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Abstract 21 

Programs and initiatives aiming to protect biodiversity and ecosystems have increased over the last 22 

decades in response to their decline. Most of these are based on monitoring data to quantitatively 23 

describe trends in biodiversity and ecosystems. The estimation of such trends, at large scales, 24 

requires the integration of numerous data from multiple monitoring sites. However, due to the high 25 

heterogeneity of data formats and the resulting lack of interoperability, the data integration remains 26 

sparsely used and synthetic analyses are often limited to a restricted part of the data available. 27 

Here we propose a workflow, comprising four main steps, from data gathering to quality control, to 28 

better integrate ecological monitoring data and to create a synthetic dataset that will make it 29 

possible to analyse larger sets of monitoring data, including unpublished data. 30 

The workflow was designed and applied in the production of the Status of Coral Reefs of the World: 31 

2020 report, where more than two hundred individual datasets were integrated to assess the status 32 

and trends of hard coral cover at the global scale. The workflow was applied to two case studies and 33 

associated R codes, based on the experience acquired during the production of this report. 34 

The proposed workflow allows for the integration of datasets with different levels of taxonomic and 35 

spatial precision, with a high degree of reproducibility. It provides a conceptual and technical 36 

framework for the integration of ecological monitoring data, allowing for the estimation of temporal 37 

trends in biodiversity and ecosystems or to test ecological hypotheses at larger scales. 38 
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1. Introduction 44 

Global (e.g. Aichi Biodiversity Targets of the Convention for the Biological Diversity - CBD), regional 45 

(e.g. Coastal Oceans Research and Development Indian Ocean - CORDIO) and national (e.g. French 46 

Coral Reef Initiative) initiatives that seek to protect biodiversity and ecosystems have multiplied over 47 

the last two decades. To gauge the success of these different programs in order to inform 48 

conservation policies, it is necessary to estimate changes in biodiversity and ecosystems at each of 49 

these different scales. Ecological monitoring (see Table 1 for definitions of mains terms used) is the 50 

foundation on which such studies are built, yet, it is typically focused and constrained to local scales. 51 

Therefore, in order to assess the broader status and trends of biodiversity and ecosystems, it is 52 

necessary to group monitoring sites within a monitoring network (Balmford et al., 2005; Lindenmayer 53 

& Likens, 2010; Schmeller et al., 2015; Külh et al., 2020). 54 

Two approaches can be adopted to achieve this objective (Henry et al., 2008). The first is a “top-55 

down” approach and corresponds to a highly standardized monitoring network where all monitoring 56 

sites within the network use the same protocol (Fig. 1). Monitoring networks that are based on this 57 

“top-down” approach are usually found within national frameworks (e.g. US National Coral Reef 58 

Monitoring Program - National Oceanic and Atmospheric Administration (NOAA) CoRIS) or within 59 

research groups (e.g. Service National Observation (SNO) CORAIL). However, while standardized 60 

protocols are used for some monitoring networks (e.g. Hallmann et al., 2017), most monitoring sites 61 

are far from being part of a real “top-down” approach due to issues around coordination and 62 

standardisation between different research groups who have different objectives, interests, funding 63 

streams and capacities. Moreover, the “top-down” approach does not allow for the inclusion of 64 

existing monitoring sites that use different protocols. Existing monitoring sites cannot be greatly 65 

modified since doing this would lead to a loss of consistency in methodology and hence 66 

comparability of data over time, which is one of the main targets of long-term monitoring 67 

(Lindenmayer & Likens, 2009). To resolve these issues, a second strategy, the “bottom-up” approach, 68 
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may be considered (Fig. 1). This strategy consists of combining data (hereafter called data 69 

integration) acquired from existing monitoring sites that use different methodologies. In contrast to 70 

the “top-down” approach, this strategy enables the existing condition of monitoring networks to be 71 

considered for data integration, where it would otherwise be impossible. 72 

 73 

 74 

Figure 1. Comparison of monitoring structure and data aggregation between top-down and bottom-75 

up approaches. For the top-down approach, the monitoring network is standardized and is based on 76 

a unique protocol and data format. In contrast, for the bottom-up approach, the monitoring network 77 

is unstandardized and is based on different protocols and data formats, making data integration 78 

necessary for synthetic analyses. 79 

 80 

 81 
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In contrast to other scientific fields such as physics, oceanography or genetics, ecology is based on a 82 

high diversity and heterogeneity of data collection methods and hence data formats (Reichman, 83 

Jones, & Schildhauer, 2011; Michener & Jones, 2012; Poisot, Bruneau, Gonzalez, Gravel, & Peres-84 

Neto, 2019), and this, despite the existence of data standards (e.g. DarwinCore (Wieczorek et al., 85 

2012)). This leads to a lack of interoperability between datasets, which represents a major challenge 86 

for wider data integration. This is likely one of the main reasons why data integration, which is 87 

needed for the “bottom-up” approach, remains poorly developed (Henry et al. (2008) but see Miller, 88 

Pacifici, Sanderlin, & Reich, 2019; O’Donnell et al., 2021) outside of large databases such as GBIF 89 

