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Abstract

In this paper, we give a definition of a cyclostationary function, which specifies and extends usual definitions of
cyclostationary processes. We transform such a cyclostationary function into a series. The property of stationarity
of the series lets us proceed to the Principal Components Analysis in the frequency domain. This technique requires
the introduction of new notions as the conjugated of a spectral measure, the association of a set of unitary operators
with a family of stationary series, and the ampliation. We illustrate this work by a simulated example, and we end
by a particular case of cyclostationary function, where the Principal Components Analysis in the frequency domain is
equivalent to the classical Principal Components Analysis.

Keywords: Cyclostationarity, Orthogonal projectors, Principal Components Analysis, Random measures, Spectral
measures, Stationary processes, Unitary operators.
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1. Introduction

Cyclostationary processes, also refered as periodically correlated random processes, have been explored since the
1960s and before (Voychishin and Dragan [17], is an English translation of articles first published in 1957 and 1960).
It has been firstly mathematically treated by Gladyshev [9], and largely developed by Hurd [10], as a modelling of
phenomena which are periodically correlated, that is as processes for which some statistics present a periodicity. A
renewed interest of mathematical aspects of this field can be observed, as in Bouleux et al. [7], where we find a char-
acterization of these processes using dilation matrices. Periodicity occurs in various phenomena, due for example to
modulation in signal theory, rotation in mechanics, revolution of planets or pulsation of stars for astronomy, season-
ality in economics, or sanguine pulse for medicine. This notion has already been largely employed in applications.
Let us cite some examples such as telecommunications (Gardner [8]), mechanic transmission (Randall et al. [12]),
radioastronomy (Weber and Faye [16]), locomotion (Zakaria [18]), or medical studies (Roussel [13]). A collection of
illustrations can be found in Antoni [1].

Many authors address cyclostationary signals on a temporal level, indexed by R or Z. In that case, the shape
of the process is easy to visualize and to model. In the present paper, we give a definition of cyclostationarity for
random functions (r.f.’s) indexed by R¥, and we propose a way for processing the Principal Components Analysis
(PCA) of such r.f’s. Indeed, we can imagine phenomena varying on both space and time, as, for example, a flow in
fluid mechanics. This kind of cyclostationarity gives tools for modelling such phenomena, and many other types.

Very often, when considering a process, it is centered, so the scalar product becomes a covariance. We do not
make this hypothesis, because it is not necessary for the mathematical development, and this simplifies the writing.
Nevertheless, this hypothesis can be done, if it makes more sense from a statistical point of view.

Section 2 is devoted to mathematical recalls. We work in the complex field, to be able to use Fourier transform, as
we address signals in the frequency domain.
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The stochastic integral is defined as an isometry. The spectral measure is exposed as a mapping defined on a set
which is a o—field, what is natural as it is a measure, taking values in a set of projectors, that is idempotent mappings.
We then introduce the association between a unitary operator and a spectral measure. Let us expose hereafter a
particular case for which the notions are easy to write. We consider a C—Hilbert space H, which can be a space of
random variables, where mappings operate. If {P;; j € J} is a finite family of projectors from H into H such that
2jesPj=1thenU =}, ' P} is a unitary operator for which the associated spectral measure is & = Y, jes 04,()Pj,
where 0, is the Dirac measure concentrated on A;, element from [-m;#[. If X is an element from H, we note
that (U"(X)),ez (we further denote U"(X) = U"X) is a stationary series, because (U"X, U"X) = U™k X, U™*X), for
which the associated random measure is Z3(.) = X ;c; 6,,(.)P;X, what means that U"X = fei'”ng(.) =Y e eV"PX.

We end the section by the recall of the PCA in the frequency domain. We say that a k—dimensional series
(X,)nez is C¥—stationary when E(X,'X,,) = E(X,_»'Xo) (or more generally, E(X,, ® X,,) = E(X, ® X,_,), where ®
stands for the tensor product), for any pair (n,m) of elements from Z. The first p steps (p < k) of the PCA in
the frequency domain of this series may be presented as the search of a p—dimensional filter (3., C;, X;—m)nez, (Cin
being an operator from C* into CP) which summarizes (X,),cz. In order to measure the quality of the resulting
summary, we transform the p—dimensional series (3., C;uX,-m)nez into a k—dimensional series thanks to a second
filtering operation, (3, Ry 3,y CnXn—g-mnez = (Xi(X g RyCi-g)Xn-1)nez (R4 is an operator from CP? into C*, and then
Y4 RsCig is an operator from C* into C*). This last series is a reconstitution of the data. It is stationarily correlated
with (X;)nez: E(Xm[Zl(Zq Rqu—q)Xn—l) = E(Xm—anl(Zq Rqu—q)X—l), and then |IX,, - Zl(Zq chl—q)Xn—lll = |IXo -
2(Xq RyCi-g)X||. The filters are chosen such that this last quantity is as small as possible.

In Sections 3 to 6, we develop mathematical tools which we are going to use in the studies of cyclostationary
functions. We define the conjugate spectral measure. We associate a spectral measure with a family of stationary
series. We study the ampliation, operation which consists, from an operator of H (mapping from H into H), to define
an operator of LZ(A) (space of square-integrable mappings from A into H). All these mathematical tools will be
necessary for Section 7, where we study the cyclostationarity. Section 8 is devoted to a simulated example. We
end by an exploration of a particular case of cyclostationary function, which is decomposed into the product of two
independant random variables, one of them is stationary, and the other one is periodic.

Let us expose shortly the case of cyclostationary series.

The set of the random variables {x,;n € Z}is a {0, ..., k—1}—cyclostationary series when E(x,,X,;) = E(Xy4 pk X+ pk)»
for any (n,m, p) from Z X Z X Z. So we can easily verify that {(xz,1p)nez; p € {0, ...,k — 1}} is a family of stationary
series pairwise stationarily correlated. The subset {0, ...,k — 1} is such that with any n from Z we can associate an

element, and only one, from {0, ...,k — 1} X kZ, (n — k[ %], k[}]) such that n = n — k[7] + k[7] ([x] is the integer part
of x).

If we consider the k—dimensional random vector X! = (x,,k xnk+k_1), we can easily verify that (X,)qez
is a Ck—stationary series. So we can define the PCA in the frequency domain of (X,),cz. The first p steps give a
CP—stationary series, (X} )nez, and a Ck —stationary series, (X, ),ez. Each of the random vectors X/ is k—dimensional:

(X;,’)T = (y,l,l e y,,,k). We can then verify that {x),; n € Z}, where x;] = Y2k 21+15 isa{0,...,k—1}—cyclostatio-
nary series.
We show that
k=1 k-1
2 2 2 2
ket = X P = 11X = X2 = X0 = XG1P = > I = 11 (1)
=0 =0

So we can summarize a cyclostationary series by a C”—stationary series, (X} ),ez. The quantity (1) is a measure of the
quality of this summary. As for the cyclostationary series (X, ),ez, it enables the reconstruction of the data.

Let us now present a particular case of the foregoing study. This case is similar to the previous one, but concerns
the functions instead of series. Let us consider a family of integrable square module random variables {X;; ¢ € R} such
that (X;, Xy) = (Xp+1, Xr+1), for any pair (z,¢") of reals.

From the process (X;):cr, we build a stationary series (Y},),cz, €ach element Y,, is a random vector, more precisely,
a random variable taking values in the C—Hilbert space L*([0; 1[) (which substitutes to C*), which is defined from the
family of random variables {X,.,;¢ € [0; 1[} (this family substitutes to the family {x, ..., Xu+1x—1} in the previous
example).

The series (Y,)nez is such that E(Y, ® Y,,,) = E(Y,,—,, ® Yy) and we can proceed to the PCA in the frequency domain.



2. Prerequisite

The goal of this section is to define the notation and to recall the mathematical tools for the understanding of this
text. Recalls of Subsection 2.1 to Subsection 2.5 come from Boudou [3] and Boudou and Romain [5].

2.1. Measurable spaces and Hilbert spaces

All along this text, k denotes a non null positive integer (hence possibly equal to 1). When H is a C—Hilbert
space, we denote by P(H) the set of the projectors of H. The adjoint of a continuous operator L is denoted L*. If
H and H’ are two separable C—Hilbert spaces, we denote by o (H, H’) the family of the Hilbert-Schmidt operators
from H in H’, which is also a C—Hilbert space, for which the scalar product is (K, L),> = tr KL*. For any (K, h, h") of
oo(H,H)x Hx H', we have (K,h ® h'),2 = (Kh, I'").

