl〉 =
∑m

q=1
1
m (U[t]y j)(ωq)yl(ωq) = 1

√
m (U[t]y j)(ωl).

Let us now examine the expression of the associated stationary series (IX′n)n∈Z. For any (t, n) from [0; 1[×Z, we
have Xt+n =

∑m
j=1 f j(t)Uny j. So, for any n from Z, X′n =

∑m
j=1 f j(Uny j), hence IX′n =

∑m
j=1(Uny j) f j, and then, for any

l of {1, . . . ,m}, (IX′n)(ωl) =
√

m
∑m

j=1(Bn)l j f j, expression to be brought together with the trajectory equations.
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In order to get the r.m. associated with the series (IX′n)n∈Z, we have to consider the s.m. E associated with U. As
E is a s.m. on BΠ for L2(Ω), vector space of dimension m, it is concentrated on a finite number of elements from Π,
λ1, . . . , λm′ , m′ ≤ m: E =

∑m′
l=1 δλl (.)Pl, {Pl, l = 1, . . . ,m′} is a family of projectors such that

∑m′
l=1 Pl = IL2(Ω).

Then we have Un =
∑m′

l=1 eiλlnPl, for any n from Z. So we can write
IX′n =

∑m
j=1

∑m′
l=1 eiλln(Ply j) f j =

∑m′
l=1 eiλln

∑m
j=1(Ply j) f j.

If we set Zl =
∑m

j=1(Ply j) f j, l = 1, . . . ,m′, we can verify that Z̃lZ̃∗l′ = 0, for any pair (l, l′) of distinct elements of
{1, . . . ,m′} and what precedes can be writen

IX′n =
∑m′

l=1 eiλlnZl,
for any n from Z.
The r.m. associated with the L2([0; 1[)−stationary series (IX′n)n∈Z is then

Z =
∑m′

l=1 δλl (.)Zl.
It is the usual PCA of each component Z1, . . . ,Zm′ , which gives the PCA in the frequency domain of (IX′n)n∈Z.
We consider the particular case where m = 4, and we set

P1 = 1
√

2
(y1 + iy4) ⊗ 1

√
2
(y1 + iy4); P2 = y2 ⊗ y2 + y3 ⊗ y3; P3 = 1

√
2
(y1 − iy4) ⊗ 1

√
2
(y1 − iy4);

λ1 = −λ; λ2 = 0; λ3 = λ; m′ = 3;

B = 1
2 e−iλ


1
0
0
i


(
1 0 0 −i

)
+


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 + 1
2 eiλ


1
0
0
−i


(
1 0 0 i

)
=


cos λ 0 0 −sin λ

0 1 0 0
0 0 1 0

sin λ 0 0 cos λ

.
If we choose f1(t) = cos (2πt)(cos (λt) − sin (λt)), f2(t) = cos (2πt), f3(t) = −cos (2πt), f4(t) = cos (2πt)(cos (λt) +

sin (λt)) and λ = 0.5, we get the trajectories, which are plotted in Fig. 1:
Xt(ω1) = 2cos (2πt)(cos (λt) − sin (λt)), Xt(ω2) = 2cos (2πt), Xt(ω3) = −2cos (2πt), and Xt(ω4) = 2cos (2πt)(cos (λt) +

sin (λt)).

Fig. 1: A particular case, where m = 4, of trajectories of Xt(ω1), Xt(ω2), Xt(ω3) and Xt(ω4), t ∈ [−10; 10]
.

As for the L2([0; 1[)-stationary series, we get
(IX′n)(ω1) : t 7→ 2cos (λn) f1(t) − 2sin (λn)) f4(t) = 2cos (2πt)(cos (λ(n + t)) − sin (λ(n + t)),
(IX′n)(ω2) : t 7→ f2(t) = 2cos (2πt), (IX′n)(ω3) : t 7→ f3(t) = −2cos (2πt),
(IX′n)(ω4) : t 7→ 2sin (λn) f2(t) − 2sin (λn)) f4(t) = 2cos (2πt)(cos (λ(n + t)) + sin (λ(n + t)).