(GBIF: The Global Biodiversity Information Facility, 2021) or OBIS (Ocean Biodiversity Information 90 

System, OBIS (2021)). An increased use of data integration may lead to a deeper understanding of 91 

status and trends in biodiversity and ecosystems, without having to acquire new data (Jones, 92 

Schildhauer, Reichman, & Bowers, 2006; Carpenter et al., 2009). Moreover, as emphasized by 93 

Borregaard and Hart (2016), data preparation, which includes data integration, is barely considered 94 

and reported as part of data analysis and is rarely documented in code associated with published 95 

articles. This represents a major issue for transparent science and reproducibility as the data 96 

preparation step can also contain errors that other researchers must be able to track. Finally, this 97 

also limits the ability for other researchers to rely on existing methods to conduct similar studies. 98 

To address these issues, we propose a workflow which integrates ecological monitoring data from 99 

different data sources into a synthetic dataset, which can then be used to perform national, regional 100 

or global analyses on the status and trends of the considered ecological metric. We illustrate the 101 

proposed workflow by providing an R code template for two case studies inspired from the Status of 102 

Coral Reefs of the World: 2020 report, where 248 datasets from contributors across the world were 103 

integrated to estimate the status and trends of hard coral cover at the global scale (Souter et al., 104 

2021). 105 

 106 
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 107 

Table 1. Definitions of main terms used in the article. 108 

Term Definition 

Dataset A collection of related sets of information that is composed of separate 
elements (data files) but can be manipulated as a unit by a computer. 

Data aggregator Data analyst responsible for the data integration process. 

Data integration Process of combining, merging, or joining data together, in order to make 
what were distinct, multiple data objects, into a single, unified data object 
(Schildhauer, 2018). 

Data provider A person or an institution sharing a dataset for which they have been or 
are involved in the acquisition of the data contained in the dataset. 

Monitoring site Repetitive measurement of a specified set of variables at one location over 
an extended period of time (Vos, Meelis, & Ter Keurs, 2000). 

Synthetic dataset  A dataset resulting from the integration of multiple existing datasets 
(Poisot et al., 2016). 

 109 

2. Workflow 110 

We distinguished four main data sources: databases, data papers, research articles with associated 111 

data and unpublished data from data providers. Over the last decades, large databases which 112 

gathered data from different monitoring sites, have emerged in ecology, such as ILTER (Vanderbilt & 113 

Gaiser, 2017), GBIF (GBIF: The Global Biodiversity Information Facility, 2021) or BioTIME (Dornelas et 114 

al., 2018). In addition to these databases, an increasing number of data papers are being published 115 

(Shin et al., 2020), extending the availability of monitoring data. However, based on our experience 116 

with the  Status of Coral Reefs of the World: 2020 report (Souter et al., 2021), the vast majority of 117 

monitoring data remains unpublished, or only partially published, and thus, can only be acquired 118 

from direct exchanges with data providers. For this reason, we chose to focus the proposed workflow 119 

on the acquisition of unpublished data, while also making it possible to incorporate data from 120 

databases, research articles and data papers. 121 

We identified three main approaches which have the potential to yield a synthetic dataset: (1) 122 

propose a web-based interface for data entry by data providers (e.g. Chaudhary, Walters, Bever, 123 

Hoeksema, & Wilson (2010), Robertson et al. (2014)), (2) ask data providers to reformat their data 124 
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following a given template and (3) collect data from data providers in their original format and 125 

centralize the reformatting by a data aggregator. The first approach is particularly adapted for new 126 

monitoring networks but not for a “bottom-up” approach, as the entry of historical data can be 127 

extremely time consuming. The second approach necessitates data wrangling skills from data 128 

providers, as well as time, which can potentially discourage them from contributing. In contrast, 129 

centralising the entire data homogenization procedure, allows for greater standardization of 130 

homogenization, enables full tracking of changes and biases, and avoids error due to variability in 131 

data wrangling skills among data providers. Moreover, the first two approaches are difficult to 132 

implement for databases, data papers and research articles, as the associated data are only available 133 

in a particular format, which need to be reformatted. For all of these reasons, we chose to build the 134 

workflow around the third approach, centralized data reformatting where data is curated by a 135 

dedicated data aggregator. This approach could interest both parties involved, as the data provider 136 

could benefit from the expertise of the data aggregator on data shared, as well as providing advice 137 

on metadata information or potential errors (Costello, Michener, Gahegan, Zhang, & Bourne, 2013). 138 

