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Abstract 27 

Ocean acidification has emerged as a major concern in the last fifteen years and studies on the 28 

impacts of seawater acidification on marine organisms have multiplied accordingly. This review 29 

aimed at synthesizing the literature on the effects of seawater acidification on tropical scleractinians 30 

under laboratory-controlled conditions. We identified 141 articles (published between 1999-2021) 31 

and separated endpoints into 22 biological categories to identify global trends for mitigation and 32 

gaps in knowledge and research priorities for future investigators. The relative number of affected 33 

endpoints increased with pH intensity (particularly for endpoints associated to calcification and 34 

reproduction). When exposed to pH 7.6-7.8 (compared to higher pH), 49% of endpoints were 35 

affected. The diversity in experimental designs prevented deciphering the modulating role of coral 36 

life stages, genera or duration of exposure. Finally, important bias in research efforts included most 37 

experiments on adult corals (68.5%), in 27 out of 150 (18%) coral ecoregions and exclusively from 38 

shallow-waters. 39 
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1. Introduction 50 

Due to the increasing emissions of carbon dioxide into the atmosphere, the Ocean is warming and 51 

getting more acidic. Ocean acidification (OA) has been identified as a global environmental threat 52 

and included as the United Nations’ Sustainable Development Goal 14.3, as well as one of the nine 53 

planetary boundaries (Jagers et al., 2019; Rockström et al., 2009). OA impacts on marine species and 54 

ecosystems are well documented, including effect on marine calcifiers, threatening coral reefs as well 55 

as broader marine ecosystems (Doney et al., 2009; Feely, 2004; Gattuso & Hansson, 2011; Hendriks 56 

et al., 2010; Jiang et al., 2019; Kroeker et al., 2010, 2013; Orr et al., 2005). 57 

Most of the available knowledge on the effects of OA on marine organisms comes from short-term 58 

laboratory experiments on isolated organisms (Kroeker et al., 2010). Fixed-term studies have the 59 

disadvantage of potentially under/overestimate the effects of OA, as some taxa may show 60 

vulnerability/acclimatization in the long-term (Fantazzini et al., 2015). Similarly, other life stages than 61 

those considered may show different vulnerability and controlled conditions does not consider the 62 

indirect effects due to OA-driven ecological changes (Fabricius et al., 2011). In this context, 63 

knowledge acquired through field experiments taking advantage of organisms that are naturally 64 

exposed to OA (e.g. CO2 vent systems) are very complementary as they account for the life-long 65 

acclimatization of organisms. These studies already showed that OA may change reef community 66 

composition and metabolism (Biscéré et al., 2019; Noonan et al., 2018). They also reported effects on 67 

skeletal porosity (Prada et al., 2021) and a variety of responses to OA on calcification rate, suggesting 68 

species-specific acclimatization to OA (Strahl et al., 2015). 69 

Coral reefs have received particular attention as they are among the most severely threatened 70 

ecosystem on Earth (Pandolfi, 2003; Raven, 2005). The effects of seawater acidification on corals 71 

have been extensively studied (Chan & Connolly, 2013; Erez et al., 2011), but responses often differ 72 

between studies depending on parameters such as tested populations, species and life-cycle stages 73 

(Kawahata et al., 2019). These apparent conflicting results in the literature could also be attributed to 74 

variations in experimental designs and methodologies. In this study, we reviewed the literature that 75 

examined the effects of decreased pH on tropical scleractinian corals under laboratory-controlled 76 

conditions. A meta-analysis based on 169 experiments conducted in 141 peer-reviewed articles 77 

published since 1999 was performed, with four main objectives:  78 

(1) To provide a semi-quantitative description of the evolution of research efforts testing the 79 

effects of seawater acidification on tropical scleractinian corals, 80 

(2) To evaluate the effect of seawater acidification on coral biological functions,  81 
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(3) To investigate the modulating influence of exposure duration, coral life stages and coral 82 

genera on sensitivity to seawater acidification and, 83 

(4) To highlight research gaps and bias. 84 

Based on this review, we provide recommendations and perspectives for future research and an 85 

updated baseline for scientists starting in this field of research. 86 

 87 

2. Material and methods 88 

The code used in this manuscript was based on Jacob et al. (2020): 89 

https://doi.org/10.5281/zenodo.3694955. 90 

 91 

2.1 Literature search 92 

A literature search was performed using the following databases: Ocean Acidification – International 93 