The spectral components are then Z1 = 1
2 (y1 + iy4)( f1 − i f4), Z2 = (y2 − y3) f2 and Z3 = 1

2 (y1 − iy4)( f1 + i f4). Note
that IX′n = e−iλnZ1 + Z2 + eiλnZ3. Their respective first principal components are C1(Z1) = 1

2‖ f1 − i f4‖(y1 + iy4),
C1(Z2) = ‖ f2‖(y2 − y3), and C1(Z3) = 1

2‖ f1 + i f4‖(y1 − iy4), all elements of L2(Ω).
The unidimensional stationary series (un)n∈Z, resulting from the PCA in the frequency domain of (IX′n)n∈Z is

then such that, for any n from Z, un = e−iλn 1
2 ‖ f1 − i f4‖(y1 + iy4) + ‖ f2‖(y2 − y3) + eiλn 1

2‖ f1 + i f4‖(y1 − iy4) = ‖ f1 +

i f4‖(cos (λn)y1 + sin (λn)y4) + ‖ f2‖(y2 − y4).
So we have un(ω1) = 2‖ f1 + i f4‖cos (λn), un(ω2) = 2‖ f2‖, un(ω3) = −2‖ f2‖, and finaly, un(ω4) = 2‖ f1 + i f4‖sin (λn)

(plotted on Fig. 2). These constitute the first principal component, which is composed of four trajectories in Z (because
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Fig. 2: The four trajectories of the unidimensional series (un)n∈Z, resulting from the PCA of the L2(Ω)−stationary series (IX′n)n∈Z, deduced from
the cyclostationary r.f. (Xt)t∈R

.

Ω = {ω1, ω2, ω3, ω4}). Therefore, the C−Hilbert space C, of dimension 1, substitutes to the separable C−Hilbert space
L2([0; 1[), of infinite dimension.

As for the reconstructed cyclostationary function with the first step of the PCA (see Section 7.4), it is the same as
the initial data for this example, all the function is reconstructed with only one step. All the information included in
{Xt; t ∈ R} is contained in {un; n ∈ Z}.

9. An hypothesis of independence

In this last section, we introduce an hypothesis of independence, which places us in the particular case, mentioned
at the end of Section 2.6, where the PCA in the frequency domain and the classic PCA are equivalent. We consider
the particular case where k = 1 and ∆ = 1 (this implies that Λ = [0; 1[ and that η is a bounded measure defined on ξ,
σ−field trace of BR on Λ).

We consider two independent sub-σ−fields fromA, B1 and B2, such that the family {A1 ∩ A2; (A1, A2) ∈ B1 ×B2}

generatesA. As the family {A1 ∩ A2; (A1, A2) ∈ B1 ×B2} contains Ω, is stable by finite intersection, and generatesA,
we can state that vect{1A1∩A2 ; (A1, A2) ∈ B1 × B2} = L2(Ω,A, P). Let us start by some preliminary results which will
be useful in the following.

Lemma 1. For any (y, X) from L2(Ω,B2, P) × L2
L2(Λ)(Ω,B1, P), the mapping yX : ω ∈ Ω 7→ y(ω)X(ω) ∈ L2(Λ) is

A−measurable and of P−integrable square norm.

Proof: For any h from L2(Λ), we can write 〈y(.)X(.), h〉 = y(.)〈X(.), h〉. As y is B2−measurable, it is A−measurable.
As X is B1−measurable, it is the same for 〈X(.), h〉, which is also A−measurable. So the product y(.)〈X(.), h〉 is
A−measurable, and so it is for 〈y(.)X(.), h〉.

As this is exact for any h from L2(Λ), which is separable, we deduce the A−measurability of yX. Moreover, the
r.m.’s |y(.)|2 and ‖X(.)‖2 being respectively B2−measurable and B1−measurable, they are independent. So∫

‖y(.)X(.)‖2L2(Λ)dP =
∫
|y(.)|2‖X(.)‖2L2(Λ)dP = (

∫
|y(.)|2dP)(

∫
‖X(.)‖2dP) < +∞.