The workflow (Fig. 2) is composed of four main steps: (1) data gathering, (2) individual data 139 

reformatting, (3) data grouping and taxonomic assignment and (4) quality assurance and quality 140 

control (QAQC). These four different steps are detailed in the following sections and are exemplified 141 

by two cases studies and associated R code template. 142 

The workflow was developed with the R software (version 4.1.0, R Core Team (2021)) but it can be 143 

transposed into other programming languages (e.g. Python). For R users, we strongly recommend a 144 

migration to the “tidyverse” meta-package (Wickham et al., 2019), as it provides a wide range of 145 

functions used in data analysis, from importation of the data to their visualisation. In addition to the 146 

software, we also recommend using a version control system (e.g. Git) associated to an online 147 

collaborative platform (e.g. Github), particularly if the project will be maintained over time and/or if 148 

it involves a team of data aggregators. Finally, we highlight that all steps which involve the 149 
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modification of data, must be done using code and not manually in order to reach the highest 150 

possible level of reproducibility and traceability. 151 

 152 

 153 

Figure 2. Workflow from data gathering to exportation of the final synthetic dataset. The diamonds 154 

indicate choices, rectangles indicate actions, and ellipses indicate start and end of the workflow.  155 



9 
 

2.1. Data gathering 156 

The first step in the workflow is the selection of variables that will have to be present in the final 157 

synthetic dataset (hereafter “standard variables”; Fig. 2 - 1.1). We propose a classification of these 158 

variables into six groups: data descriptor (e.g. dataset ID, data source), spatial (e.g. latitude, 159 

longitude, depth), temporal (e.g. year, date, hour of sampling), methodological (e.g. length of the 160 

transect, number of quadrat), taxonomic (e.g. family, genus, species) and metric (e.g. percentage 161 

cover, abundance, size). The metric(s) variable(s) correspond to the response(s) variable(s) while all 162 

others correspond to potential explanatory variables or metadata. The variables selected in each of 163 

these groups depends on the goal of the project and on the future analyses that will be performed. 164 

Among the data descriptor variable group, a variable corresponding to the ID of each dataset must 165 

be included in order to ensure the possibility of extracting or to perform sensitivity analyses on the 166 

individual datasets. We emphasize that the groups of spatial and taxonomic variables are nested. For 167 

example, in the case of spatial variables, we can have four variables with, for example, the country, 168 

the site, the transect and the quadrat. A country may have several sites, and each site can include 169 

several transects, which can then include multiple quadrats. These nested variables are very 170 

important as they make it possible to integrate datasets with different spatial and taxonomic 171 

precisions. Once the variables are selected, their types (e.g. character, numeric) and units (e.g. 172 

meters) must be defined. 173 

As previously mentioned, data can originate from four main sources: databases, data papers, 174 

research articles with associated data and unpublished raw data from data providers. The acquisition 175 

of data from the first three sources (Fig. 2 - 1.5 to 1.7) can be achieved through internet literature 176 

reviews and institutional or public repositories (Michener, 2018a). In addition to these approaches, 177 

the fourth source of data may necessitate a call for contribution using existing mailing lists or social 178 

networks. For this last data source, once the list of potential data providers is established, an email 179 

template is written (Fig. 2 - 1.2) to describe the context and the goal of the project, as well as the 180 
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required data (by describing the standard variables). The way that people will be cited and 181 

acknowledged in the documents that will be produced by the project (e.g. publication, reports) must 182 

also be addressed and should be transformed into a Data Sharing Agreement (DSA). This document 183 

(see Supplementary material; Fig. 2 - 1.3) defines the terms of the agreement between the data 184 

provider and the person or organization responsible for the project. While the DSA may not be part 185 

of a legal framework, it seeks to establish a mutual agreement and terms of use for the data, building 186 

the confidence and trust between the data providers and users. Emails and DSA are then sent to all 187 

of the potential data providers based on the created list (Fig. 2 - 1.4). When received, the original raw 188 

data files are then stored with the signed DSA. 189 

 190 

2.2.  Individual data reformatting 191 

The next step is the individual dataset reformatting which corresponds to a standardization of the 192 

variables of each dataset gathered from the four data sources. The raw data are first imported into 193 

the software, either from their format of origin or by an intermediate step, where they are first 194 

exported in a plain text format (e.g. csv, txt). The importation of raw data in their format of origin 195 

ensures a complete reproducibility but requires the use of specific packages (e.g. “readxl” on R 196 

(Wickham & Bryan, 2019)) in order to work with all of the different raw data formats. If the 197 

intermediate step, where the raw data files are exported in plain text format, is chosen, all of the file 198 

paths and spreadsheet names must be written to ensure the traceability of the data. 199 

If the data are separated into multiple data files, usually with one main data file, and one or more 200 

supplementary data files (e.g. file with sites coordinates, file with equivalence of taxonomic codes), 201 

they must all be merged together (Fig. 2 - 2.2). Particular attention must be paid to the factor levels 202 

of the grouping variable (i.e. the variable present in both files by which the merging is done) in order 203 

to avoid any loss of information. Factors are a type of variable characterized by a fixed and known set 204 

of possible values, that are named levels (e.g. the variable “Site” contained the levels of factors 205 
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“Station A” and “Station B”). A slight difference in factor levels (e.g. first letter of one in uppercase 206 

and the first letter of the second in lowercase) can lead to non-matching. Multiple data files can also 207 

occur when data are stored in one file but are divided into several spreadsheets. This division is 208 

usually done to separate the different years or sites within the monitoring programs. Two cases can 209 

be considered to address such formatting. If the data in the different spreadsheets share the exact 210 

same formatting (i.e. same columns names) they can be bound together using a loop into a single, 211 

long dataset. Otherwise, each spreadsheet must be treated as a different dataset. 212 