Coordination Centre portal for ocean acidification biological response data, Google Scholar, Scopus 94 

(keywords such as “coral” AND “acidification”). We listed all experimental studies published before 95 

2021, which mainly focused on the effects of experimental seawater acidification on tropical 96 

scleractinian corals. Studies were selected according to the following criteria: 1) the experiment(s) 97 

was(were) performed under laboratory-controlled conditions; 2) one treatment (at least) was 98 

designed to test the effects of seawater acidification only (without interaction with another stressor); 99 

3) a tropical scleractinian coral species (at least) was studied; 4) an acidified treatment was compared 100 

with a control treatment (present-day conditions), with constant conditions (i.e. non-oscillating). In 101 

situ experiment(s) of the effects of seawater acidification on biological functions were not included in 102 

the database but were considered for the discussion. Higher than present-day (control) pH 103 

conditions (e.g. pre-industrial pH conditions) were not included in the database. When the statistics 104 

lacked clarity/transparency or did not allow to be adequately decomposed into the database, the 105 

article was excluded. The completeness of the results obtained was considered as satisfactory based 106 

on “snowballing” (i.e. checking citations on reference lists of relevant articles until no further 107 

relevant article could be found; Sayers, 2007). 108 

 109 

2.2 Main data extraction 110 
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For each experiment selected in the database, the following information was extracted: Study 111 

location(s), study duration(s), coral genus and species, coral life stage(s), number of studied species, 112 

tested pHs, pH scale and endpoints. 113 

 114 

2.3 Data organization 115 

For analyses, six pH classes were defined: Class 1 for pH between 7.8 and 8, Class 2 for pH between 116 

7.6 and 7.8, Class 3 for pH between 7.4 and 7.6, Class 4 for pH between 7.2 and 7.4, Class 5 for pH 117 

between 7 and 7.2, Class 6 for pH below 7. Recent studies highlight the importance of local 118 

adaptation to the present natural variability in the carbonate chemistry to define species sensitivity 119 

to OA (e.g. Vargas et al., 2017). As a consequence, the definition of pH scenarios or categories 120 

relevant in the context of OA should consider this natural variability. As diurnal and seasonal pH 121 

variability is low in coral reef environments (e.g. Cyronak et al., 2020), pH within class 1 to 6 are 122 

considered relevant in the context of OA. Similarly, duration, genus and life stage were also divided 123 

into classes. Four duration classes were defined: Class 1 for very short-term experiments (<1 week), 124 

Class 2 for short-term experiments (1-4 week(s)), Class 3 for medium-term experiments (1-3 125 

month(s)), Class 4 for long-term experiments (>3 months); Three genus classes: Class 1 for species 126 

from the genus Acropora, Class 2 for species from the genus Porites, Class 3 for species from the 127 

genus Pocillopora; and three life stage classes were chosen: Class 1 for free-living non-calcifying early 128 

life stages (Gametes, Gastrulae, Larvae), Class 2 for settled calcifying early life stages (Recruits, 129 

Primary polyps, Juveniles) and Class 3 for the adults. All classes are summarized in Table 1. 130 

 131 

Table 1. pH, Duration, genus and life stage classes used to classify this review. 132 

Parameters Classes 

pH 

Class 1 7.8-8 
Class 2 7.6-7.8 
Class 3 7.4-7.6 
Class 4 7.2-7.4 
Class 5 7.0-7.2 
Class 6 <7 

Duration 

Class 1 <1 week              
Class 2 1-4 week(s)        
Class 3 1-3 month(s)      
Class 4 >3 months          