In this text, (Q, A, P) and (A, &, 1) are two probability spaces such that the C—Hilbert spaces L*(Q, A, P), shortly
denoted, when there is no ambiguity, L*(Q), and LZ(A,g‘E, 1), shortly denoted L*(A), are separable. According to the
context, X stands for the conjugate complex of x or for the coset of x. Then, an element X from Lé(ﬂ, A, P) (resp.
of L%{(A, &,m)) is a measurable mapping from Q (resp. from A) to the C—Hilbert space H, of P—integrable (resp.
n—integrable) square norm. The coset X is an element from the C—Hilbert space L%J(Q, A, P), shortly denoted L%I(Q)
(resp. L%I(A, &,m), shortly denoted L%,(A)). We will say that X is a representative of X. So when X = X’ P—almost
everywhere (resp. n—almost everywhere), then X = X’. When there is no ambiguity, the symbol o of composition
between two mappings will be omitted, as well as the parentheses for an element to which a mapping is applied (for
example, K o L will be denoted KL, and K(h) will be denoted K#).

The mapping y : y € L*(Q)  y € L*(Q) (resp. I' : h € L*(A) — h € L*(A)) is involutive, antilinear, and preserves
the norm. This implies that (y;,y2) = {(yy2, yy1) (tesp. (hy,hy) = (T'hp,Thy)), for any pair (y;,y,) of elements from
L*(Q) (resp. (hy, hy) of elements from L2(A)).

The o—field By of subsets of IT¥ (IT = [—x; x1[), stands for the trace of Bg«, Borel o—field of R¥, on II*.

We denote by Wy the mapping @ € Il — —a — 27r[_“2’;”] € II, by Wy the mapping (ay,...,a;) € II*
(Wney, ..., Wnay) € IT¥, and by P;, j € {1,...,k}, the coordinate mapping: (ai,...,ax) € I* - a; € II. The
mapping P; is measurable (because for any A from By, PJTIA =X+ XAX---xIIe€eBpg®- @By = By),
and so is it for Wy (because for any A of By, we have WﬁlA = (-AN] — m;x)) U (A N {—nx})). If we remark that
Pjo W = Wy o P, we can deduce the measurability of Wyy.

2.2. Random measure and stochastic integral

In this subsection, (E, ¢) and (F, ) stand for two measurable spaces, H and H’ stand for two C—Hilbert spaces.
We start by the definition of the well-known random measure.

Definition 1. A random measure (r.m.) Z, defined on ¢ and taking values on H, is a mapping from { in H such that:
(i) for any pair (A, A”) of disjoint elements of £, Z(AU A’) = ZA + ZA’ and (ZA,ZA’) = 0;
(ii) for any sequence (A,),en Which decreasingly converges to 0, limZA,, = 0.

The “orthogonality” condition of ZA and ZA’, as soon as A N A’ = @, implies the following.

Proposition 1. The mapping uz : A € ¢ — ||IZA|> € R, is a finite measure.

For any set E, we denote by vectE the space generated by the elements from E, and by vectE its closure. For any
pair (A, A’) of elements from ¢, we have (ZA,ZA’) = (14, 1a4)12(.), and, as vect{la;A € ¢} = L*(E, {,uz), we can
define the stochastic integral with respect to the r.m. Z.

Definition 2. The stochastic integral with respect to the r.m. Z is the unique isometry from L*(E,,uz) on H; =
vect{14; A € £}, which associates ZA with 1,, for any A from /.

The image of an element ¢ from L*(E, £, 1) by this isometry is named stochastic integral of ¢ with respect to the
r.m. Z and is denoted f @dZ. The composition of a r.m. with a bijection gives a new stochastic integral as follows:



Proposition 2. Let L be a linear (resp. antilinear) bijection from H on H’', which preserves the norm. We have
(i) LoZisarm.;

(i) proz = pz;

(iii) for any @ from L*(tizo7), [@dL o Z = L([ dZ) (resp. [ ¢dLoZ = L([gdZ)).

Just as we can define the image of a probability measure, we can define the image of the rm. Z.

Proposition 3. If f is a measurable function from E into F, then

(i) the mapping f(Z) : A€ F v+ Zf~'A € H is a rm. named image of Z by f;

(ii) the image of uz by f equals j1yz);

(iii) if ¢ belongs to L*(F, F . 1fz), then ¢ o f belongs to L*(E, ¢, uz) and ftpdf(Z) = ft,o o fdZ.

Let us notice that, when H = L*(Q, A, P), the qualification of random for these measures takes its full meaning,
because Z(A), element of L%(Q), is a random variable.

2.3. Stationary series
Let us first define a stationary series taking values in a C—Hilbert space H.

Definition 3. A stationary series taking values in H is a family (X},),cz+ of elements from H such that (X, X,,) =
(Xn—m> Xo), for any pair (n, m) of elements from 7k,

When k = 1 and H = L*(Q, A, P), if EX,, = 0, we get the usual definition of the wide sense of the stationarity,
because (X, X;,) = cov (X, X;,,). With a stationary series of elements from H, we can associate a r.m. This r.m. is
defined on B. For any (ny,...,n;) of 7k, we denote by el-(-m)) the measurable mapping which, to (@, ..., a)
from TTF associates the complex ell@m++am) - Of course, in the particular case where k = 1, we have e gell >
e ¢ C, for any n of Z. Any stationary series is a Fourier transform of a r.m.

Proposition 4. If (X,),cz+ is a stationary series of elements from H, there exists a rm. Z, and only one, defined on
B, and taking values in H, such that X,, = fei<"”>dZ, for any n of Z*.

Then it is natural to consider the r.m. associated with a stationary series.

Definition 4. We name r.m. associated with a stationary series (X},),ez+ the unique r.m. such that X,, = f ei-mdz, for
any n from Z¥.

Proposition 4 has got a converse.

Proposition 5. [fZ is a rm. defined on By, ( f A7), is a stationary series of associated r.m. Z.

In statistics, we often use the notion of stationarily correlated processes.

Definition 5. Two stationary series (X,,),ezx and (X),),ezx are stationarily correlated when (X, X)) = (X, X)), for
any pair (n,n’) of elements from Z*.

The stationary correlation can also express in the frequency domain.

Definition 6. Two r.m.’s Z and Z’ defined on B taking values in H are said to be stationarily correlated when
(ZA,Z'A) = 0, for any pair (A, A”) of disjoint elements from By

We have then the following equivalence.

Proposition 6. Two stationary series (X,),ezx and (X;,),ezx, taking values in H, are stationarily correlated if and only
if their respective associated rm.’s Z and Z' are stationarily correlated.



2.4. Spectral measure

In this subsection, (E, ), (F, ¥ ) and H have the same meaning as in Section 2.2. Let us start by the definition of
the spectral measure.

Definition 7. A spectral measure (s.m.) on ¢ for H is a mapping &, from £ into P(H), such that

() 8E = Iy;

(i) E(A U B) = EA + EB, for any pair (A, B) of disjoint elements from {;

(i) 1im,EA,X = 0, for any sequence (A;),en of elements from £ which decreasingly converge to @, and for any X
from H.

With a s.m., we can define a r.m. for any X from H as follows.

Proposition 7. If E is a s.m. on { for H, then, for any X from H, the mapping Zg cAel{— EAXe€Hisarm.

Conversely, from a family of r.m.’s, we can define a s.m.

Proposition 8. If {Z¥; X € H)} is a family of rm.’s, defined on ¢ and taking values in H, such that
(a) ZXE = X, for any X from H,

(b) for any pair (X,X’) of elements from H, the rm.’s ZX and ZX" are stationarily correlated,

we can state that

(i) for any A from ¢, the mapping EA : X € H — ZXA € H is a projector;

(i1) the mapping & : A€ { — EA € P(H) is a s.m. on { for H.

Let us consider a measurable mapping f from E into F and € a s.m. on { for H. We can define the image of & by
I
Proposition 9. The mapping fE: A€ F v Ef'A € P(H) is a s.m. on F for H, named image of & by f. Moreover,
for any X from H, Z]’fa = f(Z}).

2.5. Association between spectral measure and unitary operator
A s.m. on By for the C—Hilbert space H can be associated with a unitary operator of H in a bijective way.

Proposition 10. With any unitary operator U of H, we can associate a s.m. &, and only one, on By for H, such that
UX = [€'dZ}, for any X from H.

So we can define the s.m. associated with a unitary operator.

Definition 8. We name s.m. associated with a unitary operator U of H, the unique s.m. &, on By for H, such that
UX = [e"1dZ¥, for any X from H.

The converse of Proposition 10 can be expressed as follows.

Proposition 11. If & is a s.m. on By for H, then the mapping X € H — fei'ldzg € H is a unitary operator of
associated s.m. &.

Thanks to these properties, we extend the field of validity of this association.

Definition 9. Let & be a s.m. on By« for H, and let us denote by U; the unitary operator of H of associated s.m. P;&.
We name group of the unitary operators of H deduced from the s.m. & the family of unitary operators {U,;n € ZF}
where, for any (ny,...,n) from Z¥, Ug,  n) = ];':1 uy.

So we have the following property.