Variables corresponding to the standard variables (see part 2.1 Data gathering) are first selected. 213 

Then, if the data are presented in wide format (i.e. one variable divided into several columns) they 214 

must be transformed into long format (i.e. one variable by column). Next, the variable corresponding 215 

to the ID of the dataset is added. Here we propose a code of several letters associated with one (e.g. 216 

DATA1) or more numbers if the data comes from multiple spreadsheets within a single file (e.g. 217 

DATA1.1, DATA1.2, etc.). Then, all variables selected for the synthetic dataset but absent in the raw 218 

data or associated metadata files, are added (Fig. 2 - 2.3). For example, these variables may have 219 

been created specifically for the project purpose or may correspond to information given by the data 220 

provider. To ensure reproducibility, we recommend that any correspondences with data providers 221 

are tracked and that they are referenced by adding comments in the code. The variables are then 222 

renamed to match the standard variable names. All variables containing information on the 223 

taxonomic level are grouped together in a temporary variable named “Tax_ID”. The taxonomy will be 224 

resolved during the following step. Next, the variables are modified to fit with the units defined. The 225 

transformation involves variables such as latitude and longitude (e.g. from one coordinate reference 226 

system (CRS) to another), the altitude or the depth (e.g. feet to meters), the date (e.g. DD-MM-YY to 227 

YYYY-MM-DD) or the metric variable (e.g. size from mm to cm, number of individuals on the transect 228 

to number of individuals on 100 m2). When possible, we recommend that the International System of 229 

Units be used. Particular attention must be given to the variable types (e.g character, numeric) of 230 

each variable, as multiple data types may occur within the same variable. For example, some data 231 
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providers may have used both numeric values (e.g. “5”) and intervals (e.g. “> 5 meters”) for the 232 

depth. 233 

Finally, once the individual data reformatting is completed, each reformatted dataset is exported in 234 

plain text format using a consistent file name nomenclature (e.g. 02_reformatted_datasetID). 235 

 236 

2.3.  Data grouping and taxonomic assignment 237 

Once all data files are individually reformatted, they are all bound together (Fig. 2 - 3.1). This can be 238 

done automatically by retrieving all files with a specific naming structure in the storage folder and 239 

binding them using a loop. Some error messages can occur when the variable types differ between 240 

the individual reformatted files. While such errors can be avoided by converting all variables in 241 

character string, we argue that these error messages are useful to identify mistakes in variable types. 242 

If such errors happen, a modification of the code for individual datasets concerned in the previous 243 

step is necessary (Fig. 2 - 2.3). 244 

As mentioned above, all information related to the taxonomy is, at this stage, stored in the unique 245 

variable (“Tax_ID”). This variable is extracted from the main data and duplicates are removed to only 246 

keep unique levels of factor (Fig. 2 - 3.2). Then, depending on the variables selected at the beginning 247 

of the workflow, two pathways exist: the taxonomic re-categorization (path 3A) and the taxonomic 248 

verification (path 3B). 249 

 250 

2.3.1. Taxonomic re-categorization 251 

The first pathway (Fig. 2 - path 3.A) corresponds to the case where the selected variables are not (or 252 

partially) included within the taxonomic classification system. Such cases can arise when the 253 

taxonomic identification in the field is difficult and therefore invokes the use of broad categories 254 
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instead of species or genus level ID. This is the case for coral reef benthic monitoring data with 255 

categories such as algae, rock or hard coral. In this situation, levels of factor (i.e. names of categories) 256 

are likely to vary greatly among data providers. To achieve a homogeneous classification within the 257 

synthetic dataset it is thus necessary to perform a re-categorization of the levels of factor used by 258 

each data provider. To do so, a classification is first defined by choosing standardized levels of factor, 259 

which should make it possible to re-categorize all cases. This homogeneous classification can be 260 

based on more than one variable or a set of nested variables if necessary (see part 2.1). Then, if the 261 

number of factor levels is low, the re-categorization can be done directly within the software, else a 262 

file (e.g. in csv format) containing the unique “Tax_ID” levels must be exported and the re-263 

categorization variables must be completed manually. In the second case, the levels of factor of the 264 

“Tax_ID” variable must not be modified because they will be used to merge the re-categorization file 265 

with the main data (Fig. 3). The re-categorization is the most critical and the least reproducible part 266 

of the workflow and thus it must be both rigorous and consistent. Re-categorization by multiple 267 

individuals (i.e. cross-validation) would likely help to improve the reliability of this step. The following 268 

is a list of particular cases that may result for a given level of factor of “Tax_ID”: 269 

• Mixed categories. Here, the lowest common category is used. For example, if the “Tax_ID” is 270 

“Macroalgae and turf algae”, the category “Algae” can be retained.  271 

• Stacked categories. Here, the upper category can be used. For example, if the “Tax_ID” is 272 