Genus 
Class 1 Acropora 

Class 2 Porites 

Class 3 Pocillopora 

Life stage 
Class 1 Free-living early life stages 

Class 2 Settled early life stages 
Class 3 Adults 

 133 



6 
 

2.4 Endpoints 134 

For each study and experiment, all measured endpoints were identified and divided into categories 135 

based on their biological significance. When the biological significance of an endpoint was not 136 

straightforward and/or when an endpoint could have several biological meanings, we attributed it to 137 

a single category based on the focus adopted by authors. In total, eight categories, divided into 22 138 

subcategories, were established (Table 2).  139 

 140 

Table 2. List of the biological categories and subcategories used in the database, with one example of endpoint 141 

measured. 142 

Biological category Biological subcatergory Endpoint measured1  

Feeding and excretion 
Excretion Ammonia excretion rate 

Feeding Feeding rate 

Fitness 

Reproductive investment and success Settlement rate 

Calcification Net calcification rate 

Mortality Total mortality 

Growth and development  Linear extension rate 

Cellular stress-response  

mechanisms 

Apoptosis p53 expression level 

Oxidative stress Glutathione reductase expression level 

Other molecular actors HSP70 

Biomolecules 

Carbohydrate Carbohydrate content 

Lipid Total lipid content 

Protein Protein content 

Energy content Host ATP content 

Respiration and  

photophysiology 

Photophysiology Net photosynthetic rate 

Respiration Dark respiration rate 

Productivity Net productivity 

Microbiome and endolithic algae Bacterial community composition Gammaproteobacteria content 

Metabolome  Metabolite profile 

Epigenetic mechanism DNA methylation level 

Community 

Community structure Planar cover of the community 

Community calcification Light community calcification 

Respiration Community net oxygen consumption 

1This is a non-exhaustive list of examples. See the database in Supplementary Material for the full list of endpoints 143 

measured. 144 

 145 

For each endpoint, we reported the occurrence of a significant effect of exposure to pH as compared 146 

to the highest tested pH: YES if the endpoint was significantly affected by pH; NO elsewhere (Jacob et 147 
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al., 2020). If multiple pH treatments were used and the statistics in the study did not compare the 148 

effect of each treatment with the control, but rather reported the result as a statistical trend, a YES 149 

was attributed to an endpoint when the trend was significant. For each category and subcategory, 150 

the percentage of affected endpoints was calculated by dividing the number of affected endpoints 151 

(i.e. number of YES) by the total number of endpoints in this category or subcategory (Jacob et al., 152 

2020).  153 

 154 

2.5 Database construction 155 

All selected experimental studies were grouped in a common database gathering all relevant 156 

information (main data, endpoints and effects as described from 2.2 to 2.4). The database is available 157 

as Supplementary Material. 158 

 159 

3. Results & Discussion 160 

3.1 General trends in experimental seawater acidification research on tropical scleractinian corals 161 

Literature trend  162 

In our database, we identified 169 experiments in 141 articles (listed in Supplementary Material) that 163 

have evaluated the effects seawater acidification under laboratory-controlled conditions on tropical 164 

scleractinian corals. The six best studied regions account for 69% of the studies: Australia (15%), 165 

Japan (14%), French Polynesia (14%), Hawaii (10%), the USA (excluding Hawaii, 8%) and Taiwan (8%; 166 

Fig. 2A). Six percent of the studies were carried out on corals that have been maintained and 167 

acclimated in aquaria for years (referred to as “Aquaria acclimated”; Fig. 2A). These included the 168 

species Stylophora pistillata that were held in aquaria in Monaco (Liew et al., 2018; Reynaud et al., 169 

2003; Tambutté et al., 2015; Venn et al., 2013, 2019, 2020; Zoccola et al., 2016), but also by other 170 

coral species obtained from commercial suppliers (Bove et al., 2020; Wijgerde et al., 2014). 171 

Altogether, these data reveal that the effects of experimental seawater acidification on tropical 172 

scleractinian corals have only been studied in 27 out of 150 coral ecoregions (18%; Veron et al., 2005, 173 

2015). Certain parts of the world remain unexplored, with no study to date in the African reefs nor 174 

around the coasts of India or Sri Lanka, and very few studies in the coral triangle (Figure 1), despite 175 

being known as the most biodiverse area in the ocean, containing more than 76% of the world’s 176 

shallow-water reef-building corals (Asaad et al., 2018). Moreover, no study has ever focused on the 177 

impact of seawater acidification on tropical mesophotic corals, even though they represent 2/3rd of 178 
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the world coral reefs (Morais & Santos, 2018) and are expected to act as “deep refugia”, by providing 179 

a viable reproductive source for shallow reefs after disturbance (Bongaerts et al., 2010).  180 