Proposition 12. If {U,; n € Z}} is the group of the unitary operators deduced from &, s.m. on By for H, then
1) Up = In;

(ii) for any pair (n, m) from ZK, UyU,y = Upims

(i) (U,)* = U_,, for any n from 7k;

@iv) (U, X),ezx is a stationary series of associated r.m. Z’f, this for any X from H.

5



Let us finally examine some relations which we will use in Section 6. For any integer p > 1 and for any n from
{0,...,2p—1},letus set A, = —7r+n§ andA,, = [-7+ ng; -7+(Mm+ 1)%[. We remark that {A,,;n=0,...,2p -1}
is a partition of I1. So we have the following property.

Proposition 13. If U is a unitary operator of H, of associated s.m. &, then
(i) for any integer p > 1, U, = Ziial e“!’"SApn is a unitary operator;
(i) for any X from H, we have UX = lim,U,X = lim, Zi’:’(_)l emEA,,X.
2.6. Principal Components Analysis in the frequency domain

The Principal Components Analysis (PCA) in the frequency domain has been first studied by Brillinger [2], and
then extended by Boudou and Dauxois [4]. In particular, Z becomes Z¥, and C* becomes a separable C—Hilbert space
H. We present here this analysis.

Definition 10. A H-stationary series (X,),cz« is a family of elements of Li,(Q, A, P) such that f X, ® X,,,dP =
an,,nz ® XodP, for any pair (1, n,) from Z*.

The PCA in the frequency domain aims to extract, from a H—stationary series (X,,),cz+, a p—dimensional summary
(X;,)nezx» which must be a CP—stationary series, stationarily correlated with (X},),cz«, that is to say, such that f X, ®
X, dpP = me_,,z ® X dP, for any pair (ny, np) from Z*.

Let us denote by P, the projector from L%I(Q) on vect{K o X’;n € Z', K € o,(CP,H)}. We can prove that
(P Xn)nezr 18 a H—stationary series, stationarily correlated with (X,,),ez:. Consequently, the quantity ||X,, — P,X,l|
does not depend on n, and therefore we choose it as a measure of the quality of the p—dimensional summary (X ),cz,
of (X,)),ezx. Of course, among all the possible p—dimensional summaries, we retain the one which is the most efficient,
according to the following definition.

Definition 11. We name the first p steps of the PCA in the frequency domain of a H—stationary series (X,),cz+ the
search of a C?—stationary series (X, ),ezx, stationarily correlated with (X),),ez¢, such that || Xo — P, Xoll, where P, is the
projector on vect{K o X/ ;n € 7K, K € o(CP, H)}, is as small as possible.

The first p steps provide then a CP—stationary series (X,),ez+, and a H—stationary series (X} )z = (PpXi)nezs-
The series (X],),cz« is a p—dimensional summary, (X],),cz+ is a reconstruction of the data.

A H-stationary series (X,),cz+ 1S stationary and then we can associate with it a rm. Z, this last is such that
f ZA ® ZBdP = 0, for any pair (A, B) of disjoint elements from Bx. We say that Z is a H-r.m. It plays a great role
in the achievement of the PCA in the frequency domain. For example, if {Z;; j € J} is a finite family of elements
from Lfi(ﬂ) such that f Z;® ZydP = 0, for any pair (j, ') of distinct elements from J, and if {1;, j € J} is a finite
family of pairwise distinct elements from IT¥, then (3 ;c; €Y Z)),c7 is a H-stationary series of associated H—r.m.
Z = }.jes0,(.)Z;, where ¢; is the Dirac measure defined on B and concentrated on 4;. The PCA in the frequency
domain amounts to performing the PCA of each of the random vectors Z;, hence the name “PCA in the frequency
domain”.

In the introduction, we have presented the particular case where k = 1, and we have formulated it as defined by
Brillinger [2]. Generally, this PCA gives better results than the PCA of each of the elements X, from L%,(Q). In
particular cases, the two analyses can be identical, as in the following example. Let B, and B, be two independent
o—fields of A and such that {A; N Ay;(A1,A2) € By X B,} generates ‘A, what is equivalent to A = T-Y(B, @ B,),
where T is the mapping w € Q — (w, w) € Q X Q. Let X be an element from L%I(Q, By, P) and (y,),cz+ a stationary
series taking values in L*(Q, B,, P). We have the following.

Proposition 14. The sequence (y,X),cz+ is a H—stationary series of elements from L%,(Q, A, P).

Moreover, if X’ and X" denote elements of respectively L(ZC,,(Q, B, P) and L@(Q, B4, P), which result from the p
first steps of the PCA of X, then what precedes can be completed by the following.

Proposition 15. With the above notation, we can state:

(1) yoX’ and y,X"" are respectively elements from Lép(Q, A, P) and from Lfi(Q, A, P), resulting from the p first steps
of the PCA of y, X, element from LIZ,J(Q, A, P).

(1) WX ezt and (X" ) ,ezr are respectively the CP —stationary and H—stationary series which result from the p first
steps of the PCA in the frequency domain of the H—stationary series (y,X),ezx-
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3. Conjugate of a spectral measure

In this section we define what is natural to name the conjugate of a spectral measure. We will need this notion in
Section 7.4. If K is a bounded endomorphism of L?(Q), then it is the same for y o K o 7y, and we get the following

property.
Proposition 16. If K is a bounded endomorphism of L*(Q), then (yo K oy)* =y o K* oy.

Proof: It comes from the following equalities:

((YKy)*u,v) = (u, yKyv) = (Kyv, yu) = (yv, K*yu) = {(yK*y)u, v).
O

Then it is easy to verify that, if K is a projector (resp. a unitary operator of L2(Q)), then YKy is a projector
(resp. a unitary operator of L*(Q)), and that, if & is a s.m. on B for L*(Q), then the same happens for the mapping
A € By > y 0 EA oy € P(L*(Q)). This lets us define the conjugate of a s.m.

Definition 12. We name conjugate of &, s.m. on B for L*(Q), the s.m. defined by A € B > yoEAoy € PLA(Q)).

The following property defines the unitary operator associated with the conjugate of a s.m.

Proposition 17. If U is a unitary operator of associated s.m. &, then the unitary operator yUy has as associated s.m.
Wn&., where &, is the conjugate s.m. of &.

Proof: Let V be the unitary operator of associated s.m. Wp&,, where &, is the conjugate of & From the recalls of
Section 2, we can write

VX = f e"ldzy o = f edWn(Zg) = f el o WndZg = f e''dz} (2)

and as Zg =vo ng, (2) can be completed by

VX = f e ldy o ZX = ¥( f e"1dz)) = yUyX, (3)
this for any X from L?(Q), so the property stands. O

We can now generalize this property.

Proposition 18. If {U,;n € Z*} is the group of the unitary operators deduced from &, s.m. on By for L*(Q), then
{yUyy;n € 7} is the group of the unitary operators of L*(Q) deduced from the s.m. Wi&,, where E. is the conjugate
s.m. of &.

Proof: Let us denote by {V,;n € Z¥} the group of the unitary operators of L?>(Q) deduced from Wi&,. If (ny, ..., n;)
WnP;E, for j € {1,...,k}. Let U; be the unitary operator of associated spectral measure P;E. From what precedes,
the unitary operator yUy has as associated s.m. Wp(P;E). (where (P;E), is the conjugate measure of P;&), but as
(Pi€). = Pi& (Pj€&).A =yo (PjEA)oy = SCP;IA = P;E.A, for any A from Byy), the s.m. associated with yU y is
WnP;E..
So V; = yU,y, and we can write Vi, .. my = [15_, vi= 5., Uy = ]—[ljf:l(yU?’y) =yI1%, Uy =yUny.
As a conclusion, {yU,y;n € Z¥} is the group of the unitary operators deduced from the s.m. W& U
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4. Isometry from L (A) on LLZ(A) Q)

The aim of this section is to recall the definition of a well-known isometry (cf. Schaefer [15]) between the
C—Hilbert spaces L2, . (A)and L2, , (), and to obtain new properties which will deserve the conversion cyclostationarity-
stationarity.

For any (y, h) from L*(Q) x L>(A), we denote by yh (resp. hy) the mapping w € Q — y(w)h € L*(A) (resp.

e A h(A)ye L*()), which is measurable and of P—integrable (resp. n—integrable) square norm.

If X is an element from LL, ( /\)(Q) and y an element from L?(€2), then y(.)X(.) is measurable and of P—integrable
norm. We can then consider f yXdP, which is an element from L*(A), such that ¢ f yXdP, hy = f V(W)X X (w), hydP(w),
for any & from L?(A). So we can enunciate the following properties.

12(Q) 12(A)

(Q), then the mapping X : y e LX(Q) — f yXdP € L*(A) is an
Q) > X € o (LA(Q), LA(A)) is an isometry.