“Algae on rock”, the category “Algae” can be used. 273 

• Homonym taxa names (e.g. “Turbinaria” which is a genus of Scleractinia but also of Fucales). 274 

In this case, it is necessary to contact the data provider and to modify the level of factor by 275 

an unambiguous one (e.g. “Algae - Turbinaria”). 276 

• Not required categories (e.g. “Shadow”). Here, the taxonomic variables remain empty, the 277 

rows which are not filled will later be removed. 278 
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Once the re-categorization is finished, the file is imported into the software and merged with the 279 

main data (Fig. 2 - 3.6). Fig. 3 illustrates the taxonomic assignment for path 3.A. 280 

 281 

 282 

 283 

Figure 3. Example of taxonomic assignment for path 3.A (taxonomic re-categorization). NA = Not 284 

Available, tax. = taxonomic. 285 

 286 

2.3.2. Taxonomic verification 287 

The second pathway (Fig. 2 - path 3.B) corresponds to the case where the selected variables are part 288 

of the taxonomic classification system (e.g. family, genus, species). First, an API (Application 289 

Programming Interface, i.e. a service which allows for the query and/or upload of data from the web 290 

in a standardized format) of an online taxonomic database (e.g. “rfishbase” (Boettiger, Lang, & 291 

Wainwright, 2012) and “taxize” (Chamberlain et al., 2020) packages on R) is used to add the higher 292 

taxonomic variables for each level of the “Tax_ID” variable. The levels of factor of the “Tax_ID” 293 

variable for which upper taxonomic variables were completed through the database correspond to 294 

correct species names, while those which remained filled with NA correspond to incorrect species 295 
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names. The levels of factor with incorrect species names may be due to data entry spelling errors, 296 

changes in taxonomic classification, vernacular species names (e.g. honeycomb grouper) and 297 

incomplete (e.g. Cephalopholis sp.) or upper taxonomic names (e.g. Lutjanidae). Thereafter, all rows 298 

that have not been completed automatically through the API, must be manually filled. To this end, a 299 

file containing all incorrect species names is exported in a plain text format file (e.g. csv) and the 300 

higher taxonomic variables are completed for each row. When it is not possible to find the 301 

equivalence for the incorrect species name, the higher taxonomic variables are left empty (the rows 302 

which are not filled will be removed afterwards). Once finished, the file is imported into the 303 

software, bound with the table of correct species names and then merged with the main data (Fig. 2 304 

- 3.6). Fig. 4 illustrates the taxonomic assignment for path 3.B. 305 

 306 

 307 

 308 

Figure 4. Example of taxonomic assignment for path 3.B (taxonomic verification). NA = Not Available, 309 

tax. = taxonomic. 310 

 311 
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Following the taxonomic assignment, it is possible that some rows for the taxonomic variables were 312 

left empty (i.e. fill with NA) because they corresponded either to not required (e.g. “Shadow”) or 313 

non-categorizable categories (e.g. “juvenile fish”). We recommend that the levels of factor of 314 

“Tax_ID” for which taxonomic variables were left empty be verified, and the corresponding rows 315 

then be deleted. 316 

Rows that had different levels of factor for “Tax_ID” before the taxonomic assignment (e.g. “Red 317 

algae” and “Brown algae”) may have been re-categorized with a common level of factor for 318 

taxonomic variable (e.g. “Algae”) after the taxonomic assignment. Hence, it is necessary to aggregate 319 

these rows (on the metric(s) variable(s)) to avoid having multiple rows which correspond to the same 320 

category in the same sampling unit, which unnecessarily increases the size of the dataset (Fig. 2 – 321 

3.7). 322 

Finally, the “Tax_ID” variable, that was used for the taxonomic assignment but which is useless for 323 

the final synthetic dataset, is then deleted. 324 

 325 

2.4.  Quality Assurance and Quality Control 326 

The final step of the workflow is the Quality Assurance and Quality Control (QAQC). First, duplicates 327 

are identified within the data (Fig. 2 - 4.1) to make sure that the same data file, or row, was not 328 

included more than once. Any duplicates found, should be removed.  329 

Next, errors should be identified and corrected, or removed, if the error cannot be corrected (Fig. 2 - 330 

4.2). Within the term “errors” we mean (1) any incorrect levels of factor for qualitative variables, (2) 331 

any incorrect values for quantitative variables and (3) any invalid site coordinates (through latitude 332 

and longitude variables). We detail these three points in the following paragraphs but more 333 

information about QAQC can be found in Michener (2018b) and Vandepitte et al. (2015). 334 

 335 
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2.4.1. Qualitative variables 336 