Experimental seawater acidification research on tropical scleractinians is relatively recent and has 181 

increased exponentially since the 21st century (Fig. 2B). Similarly, in situ studies have only started to 182 

develop even more recently, with a majority of studies (70%) published over the five past years (Fig. 183 

2B). Among these, 80% took advantage of coral communities living under naturally acidified waters 184 

such as submarine springs in Mexico (Crook et al., 2012, 2013; Martinez et al., 2019; Wall et al., 185 

2019) and CO2 vents in Papua New Guinea (Biscéré et al., 2019; Fabricius et al., 2011; Fantazini et al., 186 

2015 ; Marcelino et al., 2017 ; Morrow et al., 2015 ; Noonan et al., 2016, 2018 ; O’Brien et al., 2018 ; 187 

Prada et al., 2021 ; Smith et al., 2016 ; Strahl et al., 2015 ; Wall et al., 2017). Other studies compared 188 

adjacent reef sites with distinct pH conditions (Barkley et al., 2015, 2017; Camp et al., 2017). Finally, 189 

20% of studies have performed in situ controlled CO2 enrichment such as FOCE experiments (Free 190 

Ocean CO2 Experiments; Albright et al., 2016, 2018; Doo et al., 2019; Georgiou et al., 2015; Kline et 191 

al., 2019; Srednick et al., 2020). In situ studies possess the great advantage of being more ecologically 192 

realistic than laboratory-based studies, as they account for the complexity of species interactions of 193 

the whole reef community, under natural abiotic conditions (Albright et al., 2018). Yet, naturally 194 

acidified sites are not always available and possess their own set of limitations. They are not perfect 195 

predictors of future ocean ecology owing to temporal variability in pH, spatial proximity with other 196 

populations and changes in other parameters such as seawater temperature (Prada et al., 2021; 197 

Riebesell, 2008). Moreover, the manipulation of seawater parameters in situ is technically 198 

challenging and comes at great expenses, which greatly limits its reproducibility. 199 

 200 

pH scale 201 

Best practices recommend to measure seawater pH using the total hydrogen ion concentration scale 202 

(Total scale; Dickson et al., 2007). Yet, only 54.4% of experiments used this scale (Figure 2I). The rest 203 

of the experiments measured pH on the NBS scale (US National Bureau of Standards, now referred to 204 

as the IUPAC scale, 29.2%) or on the seawater scale (SWS; 5.3%). A minority of experiments (3.5%) 205 

did not measure the pH but estimated its value from the other seawater carbonate chemistry 206 

parameters, via CO2sys (Pierrot et al., 2006) or the R package seacarb (Gattuso et al., 2020). Finally, a 207 

significant proportion (7.6%) did not specify how the pH was measured/calculated. Such 208 

heterogeneity in the pH scales used to measure seawater pH probably lies in the fact that it is, 209 

together with the study of acid-base reactions in seawater, one of the most confused areas of marine 210 

chemistry (Dickson, 1993). Above all, it is essential that the pH is defined on the same pH scale as 211 
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that of all acid-dissociation constants that are used with it (Riebesell et al., 2011). We highly 212 

recommend future studies to focus on measuring total scale pH following the complete procedure 213 

and best practices in SOP6a and SOP6b (Dickson et al., 2007).  214 

 215 

Coral characteristics 216 

The vast majority of studies have evaluated the effects of seawater acidification on adult 217 

scleractinians (68.4%; Fig. 2C). 16.7% of studies were devoted to free-living (non-calcified) early life 218 

stages (mainly larvae -13.9%-, followed by gastrulae -1.7%- and gametes -1.1%). Then, the most 219 

studied settled (calcified) early life stages were recruits (7.8%), followed by primary polyps (4.4%) 220 

and juveniles (2.8%; Fig. 2C). This focus on adult corals is a common trend also generally observed for 221 

other marine organisms (Kroeker et al., 2010). For corals, the high attention devoted to adult stages 222 

is likely due to the convenience of collection and husbandry, compared to early life stages, which 223 

require specific knowledge on spawning events and high expertise for a successful rearing. However, 224 

future studies should put greater emphasis on early life stages as they are often inferred to be more 225 

vulnerable to environmental conditions than adults (Byrne, 2011). However, as only 4.7% of studies 226 

considered multiple life history stages, the susceptibility among life stages remains largely 227 

underexplored. Multigenerational studies are thus crucial as they allow to compare the sensitivity of 228 

a species among life stages and to evaluate transgenerational carry over effects. To the best of our 229 

knowledge, very few studies have evaluated these effects with corals, as compared to other taxa 230 