Proposition 19. If X is an element from LLZ( N

Hilbert-Schmidt operator. The mapping : X € LL,(A)

Especially, taking into account our convention of writing, it is easy to verify that 5)71 (yy) ® h, for any (y, h) from
LX(Q) x L2(A). If K is a bounded endomorphlsm of L*(A) and if X is an element from L?, , (Q), then K o X is also an
element from Liz ( A)(Q), and we can verify that KoX=KoX. Indeed,

(K o Xy, h) = ([ KX(@))(@)dP(), h) = [(X(@)y(w), K'hYdPw) = (Xy, K*h) = (K 0 Xy, h.
Let us now examine another expression of a covariance operator.

LA(A)

Proposition 20. For any pair (X, X’) of elements of L2, . (Q), we have f X(w) ® X' (w)dP(w) = X’ o X*.

L2(A)
Proof: The mapping (X’(.), K(X(.))), and so the mapping (X(.) ® X'(.), K)+,, is measurable, this for any K from
o2(L*(A)). Therefore the mapping w € Q = X(w) ® X’'(w) € 0(L*(A)) is measurable, as 0, (L*(A)) is separable.
Moreover, fIIX(a)) ® X' (w)llg,dP(w) = fIIX(w)IIIIX’(w)IIdP(w) < [IX]IIIX’|]. So the mapping w € Q - X(w) ®
X'(w) € o0, is measurable and of P—integrable norm. We can then consider the element f X(w) ® X' (w)dP(w) of
o2(L*(A)). From the previous remark, we can write { f X(w) ® X' (w)dP(w), K)oy, = f (X(w) ® X' (w), K)YdP(w) =
f(X’(w) KX(w))dP(w) = (X', Ko X) = (X’ Ko X) = (X’ o X* , K), this for any K of 0, hence the property. ]

Remark 1. A family (X,,),cz of elements of L2, . (Q) is L>(A)—stationary when, for any pair (n, m) from Z¥, 3‘(; o

L2(A)
Xo = [ Xu(w) @ X,(0)dPW) = [ Xo(w) ® Xy(@)dP(w) = Xy © Xo -

Propositions 19 and 20 regard the C—Hilbert spaces LLZ( A)(Q) and o (L*(Q), L*(A)). Exchanging the roles of

(Q, A, P) and of (A, &, 1), we get the following dual properties.

Proposition 21.
() Forany Y ofLLZ(Q)

(ii) the mapping Y € L?

(M), the mapping Y:he L*(A) - f hD)Y(D)dn(d) € L*(Q) is an Hilbert-Schmidt operator;
72 (Q)(A) —Ye o2 (L2(AN), LX) is an isometry;
(iii) for any (y, h) from L*(Q) x L*(A), we have hy = (Th) ® .

For any pair ((y, h), (', 1)) of elements of L?>(Q) x L>(A), we have (hy, /'y’y = Th®y,Th’ ® y') = (h, ')y, y') =
(yy® h,yy’ ® I’y = (yh,y'l’). So there exists an isometry 7, and only one, from vect{hy; (y,h) € L*(Q) x L*(A)}
on vect{yh; (y, h) € LZ(Q) X L2(A)} such that I(hy) = yh, for any (v, h) from L2(Q) x L2(A). As vect{hy;(y,h) €
L2(Q) x L*(A)) = (A) and as vect{yh; (v, h) € L*(Q) x L*(A)} = (€2), what precedes can be expressed as
following.

LZ(Q) L2 A)

Proposition 22. There exists an isometry I, and only one, from L2, _ (A) on L?

0, h) of LX) X L*(A).

(Q), such that I(hy) = yh, for any

L2(Q) (A)

Juggling with the various isometries that we have just studied, we have the last result of this section.



Proposition 23. For any Y of L2, _ (A), we have y o Yol =1Y.

L2(Q)
Proof: For any (y, k) from L*(Q) x LZ(A) we can write
(yoYoTlh,y)= <7y,Y0Fh> = <Fh®7y,Y> = (h(yy), Y)
AR IY) =y h IY) = (h, IYy) = (IY h,y),
so we get as expected: y o Yol =T1Y Y O

From now on, 7 will keep standing for the same isometry as that we have defined and studied in this section.

5. Family of stationary series pairwise stationarily correlated
In this section, we associate a s.m., on B for the C—Hilbert space H, with a family of stationary series.

Proposition 24. If {(X})ueze; A € A} is a family of stationary series, of elements from H, pairwise stationarily
correlated, then there exists a s.m. 8 on By for H, such that if {U,;n € ZF} is the group of the unitary operators of
H deduced from &, then U, X} = this for any (A, m, n) of A x ZF x 7.

m+n’

Proof: Let P be the projector from H onto H' = vect{X?; (1,n) € A x Z*} and L the canonical injection h € H' +
heH.

Let us consider an element m from Z*. For any pair (41, n1); (12, n7)) of elements from A x ZF, we have
(Xﬁl‘,X,fj) = (X,fl‘ +m,X,/ll§ .y If we notice that vect{X?%,,; (4, n) € A x ZFy = H’, we can affirm that there exists a
unitary operator V,,, and only one, of H’, such that V,, X! = X2, for any (4, n) of A x ZF. Tt is easy to Verlfy that
Vo = Iy If (p,q) is a pair of elements of Z, for any (4,n) of A x Z¥, it comes V,V, X! = V, X!, = X1, . . So,
taking into account the property of unicity of V,.,, we have V,V, = V,,,, and so V; =V, (Vo, = Vo, (V, V) =
(V_pr)V; = VOV; = V;). For any m from ZF, let us denote U,, = P, + Lo U,, o L*, where P, stands for I — P. If we
notice that L*h = Ph, for any h from H, that L*L = Iy, LL* = P, PL = L, and that P, L = 0, it is easy to verify the
following assertions:

(i) U,, is a unitary operator of H, for any m from Z*;

(i) Uo = 1u;

(iii) UpU, = Upyy, for any pair (p, g) from 7k,

(iv) U, = U_,, for any p from 7k,

Obviously, {(UnX)nezr; X € H} is a family of stationary series pairwise stationarily correlated, and if we denote
by Z* the r.m. associated with the stationary series (U,,X)uez, {Z%; X € H} is a family of r.m.’s such that ZXTI* = X,
for any X from H and such that, for any pair (X, X") from H x H, the rm.’s Z¥ and ZX" are stationarily correlated.
From the recalls of Section 2, we have

(i) for any A from By, the mapping EA : X € H — ZXA € H is a projector;

(i) the mapping & : A € B — EA € P(H) is as.m.

Let us denote by {W,,; m € ZF} the group of the unitary operators of H deduced from &, (W,,X),,cz+ is a stationary
series of associated r.m. Z}, but as Z¥ = ZX (ZXA = EAX = Z¥A), we have (W, X)ezr = (UnX)peze. S0 WpX =
U,,X, for any X from H, so W,, = U,, for any m from Z*. We can then affirm that {Um;m € 7} is the group
of the unitary operators of H deduced from the s.m. &, what ends the proof (U, X! = X}, for any (1,n,m) of
A X ZF X ZF). O

According to Proposition 24, it is natural to consider the notion of s.m. compatible with a family of stationary
series.

Definition 13. We say that a s.m. &, on B for H, is compatible with a family of stationary series pairwise stationarily
correlated, {(X; )mezk A € A} when, denoting by {U,,;; m € Z*} the group of the unitary operators deduced from &, we
have U,, X! = for any (A, n,m) of A x ZF x Z*.

n+m7

Remark 2. From Proposition 24, it is clear that with any family of stationary series pairwise stationarily correlated,
{(X2),nezs; A € A}, we can associate a compatible s.m.



Thanks to Proposition 24, we can link a s.m. with a family of stationary series pairwise stationarily correlated.
This is one of the main results of this text, and we can enunciate it as follows.

Theorem 1. If & is a s.m., on By for the C—Hilbert space H, compatible with the family of stationary series pairwise
. A
stationarily correlated {(X,’},)mezk ; A € A}, then, for any (A, m) from A X 7Z¥, we have X = f e’<""’>dZ§°.

Proof: Letusdenote by {U,,;m € 7} the group of the unitary operators of H deduced from &. We have (Ung)mEZk =
A
(X )meze- So the stationary series (X2),,cz+ has as associated r.m. Zgo (because {U,,; m € ZF} is the group of the unitary

. 2
operators of H deduced from &). For any m from Z*, we have X} = f e’<"”‘>ng°, for any A from A. O

6. Ampliation

In this section, for X element from Lé(A, £,m), we denote by X its coset, which consequently belongs to Lz(A, &, n).
Let K be a bounded endomorphism of H. If X a measurable and of —integrable square norm mapping from A into H,
then it is the same for K o X. Moreover, if X = X’ n—almost everywhere, then K o X = K o X’ p—almost everywhere.
So we can consider the mapping from L%I(A) into itself, which, with the coset of X associates the coset of K o X. We

name this mapping the ampliation of K and we denote it K. Of course, H stands for a separable C—Hilbert space, and
L(H) for the Banach space of the continuous bounded linear operators from H into H.