The identification of incorrect levels of factor can be done visually by checking the list of unique 337 

levels of each qualitative variable. If the number of levels of factor is too high for a full visual 338 

inspection, a list of selected levels can be created for each qualitative variable and compared with 339 

the actual levels of factor present in each. Once identified, levels must be corrected during the 340 

individual data reformatting step (Fig. 2 - 2.3). 341 

 342 

2.4.2. Quantitative variables 343 

For quantitative variables, we distinguish incorrect values which are values that are outside of the 344 

normal range (e.g. a negative abundance) from outliers which are extreme values (e.g. a value of 100 345 

while the mean is 1). Incorrect values are easily identifiable for variables whose values fall within an 346 

interval of one (e.g. [0 ; +∞]) or two limits (e.g. [0 ; 100]). A process can be put in place to 347 

automatically remove incorrect values (i.e. those below or above the limit(s)) but we recommend 348 

that each value be checked individually in order to correct for any errors that may have resulted from 349 

the individual reformatting step. Outliers, however, are more difficult to treat. While their 350 

identification through graphical (e.g. boxplot) or statistical (e.g. Grubbs' test, Dixon's Q-test) methods 351 

is easy, it is generally difficult to know if their values result from natural variability or from an error 352 

made during or following the acquisition of the data. Thus, these outliers must not be arbitrarily 353 

removed from the data, without evidence which proves that they actually resulted from an error. To 354 

this end, we recommend that the data provider be contacted in order to benefit from his/her 355 

expertise. Among the errors which can be committed during the individual data reformatting step 356 

(Fig. 2 - 2.3), unit conversion mistakes are the most common. Particular attention must be given to 357 

the metric variable(s) (i.e. response variable) and the QAQC method must be specifically developed 358 

for each of them. For example, for data expressed in percentage of cover, a quadrat can be divided 359 
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into multiple rows where each corresponds to the cover of a given taxa. Hence, it is necessary to 360 

aggregate the cover percentage of these rows to verify that the total cover of the quadrat remains 361 

above 0 % and below 100 %. We highly recommend the use of interactive data visualisation tools, 362 

such as HTML tables (e.g. “DT” on R (Xie, Cheng, & Tan, 2020)) or interactive plots (e.g. “plotly” on R 363 

(Sievert, 2020)), to help identify incorrect values (see Supplementary material). 364 

 365 

2.4.3. Site coordinates 366 

Errors in data entry or an incorrect transformation of coordinates (e.g. non-homogenized coordinate 367 

reference systems) may cause the presence of invalid site coordinates. The identification of some 368 

invalid positions can be assessed through visual inspection, such as by using an interactive map (e.g. 369 

R package “leaflet”, (Cheng, Karambelkar, & Xie, 2019)). However, the response time of interactive 370 

maps tends to increase with the number of site coordinates. Thus, an alternative is to perform this 371 

verification for each individual dataset (Fig. 2 - 2.3), when the number of coordinates is still 372 

manageable. The advantage of this method is that it allows for site positions to be confirmed to 373 

ensure that they are consistent within the geographic extent of each dataset. While some invalid site 374 

coordinates are easily identifiable (e.g. located on land while the data come from marine monitoring 375 

programs) others can be more difficult to identify, for example when the error in latitude and 376 

longitude is so small that it leads to a slight modification of the site position. Finally, a broad 377 

automatic identification can be done using a polygon shapefile representing the area in which the 378 

sites are supposed to be present, at which point sites that do not fall inside this polygon can then be 379 

identified. Unfortunately, this method cannot totally replace a visual inspection. Once identified, the 380 

correction of invalid site coordinates must be done during the individual data reformatting step (Fig. 381 

2 - 2.3). 382 
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In addition to the QAQC step, we strongly encourage the data aggregator to send basic data 383 

visualisation and identified errors of individually integrated datasets to data providers and to ask for 384 

their feedback in order to ensure accuracy. 385 

 386 

 387 

 388 

 389 

2.4.4. Export of the synthetic dataset 390 

Finally, when all of the errors are corrected, the final synthetic dataset is exported (Fig. 2 - 4.3). We 391 

strongly recommend associating a metadata file to the synthetic dataset, where at least a description 392 

of the variables and their units are provided. However, if the synthetic dataset is to be shared, a 393 

more complete description of the data is required and the use of the Ecological Metadata Language 394 

(EML) can be considered for this purpose (Fegraus, Andelman, Jones, & Schildhauer, 2005). Metadata 395 

can include the name and contact of data aggregator(s), the link for the code repository used for data 396 

integration, a full description of individual datasets integrated, as well an appropriate reference to 397 

cite the synthetic dataset. 398 

 399 

3. Case studies 400 

To illustrate our workflow and to facilitate its use, we have provided an R code template for two case 401 

studies. These case studies are inspired by the Status of Coral Reefs of the World: 2020 report for 402 

which 248 datasets of coral reef benthic monitoring data were integrated to assess the global status 403 

and trends of hard coral cover over  a period of more than three decades (Souter et al., 2021). 404 

However, as the data used in the frame of this report were gathered through DSA and were 405 
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restricted in their use, we created example datasets that do not correspond to real datasets but 406 

illustrate the main types of data formats encountered in this project. The first case study illustrates 407 

the integration of data from the monitoring of benthic communities (sessile organisms) in coral reefs. 408 