(e.g. mollusks; Hettinger et al., 2012; Parker et al., 2012) or other stressors (e.g. global warming; 231 

Dixon et al., 2015). Studies on scleractinians suggested that exposure of the parents to stressful 232 

conditions had positive influence on coral offspring performances, when subsequently re-exposed 233 

(e.g. metabolic acclimation for P. damicornis, Putnam & Gates, 2015; greater larval settlement and 234 

survivorship for P. damicornis, Putnam, 2021). Yet, this likely vary between species (e.g. S. pistillata, 235 

Bellworthy et al., 2018). Multigenerational studies are thus required to investigate parental (carry-236 

over) effects, to decipher whether the exposure to seawater acidification in adults enhance offspring 237 

tolerance, and to predict the future of coral reefs more accurately (Putnam et al., 2016, 2021). 238 

Altogether, three genera stand for 65.1% of the experiments, with the most studied being Acropora 239 

(30.4%), followed by Porites (18.3%) and Pocillopora (16.3%; Fig. 2D). The most studied species from 240 

the database is Acropora millepora. Other well studied genera are Montipora (7.9%), Stylophora 241 

(6.3%) and Seriatopora (4.6%), followed by studies that have evaluated the effects of seawater 242 

acidification on the coral community (3.8%; Fig. 2D). The genera Siderastrea, Pavona and 243 

Psammocora each accounted for 1.7, 1.7 and 1.3% of the database, respectively. Finally, 6.7% of 244 
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experiments were performed on less studied genera (<1%, referred to as “Others”; Fig. 2D). These 245 

include species from the genera Cyphastrea, Duncanopsammia, Favia, Favites, Fungia, Galaxea, 246 

Goniopora, Isopora, Leptastrea, Litophyllon, Madracis, Montastrea, Mussismila, Orbicella, 247 

Pseudodiploria and Turbinaria (Fig. 2D). Overall, these data show that a small number of coral species 248 

are favoured in experimental seawater acidification experiments. As previously reported for heat 249 

stress experiments on corals (review by McLachlan et al., 2020), this may be due to the facility of 250 

working on highly studied species (i.e. with the availability of their genome), the presence of these 251 

species within each region or to logistical constraints (e.g. permits, easiness of maintenance in 252 

captivity). This finding also means that many species, and so several functional traits which are likely 253 

to drive differential responses to acidification, remain uninvestigated. 254 

 255 

Experimental design  256 

The majority of experiments (63.9%) considered a single species of coral (Fig. 2E). The remaining 257 

experiments used two to four (30.8%) or five to eight species (3.0%) and only 2.3% evaluated the 258 

effects of seawater acidification on the coral community (Fig. 2E). Undoubtedly, it limits and 259 

oversimplifies our understanding of the effects of OA on the biologically complex assemblage 260 

characterizing coral reefs. On top of that, species interactions can also decrease the predictability in 261 

species response to seawater acidification, since different pairings and spatial organization of corals 262 

might significantly influence the observed endpoints (Brien et al., 2016; Evensen et al., 2015, 2016). 263 

For these reasons, designing experiments based on the local species assemblage in terms of diversity, 264 

abundance and spatial organization, should be prioritized in future investigations. 265 

Furthermore, most experiments lasted between 1 and 4 week(s) (39.6%), with the other experiments 266 

lasting less than a week (26.4%), one to three month(s) (24.7%) and more than three months (9.3%), 267 

for a minority (Fig. 2F). This trend is likely explained by the constraints associated with long-term 268 

studies, in terms of time, logistical or even financial limitations. Nevertheless, the duration of 269 

exposure may influence coral sensitivity to seawater acidification. For instance, corals are able to 270 

counteract the negative effects of acidification for a specific period through energy-demanding 271 

processes, until reaching a time-dependent threshold beyond which it will no longer be able to 272 

counter these effects (Castillo et al., 2014; Schoepf et al., 2013). For these reasons, short-term 273 

studies should be avoided, and long-term experimental studies prioritized, when possible. In that 274 

aspect, field experimentations/observations at CO2 vents have the benefit to provide natural long-275 

term studies (e.g. Biscéré et al., 2019; Fabricius et al., 2011; Martinez et al., 2019; Morrow et al., 276 