Definition 14. We name ampliation of an element K of L(H), the mapping K:Xe Lz(A) > KoXe LiI(A).

Giving an element K of L(H), it is easy to es_tablish the linearity of K. Moreover, as |I7{YII2 = |[Ko X|? =
f||KX(/l)||2dr](/l) < f|||K|||2||X(/l)||2d77(/l) = [IK|II*1IX]1?, we have the following result.

Proposition 25. The ampliation K of an element K from L(H) is linear and continuous.

We let to the reader the exercice of the proof of the following properties.

Proposition 26.

. . . . . . . . 2 .
(1) The ampliation of the identity of H is the identity ofLH(A/),\ o
(ii) for any pair (K1, K3) of elements from L(H), we have K| o K, = K; o K;.

The adjoint of the ampliation is the ampliation of the adjoint.
Proposition 27. For any K from L(H), we have K =K

Proof: This results from the equalities: .
(K*X,Y) = (X,KY) = (X,K oY) = [(X(2), KY(D))dn(2)
= [(K*X(), Y())dn(d) = (K 0 X, Y) = (K*X. Y),
for any pair (Y, 1_/) of elements from L%i(A). O

We can deduce the following from the two previous propositions.

Proposition 28. If K is a projector (resp. a unitary operator) of H, then Kisa projector (resp. a unitary operator) of
L% (A).
H

Now we have the necessary tools in order to define the ampliation of a s.m.

Proposition 29. If E is a s.m. on B for H, then the mapping A € By +— EA € P(L%I(A)) is a s.m. on B for
L (A).

10



Proof: The first two axioms of Definition 7 are easy to verify. So it remains to prove that, if (A,),en iS a sequence

of elements from B which decreasingly converges to 0, then lim,EA,X = 0, for any X from L%I(A). As Eisas.m,
for any A from A, we have lim,||EA,X(2)||> = 0. As, on another side, ||EA,X(1)|*> < [IX(2)]]%, the theorem of the
dominated convergence lets us get

lim, [ I8A,X(DIPdn() = [0dn(2) = 0,
SO limnllc"Lz\\,,)_(ll2 = 0, and we can conclude. O

So we get the definition.

Definition 15. We name ampliation of &, s.m. on B for H, the s.m. on B for Lfi(A) defined by E:Ae Bk
EA € P(L2(N)).

Let us now study the s.m. which is associated with U, unitary operator of L%I (A), ampliation of the unitary operator
UofH.

Proposition 30. The s.m. associated with the unitary operator U, ampliation of the unitary operator U, of associated
s.m. &, is & ampliation of E.

Proof: Let X be an element from L%,(A). From the recalls of Section 2.5, for any A from A, we have
lim, || 225" € EA X (1) — UX(IP = 0.
As, for any A from A, || Zi’:’ 81 e EA,,X(A) — UX(D)I* < 4]1X(A)|, the theorem of the dominated convergence
lets us write

0=1lim, [|| 27 emEALX ) — UXWIPdn() = lim, || 227" e EA,, 0 X — U o X|?
= lim, || x5! ¢4 EA,, X - UXIP.

Hence UX = lim, Zii 61 et E(A )X, so the property stands. O
This result can be generalized as follows.

Proposition 31. [f {U,;n € 7K} is the group of the unitary operators of H deduced Sfrom & s.m. on By for H,
then {U,;n € ZX} is the group of the unitary operators of L%,(A) deduced from the s.m. &, s.m. on By for L%,(A),
ampliation of &.

Proof: If U;, j € {1,...,k}, stands for the unitary operator of H, of associated s.m. P;E, we know that U, ) =
_];=1 U;lj , for any (ny, ..., ng) from 7k As U ;j 1s a unitary operator of associated s.m. P;&, from what precedes, the

unitary operator f]\j has as associated 13;-(\3, and so P j(g) (for any A of By, f/’jEA = 13/154 = SPJ’.lA = g(PJTIA) =
P jg(A)). The group of unitary operators of Li,(A) deduced from the s.m. g, s.m. on B for Lz(A), is then
{1‘[’;:] fj\jnj; (n1,...,m) € ZF) that is {[T_, U’;j; (n1,...,m) € ZF}, or evenmore {[]%_, U’;j; (ni,...,m) € ZF). O

J= J=

7. Cyclostationary random function

This section is the main part of this text. After a sketch of the problem of decomposition of an element from
R¥, we give a definition of the cyclostationarity. Then we will show how, from such a function, we can define a
L?>(A)-stationary series and hence perform the PCA in the frequency domain. Finally, we will perform, in a certain
way, the converse operation: from a L?(A)—stationary series, we will deduce a cyclostationary r.f. This last operation
is useful for the reconstruction of the data.

11



7.1. Decomposition of an element from R¥

Letus set A = [0; Aj[X - X [0; A¢[, where Ay, ..., A, are k elements (k > 1) of R. We set A = (Ay,...,Ap). As
the topology of R¥ is of countable basis, its Borel o—field, B, is generated by a countable family, and so it is for the
o—field of subsets of A, trace of Br« on A, that we will denote £. From now on, we denote by 1 a bounded measure
defined on &. Therefore, the C—Hilbert space L*(A, &, 17) is separable (because & is generated by a countable family).

Let us now examine the decomposition of an element from R* into the sum of an element from A and an element
from the subgroup A|Z X --- X AyZ. For this, if n = (ny,...,n;) is an element from 7k, let us denote by n © A the
element (nAy,...,mAy) of AjZX--- X AiZ. It is easy to verify that Oge ©A = Opr and that tOA+mOA = (n+m)OA,
for any pair (n, m) of elements from Z*. Let us examine the following property of decomposition.

Proposition 32. Let (11, ...,t,) be an element from R¥. There exists an element from A x ZF, and only one, ((t; —
Ar[2 ]t A ED (][ ) such that (1, o) = (= A [ ]ae= A [ DR [E oA
13

Proof: If (11, ..., #) is an element from R¥, it is clear that (f; — A, [A_ll] N A\Y [g—‘k]) belongs to A (as [;—’] < % <

[g_,] +1, we have 0 < t,—A,[;—"/] < Aj, that is t,—A,[;—f/] e[0; AL, jell,... k).

So ((f; — Ay [g—‘l] el — Mg [g—kk]), ([;_]1] e, [g—kk])) is indeed an element from A x Z¥, and (t; — A, [’—‘]] el —
Ac[ED+(&] - [EDer=a.....0).

Now we have to prove the unicity of this decomposition. Let then ((1,...,A4z), (n1,...,n)) be an element from
A x ZF such that (Ay,...,4) + (n,...,m) © A = (#1,....%). For j € {1,...,k}, we have then A; + n;A; = t;, s0

i—;+nj = ;—;, and [i—j]ﬂqj = [2—’/] But as [i—;] =0 (because 0 < A; < Aj),itcomesn; = [g—’/] We deduce that (1;,n;) =

(1= 87| 2] [ and then that (... 40, Gn,ccom) = (@ = A ]t [ D] [ wha
ends the proof. O

In the following, for any ¢ from R¥, we denote by (4;, n;) the unique element from A X ZF such thatz = A, +n, O A.
We can verify that, for any (¢, m) of RFXZK, Apsmon = Ay, and that ny,men = 1, +m (because t+mOA = A, +(n, +m)OA).

7.2. Definition of the cyclostationarity and first properties
Now we have got the tools and the mathematical frame to define the cyclostationarity.

Definition 16. A family {X,; ¢ € R¥} of elements from L*(Q) is a A—cyclostationary r.f. if
(i) the mapping A € A — X, € L*(Q) is é~measurable and of n—integrable square norm;
(i) (X:, Xi) = (Xi1mons Xp+mon)» for any (¢, ', m) from RF x R¥ x Z*,

Point (ii) is tipically used for the definition of the cyclostationarity, in the particular case where k = 1: (X, Xy) =
(Xi+mas Xr+ma), for any (¢,¢',m) from R X R X Z. Let us notice that Point (i) is little restrictive, it is verified as soon as
the mapping t € RF — X, € L*(Q) is continuous. Indeed, in that case, this mapping is Br«—measurable (because Byt
is the Borel o—field), so its restriction to A, that is the mapping 1 € A — X; € LX(Q), is &—measurable (because € is
the o—field trace of Br« on A). Moreover, as [0; A]X - - - X [0; A;] is a compact set (because it is closed and bounded),
its image by the continuous mapping i : t € R¥ - ||X;|| € R is a compact subset of R, hence is bounded, as well as
W(A), because A C [0; Aq] X - -+ X [0; Ag]. This lets us write fIIXAIIZdn(/l) < 400,

The following of the subsection is dedicated to the association of a s.m. with a A—cyclostationary r.f., just as we
can associate a r.m. with a stationary series.