It corresponds to path 3A of the workflow, with a taxonomic re-categorization. The second case 409 

study illustrates the integration of data from the monitoring of coral reef fish communities (mobile 410 

organisms). It corresponds to path 3B of the workflow, with a taxonomic verification. The code 411 

template provided illustrates steps 2 (individual data reformatting), 3 (data grouping and taxonomic 412 

assignment) and 4 (QAQC) of the workflow, as the first step doesn’t involve code. Each of these three 413 

steps are associated with an R script. The .Rmd format (rmarkdown (Xie, Allaire, & Grolemund, 414 

2018)) was selected for the different R scripts because it allows for a better segmentation and 415 

annotation of the code and process (necessary for the second step) and for the exportation of code 416 

and output to an HTML file which may include interactive tables, plots and maps (necessary for the 417 

last two steps, see Supplementary material).  The code template for these two case studies and 418 

associated information are available at https://github.com/JWicquart/monitoring_workflow. 419 

 420 

4. Discussion 421 

4.1.  Lessons learned and limits of the workflow 422 

The workflow design was possible thanks to the development of recent packages in R which make 423 

data wrangling easier, and which facilitate the access to online taxonomic databases and promote 424 

interactive data visualisation. Despite these technical improvements, data integration remains a time 425 

consuming task, as some steps are difficult to automate, and a full reproducibility can sometimes be 426 

hard to achieve. 427 

Within the context of the Status of Coral Reefs of the World: 2020 report (Souter et al., 2021), the 428 

vast majority of the 248 datasets that were integrated were unpublished data which came from 429 
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numerous data providers. For this reason, over the entire year that was necessary to one person to 430 

complete the data integration, the data gathering has represented the longest step in the workflow, 431 

involving the identification and contact of potential contributors, signing DSAs, and finally engaging 432 

in discussions with contributors to ensure that their data was properly reformatted. Despite their 433 

financial cost, the organization of several workshops in different countries increased the visibility of 434 

the project, which significantly increased the number of data providers and facilitated the individual 435 

data reformatting step. However, in contrast to data publication, data sharing, on which the Status of 436 

Coral Reefs of the World: 2020 report (Souter et al., 2021) was mainly built, limits the traceability of 437 

integrated individual datasets (as they are not associated with a DOI), reducing the reproducibility of 438 

the workflow. The trend towards increased data publication should nevertheless help to reduce this 439 

problem in the coming years (Costello et al., 2013; Shin et al., 2020). 440 

The reformatting of individual data has also constituted a time-consuming step, requiring between 441 

thirty minutes to several hours per dataset, depending on the complexity and machine readability of 442 

the data format as well as the completeness of the metadata provided. Lack of data standards (e.g. 443 

Darwin Core) and appropriate data management practices are thus the main factors which explain 444 

the time required for this step and the difficulty for a complete automation. With regards to the 445 

reproducibility of this step, it can be improved by describing decisions taken to correct errors for 446 

each individual dataset, either directly in the code, or in metadata associated with the synthetic 447 

dataset. 448 

Given the difficulty of identifying benthic organisms on coral reefs, each monitoring program defined 449 

and used its own nomenclature, using broad benthic categories instead of the taxonomic 450 

classification system. For that reason, in the context of the Status of Coral Reefs of the World: 2020 451 

report (Souter et al., 2021), and for the third step of the workflow (path 3.A), we defined a nested 452 

classification which allowed for the re-categorization all the broad benthic categories used in the 453 

individual datasets. This process required an ecological expertise and was iterative, as the chosen 454 
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nested classification was updated several times, when new cases were encountered. Once the 455 

nested classification was defined, a manual stage was necessary to re-categorize categories used in 456 

the individual datasets into the categories selected. This operation can be more or less laborious 457 

depending on the number or categories to re-categorize. However, the taxonomic assignment step 458 

can be quick and almost fully automated in cases where taxonomic verification is used (path 3.B, true 459 

taxonomic categories) instead of taxonomic re-categorisation (path 3.A, non-taxonomic categories). 460 

Finally, for the QAQC step, as the data integration process used for the Status of Coral Reefs of the 461 

World: 2020 report (Souter et al., 2021) aimed to provide a ready-to-use synthetic dataset for data 462 

analysis, we deleted all data that could not have been corrected, which sometimes led to a loss up to 463 

10% of an individual dataset. Our first case study can be easily adapted for the data integration of 464 

sessile communities (with metrics such as percentage cover) in the marine and terrestrial realms. 465 

However, we caution that for mobile communities (with metrics such as abundance or size), like fish 466 

or birds, the QAQC process is more difficult to perform as the data quality depends heavily on the 467 

sampling strategy. Nonetheless, it is important to note that all issues raised by the data 468 

heterogeneity cannot be fully resolved during the data integration process but that some of them 469 

may be addressed during the analysis itself. Analytical methods of synthetic datasets are beyond the 470 

scope of this article and information on this subject can be found in Recknagel and Michener (2018).  471 