If we replace L2(Λ) by C, we get the following property.

Lemma 2. For any (u1, u2) from L2(Ω,B1, P) × L2(Ω,B2, P), the mapping u1u2 : ω ∈ Ω 7→ u1(ω)u2(ω) ∈ C is
A−measurable and of P−integrable square module.

The reader will notice the consequence of the independence of the sub-σ−fields B1 and B2. For any pair
((u1, u2), (v1, v2)) of elements from L2(Ω,B1, P) × L2(Ω,B2, P), we have

〈u1u2, v1v2〉L2(Ω) = 〈u1, v1〉L2(Ω,B1,P)〈u2, v2〉L2(Ω,B2,P) and ‖u1u2‖L2(Ω) = ‖u1‖L2(Ω,B1,P)‖u2‖L2(Ω,B2,P).
Let us now examine some properties of continuity.
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Lemma 3. If y is an element from L2(Ω,B2, P), the mapping x ∈ L2(Ω,B1, P) 7→ xy ∈ L2(Ω) is continuous.

Proof: This results from ‖xy − x′y‖L2(Ω) = ‖x − x′‖L2(Ω,B1,P)‖y‖L2(Ω,B2,P).

In a same way, exchanging the roles of L2(Ω,B1, P) and L2(Ω,B2, P), we get the following.

Lemma 4. If x is an element from L2(Ω,B1, P), the mapping y ∈ L2(Ω,B2, P) 7→ xy ∈ L2(Ω) is continuous.

From now on, X stands for an element from L2
L2(Ω,B1,P)(Λ) and (yn)n∈Z for a stationary series taking values in

L2(Ω,B2, P). For any t from R, let us set Xt = X(t−[t])y[t]. Of course, for any (λ, n) from Λ×Z, we have Xλ+n = X(λ)yn.
The random variables X(λ) and yn are respectively B1−measurable and B2−measurable. So they are independent
random variables, the parts associated with Λ and Z, X(λ) and yn, obtained by the decomposition t = (t− [t]) + [t], are
then independent. It is in this way that the family {Xt; t ∈ R} of elements of L2(Ω) is singular. We have a first result.

Proposition 35. The family {Xt; t ∈ R} is a Λ−cyclostationary r.f.

Proof: First of all, let us notice that, from Lemma 2, Xt = X(t−[t])y[t] ∈ L2(Ω,A, P). The mapping x ∈ L2(Ω,B1, P) 7→
xy0 ∈ L2(Ω,A, P) is continuous (cf. Lemma 3), so measurable, and as X is measurable, the same happens for
(x ∈ L2(Ω,B1, P) 7→ xy0 ∈ L2(Ω,A, P)) ◦ X, that is for t ∈ [0; 1[7→ X(t)y0 ∈ L2(Ω,A, P), evenmore for t ∈ [0; 1[7→
Xt ∈ L2(Ω,A, P). In addition,

∫
‖X(t)y0‖

2dη(t) =
∫
‖X(t)‖2‖y0‖

2dη(t) < ∞, hence Point (i) of the definition of the
cyclostationarity stands.

Moreover, for any pair (t, t′) of elements from R, as Xt+1 = X(t − [t])y[t]+1, we have

〈Xt+1, Xt′+1〉 = 〈X(t − [t])y[t]+1, X(t′ − [t′])y[t′]+1〉L2(Ω,A,P) = 〈X(t − [t]), X(t′ − [t′])〉L2(Ω,B1,P)〈y[t]+1, y[t′]+1〉L2(Ω,B2,P)

= 〈X(t − [t]), X(t′ − [t′])〉〈y[t], y[t′]〉 = 〈X(t − [t])y[t], X(t′ − [t′])y[t′]〉L2(Ω,A,P) = 〈Xt, Xt′〉.