Proposition 33. If{X;;t € R} is a A—cyclostationary rf., then we can affirm that {(X +moa)mezrs A € A} is a family
of stationary series, pairwise stationarily correlated.

Proof: This comes from Point (ii) of Definition 16: for any pair ((1,m), (1’, m")) of elements from A X Z¥, we have

(Xt (m=-mon Xuv+00n) = X asm-m)ortmons Xy+0oa+mon) = (Xiron-m +m)ons Xy +0+m)on) = {Xarmon Xy+mon)-
O
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Section 5 gives us tools for considering a s.m. compatible with a A—cyclostationary r.f.

Definition 17. We say that &, s.m. on By for LX(Q), is compatible with the A—cyclostationary r.f. {X;;t € RF}, when
& is compatible with the family of stationary series pairwise stationarily correlated {(X1mea)mezi; 4 € A}

Such a s.m. exists, as {(X +moa)mezt; A € A} is a family of stationary series pairwise stationarily correlated. Then
we can get the following property.

Proposition 34. If & is a s.m. on By for L*(Q), compatible with the A—cyclostationary r.f. {X;;t € R¥), then for any
X,,

t from RX, we have X, = fei<"”’>dZ8 .
Proof: From Proposition 33, {(X 1mea)mezi; A € A} is a family of stationary series, pairwise stationarily correlated,
and if & is a s.m. compatible with the A—cyclostationary r.f. {X;;¢ € R}, then & is compatible with the fam-
ily of stationary series, pairwise stationarily correlated {(X imoa)mezt; A € A}. Theorem 1 lets us write X mon =
f ei<"m>dzg/l*°®A, this for any (4, m) from A X Z¥. Let t be an element from R¥, as (1,,n,) € AXZF and ast = A, + n, OA,

we have X; = X, +n,0n = fei<"”’>dZ§"’. O

7.3. Construction of a stationary series from a cyclostationary function

The following result, which is the major result of this text, shows how we use the ampliation to obtain a stationary
series from a cyclostationary function. The PCA in the frequency domain of the resulting stationary series provides
the spectral analysis of the associated cyclostationary function.

Theorem 2. If & is a s.m., on By for L*(Q), compatible with the A—cyclostationary rf {X;;t € R¥}, we can affirm
that
@) for any m from Z*, the mapping A € A — Xyimon € L*(Q) is a representative of an element X, from L, _ (A);

L2(Q)
(i1) (X, )mez+ is a stationary series of elements from Liz (Q)(A);
(iii) if Zx- is the rm. associated with the stationary series (X,)uczr, for any A from By, Zx A, element from Liz (Q)(A),

has as representative the mapping A € A — EAX,; € L*(Q);
(V) (TX) ez 1S a L*(A)-stationary series;
(v) if Z is the rm. associated with (IX] )nczx, for any A from By, we have 7ZA = yo&AoXjol.

Proof: When & is a s.m. compatible with the A—cyclostationary r.f. {X;; ¢ € R¥}, for any 7 from R*, we have
X, = f ei<""’>dZ§/” (cf. Proposition 34). 4)

Let (1, m) be an element from A x ZF. The unicity of the decomposition of an element of R¥ gives: Npimoa = M
and A . u0n = A. From (4), we have X ,,u0n = f ei<"’">dZ§‘. This means that the stationary series (X moa)mezx has as
associated r.m. Zg*.

Let us denote {U,,; m € ZF} the group of the unitary operators of L*(Q) deduced from the s.m. &. From the recalls
of Section 2, (U, X)).ez+ 1S a stationary series of associated r.m. ZX+ and so the stationary series (U, X3)uez and
(X 14mon)mez+ having the same associated r.m., are equal. Then U,,X; = Xy, mon, for any (1, m) of A x ZX.

From Section 6, {l/],\n;m € ZF} is the group of the unitary operators of Li (A), deduced from the s.m. g,
ampliation of &. -

If we denote X the coset of A € A = X; € L*(Q), U, X is an element from L7, (@ (), which has as representative
the mapping U,, o (1 € A — X, € L*(Q)), that is to say the mapping 1 € A — U,X, € L*Q), or evenmore
1A€A X/l+m®A € LZ(Q)),

hence Point (i). Point (ii) comes from @Xé =X,,. As (X)) mezr = (@Xé)mezk, we have Zy = Zgé.
For any A of By, Zy,A = gAXé = g;\X(’) has as representative the mapping EA o (1 € A — X, € L*(Q)), that is
the mapping 1 € A — EAX; € L*(Q), hence Point (iii).
__ Let m be an element from Z¥, for any (h, y) from L*(A) x L*(), we have . .
(X5, (h),yy = ([ WU Xadn(2),y) = [ (X0, U_yyddn() = ([ HD)Xadn(D), U_py) = (Xoh, U_ny) = (U © Xh,y),
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SO 5(;’; =Uyo Z’).
From Section 4, we can write: . . ~
IX;, =vyoXj,ol'=yoUyoXjol.
For any pa1r (n, m) from Z, it comes
IX’IX’ ' =(yoU, OX oD)*yo U, OX’ oll= FX’ U_,yyU, XT = FX’ U, ,,XT IX’ IX’
what lets us affirm that (7 X/ ),,,Ezk isa L*(A)— statlonary series. From recalls of Sectlon 2, I oZy isarm. and
[emdT 0 Zy = T [e™mdZy = IX),
this for any m from ZF. We deduce that Z = T o Zy.. Let us consider an element A from By, we have, for any
(h,y) from L*(A) x L*(Q),
(ZyAh,y) = f hDEAX dn(A), ) = [ hA)X,, EAY)dn(A) = ([ H()X,dn(), EAy) = (X;h, h, EAY) = (EA o X;h.y),

SO ZX/A =8Ao X(’) Considering that ZA = I(Zx'A), Proposition 23 lets us write ZA = I(ZxrA) =yo ZX,A ol =
yoEAo }g o I', what ends the proof. U

We can then define the L?(A)—stationary series deduced from a A—cyclostationary r.f.

Definition 18. We name L*(A)—stationary series deduced from the A— cyclostationary r.f. {X,; 1 € R¥} the L?(A)—stat-
ionary series (Y)mezx such that, for any m from Z*, 7-'Y,,, element from L?, _ (A) has as representative the mapping

L2(Q)
€A Xiomon € LAQ).

Remark 3. Let us consider notation of Theorem 2, and denote by Z, the r.m. associated with the stationary series
(Xa+moa)mezt- We have then Z, = Zé", and, for any A of B, Z;A = EAX,. Point (iii) of Theorem 2 can be expressed
in the following way: Zy-A has as representative the mapping A € A = Z)A € LX(Q).

Remark 4. If (Y,,)ez is a L2(A)— stationary series deduced from the A-cyclostationary r.f.s {X!;z € R¥} and
{X?;t € RY}, then, for any m from Z*, I-'Y,,, element from L?, _ (A) has as representatives the mappings 1 € A

X! eI*Q),and A€ A X2 # X
7k

L2(Q)
€ L*(Q). This implies that ({1 € A; X!

AEmoA ) = 0, for any m from

/l+mOA A+mOA A+mOA

Remark 5. Point (v) of Theorem 2 is major. It explicits the r.m. Z associated with the L?*(A)-stationary series
(ZX],)mezx. This step is necessary to proceed to the PCA in the frequency domain.

7.4. Cyclostationary random function deduced from a stationary series

In the last main result of this text we show how, considering a L*(A)—stationary series (Y,,),czx, we define a
A—cyclostationary r.f. for which the deduced L?(A)—stationary series is (¥}, ),z

Theorem 3. Let (Y,),ezx be a L*(A)—stationary series. We can affirm that {(?¥h)nezk h € L2(AN)} is a family of
stationary series pairwise stationarily correlated. Moreover, if {U,,;m € Zk} lS the group of the unitary operators of
LX(Q) deducedfrom &, s.m. on B for LX), compatible with the family (Y ]’l)nezk h e L*(A)), and if X is a repre-
sentative of 'Yy, then {y o U, y(X(4,);t € R¥} is a A—cyclostationary rf. for which the deduced L*(A\)—stationary
series is (Yy)nezx-

Proof: As, for any pair ((n, h), (', ")) from Z¥ x L*(A), we have (Y, h, Y, Iy = (Y, ¥, h b’y = (Yo¥pw B H') =
(YFn:*h Y~o*h’). We deduce that {(i;;l*h)nezk; h € L*(A)} is a family of stationary series pairwise stationarily correlated.