Furthermore, different analytical methods can be used to limit bias relative to data heterogeneity, 472 

such as the sensitivity analysis which allows for the identification of datasets which have a greater 473 

influence on observed trends. 474 

 475 

4.2.  Advantages and comparison with existing approaches 476 

In spite of the limitations mentioned, which mainly concern the time-consuming nature of the 477 

process, this workflow presents several advantages. First, because it is founded on the direct 478 
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acquisition of the data from people in charge of their collection, it widens the scope for data that can 479 

be integrated to those that have not been published and enhances the quality of the data integration 480 

by benefiting from the expertise of data providers. Second, the workflow allows for the integration of 481 

different levels of precision of taxonomic and spatial data, elements that generally vary between 482 

monitoring programs. Because this method allows for raw data to be integrated, changes can be 483 

directly assessed in the unit of the considered metric (i.e. full-data analysis  (Spake et al., 2020)) 484 

instead of using effect-size, which is usually used in ecological syntheses through meta-analyses (e.g. 485 

Côté, Gill, Gardner, & Watkinson (2005)). Finally, this method guarantees a high level of 486 

reproducibility in facilitating the identification and correction of errors committed during the data 487 

integration process. Workflows are particularly relevant for reproducibility (Poisot et al., 2016; 488 

Cohen-Boulakia et al., 2017; Botvinik-Nezer et al., 2020) as they provide a visual representation of 489 

the different steps, and the possibility to adapt each step depending on the goals of the project 490 

(Jones et al., 2006). 491 

Until now, a vast majority of bottom-up approaches for data integration were developed by large 492 

databases, in particular GBIF (GBIF: The Global Biodiversity Information Facility, 2021) or OBIS (OBIS, 493 

2021). These databases typically include a web-based interface to allow data providers to publish 494 

their datasets, such as the Integrated Publishing Toolkit (IPT) developed by GBIF (Robertson et al., 495 

2014), and are based on data standards, such as the DarwinCore (Wieczorek et al., 2012). Unlike 496 

these databases, which seek to increase the accessibility and standardization of biodiversity datasets, 497 

the workflow presented here aims to produce a ready-to-use synthetic dataset, adapted to the 498 

analyses that will be performed, but also to integrate datasets whose formats are not yet suited for 499 

incorporation into existing databases. 500 

Outside of large databases, the number of studies related to data integration remains limited and 501 

have been mainly focused on quality control (e.g. (Dou et al., 2012; Belitz et al., 2018)). Most have 502 

used similar steps to the one presented here to control data quality, and to check geography, 503 
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taxonomy and the completeness of data or to investigate outliers (Dou et al., 2012; Vandepitte et al., 504 

2015). These studies also tended to explicitly state quality checks in the form of a series of questions 505 

or items to review (Vandepitte et al., 2015; O’Donnell et al., 2021). As these items must be 506 

specifically tailored to the data and the analyses that follow, we did not explicitly present a list of 507 

quality checks here, but we strongly recommend the implementation of this approach. Several 508 

studies have highlighted the requirement of manual step(s) during quality control, where the 509 

knowledge of the data aggregator is essential to verify the consistency and ecological relevance of 510 

modifications applied (Jones et al., 2006). Overall, the individual data reformatting step is not 511 

mentioned in studies related to data integration mainly because the approaches developed are built 512 

on web-based interfaces (Chaudhary et al., 2010; Robertson et al., 2014) where the data providers 513 

are left with the responsibility of reformatting their data. Finally, O’Donnell et al., (2021) presented a 514 

similar approach to the one presented here, where they developed a framework and a custom open-515 

source software to integrate long-term monitoring data of the greater sage-grouse population. While 516 

this framework and resulting considerations could be applied to other studies (O’Donnell et al., 517 

2021), the software they developed was tailored to their specific scenario and could be difficult to 518 

reuse. Based on the R code associated with the two case studies, we hope that the workflow 519 

presented here can bridge this gap, through a more versatile approach. 520 

 521 

5. Conclusion 522 

The purpose of the workflow presented in this study is to encourage researchers to integrate 523 

multiple ecological monitoring data into a single synthetic dataset in order to perform analyses on 524 

the status and trends in biodiversity and ecosystems at larger scales. The results of these analyses 525 

are essential to inform policy makers and to measure the effectiveness of global (e.g. CBD Post-2020 526 

Biodiversity Framework), regional or national programs, that aim to protect biodiversity and 527 

ecosystems (Balmford, Green, & Jenkins, 2003). Data integration could also be of great interest for 528 
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research topics, such as macroecology and biogeography, by testing ecological hypotheses at larger 529 

scales (Carpenter et al., 2009; Poisot et al., 2016; König et al., 2019). The need for data integration 530 

will likely increase in the coming years (Miller et al., 2019), due to the emergence of new standards 531 

on data interoperability (e.g. FAIR data principles, (Wilkinson et al., 2016)) and a trend towards 532 

further data sharing (Michener, 2015) or data publication (Costello et al., 2013; Shin et al., 2020), 533 

which together sharply increase the volume of accessible data available to the scientific community 534 

(Hampton et al., 2013). In this context, the publication of code and workflow are essential to increase 535 

the reproducibility of results and to drive ecology toward a more transparent science. 536 

 537 
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