Let us now define the L2(Λ)−stationary series deduced from the Λ−cyclostationary r.f. {Xt; t ∈ R}. From Theo-
rem 2, the mapping λ ∈ Λ 7→ Xλ+n ∈ L2(Ω), that is the mapping λ ∈ Λ 7→ X(λ)yn ∈ L2(Ω) is a representative of an
element Yn from L2

L2(Ω)(Λ).
In a same way as there exists an isometry (cf. Section 4) from L2

L2(Ω)(Λ) on L2
L2(Λ)(Ω), there exists an isometryH

from L2
L2(Ω,B1,P)(Λ) on L2

L2(Λ)(Ω,B1, P) such thatH(hx) = xh, for any (h, x) element from L2(Λ) × L2(Ω,B1, P). Then

we can show that γ ◦ X̃ ◦ Γ = H̃X
∗

(formula to be examined through Proposition 23). We can now formulate the
following result.

Proposition 36. For any n from Z, we have IYn = yn(HX).

Proof: For any (A1, A2, h) from B1 × B2 × L2(Λ), we can write, on one hand:

〈ĨYn(1A1 1A2 ), h〉L2(Λ) = 〈ĨYn, (1A1 1A2 ) ⊗ h〉σ2 = 〈IYn, (1A1 1A2 ).h〉L2
L2(Λ)

(A) = 〈Yn, h.(1A1 1A2 )〉L2
L2(Ω)

(Λ)

=

∫
〈X(λ)yn, h(λ)1A1 1A2〉L2(Ω)dη(λ) =

∫
h(λ)〈X(λ), 1A1〉L2(Ω,B1,P)〈yn, 1A2〉L2(Ω,B2,P)dη(λ)

= 〈yn, 1A2〉L2(Ω,B2,P)

∫
h(λ)〈X(λ), 1A1〉L2(Ω,B1,P)dη(λ)

= 〈yn, 1A2〉L2(Ω,B2,P)〈

∫
h(λ)X(λ)dη(λ), 1A1〉L2(Ω,B1,P) = 〈yn, 1A2〉L2(Ω,B2,P)〈X̃Γh, 1A1〉L2(Ω,B1,P)

= 〈yn, 1A2〉〈1A1 , γX̃Γh〉 = 〈yn, 1A2〉〈1A1 , H̃X
∗

h〉

(5)
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and on another hand:

〈 ˜yn(HX)(1A1 1A2 ), h〉L2(Λ) = 〈 ˜yn(HX), (1A1 1A2 ) ⊗ h〉σ2 = 〈yn(HX), 1A1 1A2 h〉L2
L2(Λ)

(Ω)

=

∫
〈yn(ω)(HX)(ω), 1A1 (ω)1A2 (ω)h〉L2(Λ)dP(ω)

=

∫
yn(ω)1A1 (ω)1A2 (ω)〈(HX)(ω), h〉dP(ω) = (

∫
yn1A2 dP)(

∫
1A1 (ω)〈(HX)(ω), h〉dP(ω))

= 〈yn, 1A2〉L2(Ω)〈HX, 1A1 h〉L2
L2(Λ)

(Ω,B1,P) = 〈yn, 1A2〉〈H̃X, 1A1 ⊗ h〉 = 〈yn, 1A2〉〈1A1 , H̃X
∗

h〉.
(6)

From (5) and (6), we deduce
〈ĨYn(1A1 1A2 ), h〉 = 〈 ˜yn(HX)(1A1 1A2 ), h〉.

Hence, considering the property of density of the family {1A1 1A2 ; (A1, A2) ∈ B1 × B2},

ĨYn = ˜yn(HX),
or evenmore

IYn = yn(HX).

The L2(Λ)−stationary series deduced from the Λ−cyclostationary r.f. is then (yn(HX))n∈Z. From Section 2.6,
the PCA in the frequency domain of this last is equivalent to the PCA of each of the random vectors yn(HX) and is
deduced from the PCA ofHX, element from L2

L2(Λ)(Ω,B1, P).

This study can be generalized to other kinds of cyclostationarity, in particular cyclostationary series.
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