Let us denote by {U,;m € Z¥} the group of the unitary operators of L*(Q) deduced from a s.m. &, on By for
L2(Q), compatible with the family {(¥, h)uezz;h € LA(A)} . For any ¢ from R¥, let us set X, = yU, yX(1,) (we recall
that (4;, ;) is the unique element from A X ZF such thatt = A, +n, ®A). Let t be an element from A, A, = 7, and n, = 0
((t,0) e AXZFand t + 00 A = 1), s0 X; = yUyyX(t), we deduce that the mapping ¢ € A — X, € L>(Q), equal to X, is
indeed £—measurable and of n—integrable square norm. We have then issue (i) of Definition 16. For any (¢, m) from
R¥ x ZK, we have

Xesmor = YUnpor YX(Atsmon) = YUnamyX () = yUnyyUn yX(A) = yUnyX:.

So we can write (X, Xy') = (YUY Xy, YU ¥ XY = Xiemons Xv+mon ) this for any (¢, ', m) from R* x R* x Z¥, hence
issue (ii) of Definition 16 stands. We have just proved that {X;; ¢ € RK) = {yUnyX(A,);t € R} is a A—cyclostationary
r.f.
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Let us now define the LZ(A)—stationary series deduced from {X,; t € R¥}. Let us firts notice that U,nfo* = 7,;*, for
any m from ZF (because {U,,; m € Z*} is the group of the unitary operators of L>(Q) deduced from &, s.m. compatible
with the family {(¥, h)nezs;h € L*(A)}, and then U, Yo h = Yyyo h = Y, h, for any & from L*(A)). From Section 7.3,
we know that

(i) for any m from Z*, the mapping 1 € A = Xy, men € L*(Q) is a representative of an element X;, from L, @ ®;

(ii) (7X7, ) ezt is the L*(A)—stationary series deduced from {X;; € R¥}.

Let m be an element from Z*. For any (h,y) of L*(A) x L*(Q), we have

(Xp,h.y) =< f h( DX 1moadn(d),y) = f "Dy Uy X, yYdn(d) = f (DX (), (yUpy) y)dn()
= f hDXadn(), (YU,y)'y) = (Xoh, (YUny)'y) = yUnyXh, y).

So 5(,7,, =yUyyo ﬁg.
Results of Proposition 23 let us complete what precedes by

IX,’H* :po,’nol":yoyo Umoyojfzorz Umoﬁ(:(’)*_
But X, element from Liz (Q)(A), has as representative the mapping 1 € A — X, € L*(Q), that is the mapping X and
then X} = 7~'Y;. So what precedes can be writen f)?:;l* =U,oYy ,andas UyoYy =7, ,wehave f)}:;l* =Y, and

1:3(:’,1 = ?,:,, or evenmore 1 X, = Y,,. The series (Y,,) ezt = (ZX],)imezr is indeed the LZ(A)—stationary series deduced
from the A—cyclostationary r.f. {yU, yX(4,);t € R} O

7.5. Principal Components Analysis

Let {X;;t € R*} be a A—cyclostationary r.f., and let us denote by (Y?),cz+ the L*(A)—stationary series issued
from the p first steps of the PCA in the frequency domain of the L?(A)—stationary series (Y,),cz+ deduced from
{X;;t € R¥}. From Section 7.4, we know how to define a A—cyclostationary r.f. {Xf’ .t € R*} from which the
deduced LZ(A)—stationary series is (Y2),ezc. As I7'Y, (resp. 7-'Y?), element from L%, (M), has as representative

LX(Q)
the mapping 1 € A — X ,0n € L*(Q) (resp. 1 € A € L*(Q)), we can write, for any n from Z,

P
X/1+11®A

P12 _ P2 _ 171 —1yP|2 _ p 2
”YO - Yo ”LEZ(A)(Q) - ”Yn - Yn ”LiZ“\)(Q) - ”I Yn -7 Yn ”LZZ(Q)(A) - f”X/H-nOA - X/prn@A”Lz(Q)dn(/l)'
The quantity f X penon — Xf no A||2d7](/l), which is independent of n, measures the quality of the reconstruction of
the data. In Boudou and Viguier-Pla [6], we consider the particular case where k = 1, A = 1, and Q = {wy, ..., w0}

8. Simulation

We consider the very particular case where k = 1, A = [0; 1[, 7 is the Lebesgue measure defined on &, o—field
of the subsets of [0; 1[, trace of Br on [0;1[. and Q = {wy,...,w,}, with P(w;) = n%, ie{l,...,m}. If we set
yj= \/ﬁlgw/], O'1,.-.,Ym) 1s an orthonormal basis on L*(Q).

Let us consider a [0; 1[—cyclostationary r.f. {X;;¢ € R}. As the mapping ¢ € [0; 1[— X, € L*(Q) is £&—measurable
and of p—integrable square norm, the mapping f; : ¢ € [0;1[— (X,,y;,) € C, that is the mapping ¢ € [0;1[~
ﬁX,(w ) € C, is é&~measurable and of n—integrable square norm. Let U be a unitary operator of L*(Q) such
that UX; = X,.1, for any real ¢ (we know that at least one of such operators exists). For any real ¢, we then have
X, = XL, fi(r = [DUMy;, what lets us get the m temporal trajectories:

Xi(wy) = \/%ijzl fj(f - [t])(Bm)lj,
where B is the matrix expression of U relatively to the basis (yy, ..., yu):
(B = (UMyj, ) = 2y 5 (UM (wyi(wy) = 5= Uy ) (w).

Let us now examine the expression of the associated stationary series (7' X},),ez. For any (¢, n) from [0; 1[XZ, we
have X,,, = Z;"zl fi®U"y;. So, for any n from Z, X;, = Z'}’:l fi(U"y;), hence 7X;, = Z’J’.’:l(U”yj)fj, and then, for any
lof {1,...,m}, TX))(w) = Vm Z';’:l (B")i;f;j, expression to be brought together with the trajectory equations.
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In order to get the r.m. associated with the series (7 X]),cz, we have to consider the s.m. & associated with U. As
& is a s.m. on By for L2(Q), vector space of dimension 1, it is concentrated on a finite number of elements from IT,
Ay gy, <m: E= Zj’il 04,()Py, (P, 1 =1,...,m'} is a family of projectors such that Z?il Py = 1pq).
Then we have U" = Z;’il einp, for any n from Z. So we can write
X = S S Py fy = S € S (P
If we set Z; = ZTZI(PIy_i)f,, [=1,...,m, we can verify that ZZI* = 0, for any pair (/,!’) of distinct elements of
{1,...,m’} and what precedes can be writen
IX; = 3 ez,
for any n from Z.
The r.m. associated with the L*([0; 1[)—stationary series (I X},),ez is then
Z=3Y" 6,02
It is the usual PCA of each component Z,, . .., Z,,, which gives the PCA in the frequency domain of (£ X),cz.
We consider the particular case where m = 4, and we set
P = %(yl +iy4) ® %@1 +iy4); P2 =y2@y2 +y3 ®@y3; P3 = %()71 —iyy) ® %O’l — iy4);

A ==-LL=043=4m=3;
1 0 0 0 O 1 cosd 0 0 -sinA
210 01 0O 210 0 1 0 0
_ 1,-id i 1.ia N\ —
B=te |11 0 0 =i)+|0 o 7 oltae ot 00 D=l v o1 o
i 0O 0 0 O —i sind 0 O cosAd

If we choose fi(f) = cos (2rt)(cos (Ar) — sin (A1), f>(¢) = cos (2nat), f3(f) = —cos (2n1), f4(t) = cos (2xt)(cos (Af) +
sin (A7)) and A = 0.5, we get the trajectories, which are plotted in Fig. 1:
X:(wy) = 2cos (2rt)(cos (Ar) — sin (A1), X (wy) = 2cos (2nt), X;(w3) = —2cos (2nt), and X, (w4) = 2cos (2nt)(cos (A1) +
sin (A?)).

Trajectories of the cyclostationary function Xt

I VYVA A TA T A A T A N R O A S L T A A A
I ANAAAAAAARAANAA NN
=4 ‘\J \\_J‘ \\C \ f Y Vo / YRY, \ “ i \‘J’ Y Y ‘wf} Y

Xtiwj)

- — Xtw1)
— Xtw2) [{

Fig. 1: A particular case, where m = 4, of trajectories of X;(w1), Xi(w2), X:(w3) and X;(w4), t € [-10; 10]

As for the L*([0; 1[)-stationary series, we get

(IX))(wy) : t = 2cos (An) fi(t) — 2sin (An)) fa(t) = 2cos (2nt)(cos (A(n + 1)) — sin (A(n + 1)),

IX))(wr) : t = fo(t) = 2cos 2nrt), (I X)) (w3) : t = f3(t) = —2cos (2n1),

(X)) (wa) : t = 2sin (An) fo(t) — 2sin (An)) f4(t) = 2cos (2nt)(cos (A(n + 1)) + sin (A(n + 1)).

The spectral components are then Z; = %(yl + i) (fi —ifs), Zo = (2 —y3)f> and Z3 = %(yl — iy4)(fi + ifs). Note
that 7X) = e7"Z; + Z, + e""Z;. Their respective first principal components are Cy(Zy) = 3lIfi — ifall(y1 + iya),
C1(Z2) = 1All(y2 = y3), and C1(Z3) = IIfi + ifall(v1 — iya), all elements of L*(Q).

The unidimensional stationary series (uy),ez, resulting from the PCA in the frequency domain of (7 X)),z is
then such that, for any n from Z, u, = e 3||f; = ifally1 + iva) + 152 = y3) + €2 fi + ifall 0 — iva) = |Ifi +
ifall(cos (An)yy + sin (An)ys) + || 2l(y2 — ya).

So we have u,(w) = 2I|fi +ifallcos (An), uy(w2) = 2||2ll, un(ws) = =2l f2l, and finaly, u,(w4) = 2| fi + ifallsin (An)
(plotted on Fig. 2). These constitute the first principal component, which is composed of four trajectories in Z (because
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PCA summary of the cyclostationary function Xt

=™ un(w1)
& un(w2)

unfwi)
0

Fig. 2: The four trajectories of the unidimensional series (uy),ez, resulting from the PCA of the LZ(Q)—stationa.ry series (X X))yez. deduced from
the cyclostationary r.f. (X;)er

Q = {w1, wy, W3, wy4}). Therefore, the C—Hilbert space C, of dimension 1, substitutes to the separable C—Hilbert space
L*([0; 1]), of infinite dimension.

As for the reconstructed cyclostationary function with the first step of the PCA (see Section 7.4), it is the same as
the initial data for this example, all the function is reconstructed with only one step. All the information included in
{X;;t € R} is contained in {u,;n € Z}.

9. An hypothesis of independence

In this last section, we introduce an hypothesis of independence, which places us in the particular case, mentioned
at the end of Section 2.6, where the PCA in the frequency domain and the classic PCA are equivalent. We consider
the particular case where k = 1 and A = 1 (this implies that A = [0; 1[ and that 5 is a bounded measure defined on &,
o—field trace of Br on A).

We consider two independent sub-o—fields from (A, B; and B,, such that the family {A; N A; (A1, Ar) € B X By}
generates A. As the family {A| N Ay; (A1, Ay) € B X B,} contains Q, is stable by finite intersection, and generates ‘A,
we can state that vect{1 Anay; (A1, Az) € B X By} = L*(Q, A, P). Let us start by some preliminary results which will
be useful in the following.

Lemma 1. For any (v, X) from L*(Q, B,, P) x Liz(A)(Q,Bl, P), the mapping yX : w € Q = y(w)X(w) € L*(A) is

A—-measurable and of P—integrable square norm.
Proof: For any & from L*(A), we can write (y()X(), k) = y(){(X(), k). As y is B,—measurable, it is A—measurable.
As X is B;—measurable, it is the same for (X(.), h), which is also A-measurable. So the product y(.)(X(.), h) is
A-measurable, and so it is for (y(.)X(.), ).

As this is exact for any /& from L?(A), which is separable, we deduce the A—measurability of yX. Moreover, the
r.m.’s |y(.)]> and [|X(.)||* being respectively B,—measurable and B, —measurable, they are independent. So

JIYOXOIdP = [IYOPIXOIF 0, dP = (J YOPAP) [ IXOIPAP) < +oo.

If we replace L>(A) by C, we get the following property.

Lemma 2. For any (u1, u) from L*(Q, By, P) x L*(Q, B,, P), the mapping uius : w € Q — uj(wur(w) € C is
A—-measurable and of P—integrable square module.

The reader will notice the consequence of the independence of the sub-o—fields 8, and B,. For any pair
((u1, u2), (v1, v2)) of elements from L*(Q, By, P) x L*(Q, B,, P), we have
(w2, viva)pai) = U1, virz@,8,,p U2, V2) 12@.8,.p) a0d |lu1 2]l 2) = llwillz2.3,,p)llu2llr2.8,,7)-
Let us now examine some properties of continuity.
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Lemma 3. Ify is an element from L*(Q, B>, P), the mapping x € L*(Q, By, P) — xy € L*(Q) is continuous.

Proof: This results from |lxy — X'yll;2) = Ix — X'll20.8,.2)Vl120.8,.p)- O

In a same way, exchanging the roles of L*(Q, By, P) and L*(Q, B,, P), we get the following.

Lemma 4. If x is an element from L*(Q, B, P), the mapping y € L*(Q, B>, P) = xy € L*(Q) is continuous.

From now on, X stands for an element from LL2 @8, P)(A) and (y,)nez for a stationary series taking values in

L*(Q, B,, P). For any ¢ from R, let us set X; = X(t—[¢])y[;. Of course, for any (4, n) from AXZ, we have X;,, = X()y,.
The random variables X(1) and y, are respectively $;—measurable and 8;—measurable. So they are independent
random variables, the parts associated with A and Z, X(1) and y,, obtained by the decomposition ¢ = (¢ — [t]) + [7], are
then independent. It is in this way that the family {X;; ¢ € R} of elements of L2(Q) is singular. We have a first result.

Proposition 35. The family {X;;t € R} is a A—cyclostationary rf.

Proof: Firstof all, let us notice that, from Lemma 2, X, = X(t—[t])yjq € L*(Q, A, P). The mapping x € L*(Q, B, P) >
Xyo € L*(Q, A, P) is continuous (cf. Lemma 3), so measurable, and as X is measurable, the same happens for
(x € LX(Q,B1,P) — xyp € L*(Q, A, P)) o X, that is for ¢ € [0; 1[~ X(t)yo € L*(Q, A, P), evenmore for ¢ € [0; 1[—
X, € L*(Q, A, P). In addition, f||X(t)yo||2dn(t) = f||X(t)||2||y0||2dn(t) < o0, hence Point (i) of the definition of the
cyclostationarity stands.

Moreover, for any pair (,¢") of elements from R, as X1 = X(¢ — [#])y[s+1, we have

(Xet, Xps1) = XE = [Dyp+1, XE = 1Dy ar) = X0 =), XE = [ D) 2.8, )i+l Vie1+1) 12©Q.8,.P)
= (X(t = [tD), X&' = [ DY,y = (X = [Dy, XE = [ Dy rzar = (X Xe).

O

Let us now define the L>(A)—stationary series deduced from the A—cyclostationary r.f. {X,;¢ € R}. From Theo-
rem 2, the mapping 1 € A — X, € L*(Q), that is the mapping 1 € A — X(1)y, € L*(Q) is a representative of an

2
element Y,, from Ly, (Q)(A)

In a same way as there exists an isometry (cf. Section 4) from I? 12 (g)(A) on L? 12 A)(Q) there exists an isometry H

from LLZ(Q 5,.p)(A) on L7, (@ B1, P) such that H(hx) = xh, for any (h, x) element from L*(A) X L*(Q, B1, P). Then

we can show that y o Xol = HX (formula to be examined through Proposition 23). We can now formulate the
following result.

Proposition 36. For any n from Z, we have 1Y, = y,(HX).

Proof: For any (A}, A3, h) from B, X B, X L*(A), we can write, on one hand:
TV L) Wiz = (T (1 1) © Wery = (T (U L) iz, = (Yool Lz,
- f Xy D La, L yzeyd() = f RO, Lo, Yz py O 1a) iz (D)
= (Vs La2@.8,.p) f@(X(/l), Lar2@s,,pdnd) &)

= (V> La, )L%Q,BZ,P)(fh(/l)X(ﬂ)dU(/l), La)@s,.p) = Ons 1A2>L2(Q,BZ,P)<§F/1’ LA @3,

= (s L, )0 a,» YXTRY = (s 14, )1, HX )
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and on another hand:

On(HX)(1a, 1a), hyr2ay = Gn(HX), (14, 14,) @ By, = (yu(HX), 14, 1A2h>LiZ(M(Q)

= f On(@)HX) (W), 14, ()14, (@)h)12(0)dP(w)

= f Ya(@)1a, ()14, (WX(HX)(w), hYdP(w) = ( f Yula, dP)( f L4, (@X(HX)(w), h)dP(w))

= On L) (HX e, 0s,.m = O L )XHX. Ly ©h) = (i L X La, HX ).

(6)
From (5) and (6), we deduce
(TY,(1a,14,), By = (Yu(HX)(14,14,), h).
Hence, considering the property of density of the family {14, 14,; (A1, A7) € B; X By},
IY, = yu(HX),
or evenmore
1Y, = yn(r]_{X)
O

the

The LZ(A)—stationary series deduced from the A—cyclostationary r.f. is then (y,(HX)),ez. From Section 2.6,
PCA in the frequency domain of this last is equivalent to the PCA of each of the random vectors y,(HX) and is

deduced from the PCA of HX, element from L%, . (Q, By, P).

L2(A)
This study can be generalized to other kinds of cyclostationarity, in particular cyclostationary series.
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