2015; Noonan et al., 2018; Noonan & Fabricius, 2016; Prada et al., 2021; Strahl et al., 2015). 277 
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 278 

Endpoints  279 

Most experiments worked on the effects of seawater acidification on the fitness (57.3%), respiration 280 

and photophysiology (23.9%) and biomolecules (7.1%) of tropical scleractinians (Fig. 2G). The other 281 

endpoints studied were involved in cellular stress response mechanism(s) (4.3%), community 282 

response(s) (3.5%), microbiome and endolithic algae composition (2.0%), epigenetic effect(s) (0.8%) 283 

and/or feeding and excretion (0.8%; Fig. 2G). Among those that have worked on the effects of 284 

seawater acidification on coral fitness, calcification was the most studied endpoint (52.6%), followed 285 

by growth and development (25.5%), reproductive investment and success (10.9%) and mortality 286 

(10.9%; Fig. 2H). 287 

 288 

3.2 Biological effects of pH on tropical scleractinian corals 289 

General trends 290 

Overall, the relative number of affected endpoints increases with decreasing pH (Fig. 3). Twenty-six 291 

percent of endpoints were affected between pH 7.8 and 8, 46.2% between pH 7.6 and 7.8, 48.3% 292 

between pH 7.4 and 7.6, 46.3% between pH 7.2 and 7.4, 96.4% between pH 7.0 and 7.2 and 100% 293 

below pH 7.0. However, it should be noted that the number of available articles and data is not the 294 

same for each pH category. Studies have mainly focused on pH 7.8-7.6 (n endpoints=608), followed 295 

by pH 8.0-7.8 (n=519), pH 7.6-7.4 (n=203), pH 7.4-7.2 (n=162), pH 7.2-7.0 (n=56) and below 7.0 (n=4). 296 

Similarly, differences in experimental designs within each pH category is potentially a strong 297 

confounding factor, mixing results from experiments of multiple duration of exposure, coral life-298 

stages, coral species, among others. This may particularly limit our interpretations for the less-299 

studied pH categories. 300 

 301 

Fitness 302 

The decrease in pH and [CO3
2-] through OA is believed to increase the energetic cost of calcification 303 

for marine calcifiers (Gattuso & Hansson, 2011). Known as one of the biggest threats related to OA, 304 

calcification, the ability to build and maintain calcium carbonate structures, was among the most 305 

studied parameters (52.6% of studies). Results showed that 43.4% of endpoints related to 306 

calcification were affected for pH 7.8-8.0 (n=152), 55.3% for pH 7.6-7.8 (n=244), 66.7% for pH 7.4-7.6 307 

(n=96), 85.7% for pH 7.2-7.4 (n=42), 96.9% for pH 7.0-7.2 (n=33) and 100% for pH below 7.0 (n=2) 308 

(Fig. 3). Similarly, growth and development (i.e. coral linear extension, biomass, larval size, recruits 309 
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diameter, etc.) were increasingly affected with decreasing pH, with 29.5% of affected endpoints for 310 

pH 7.8-8.0 (n=44), 44.4% for pH 7.6-7.8 (n=63), 61.1% for pH 7.4-7.6 (n=18), 73.7% for pH 7.2-7.4 311 

(n=19), 88.9% for pH 7.0-7.2 (n=9) and 100% for pH below 7.0 (n=1). Fewer studies worked on the 312 

effects of seawater acidification on reproductive investment and success (10.9%). Yet, they showed 313 

that 50.0% of reproductive endpoints were affected for pH 7.8-8.0 (n=20), 75.0% for pH 7.6-7.8 314 

(n=16), 100% for pH 7.2-7.4 (n=1) as well as for pH below 7 (n=1). Noticeable effects on reproduction 315 

included effects on sperm flagellar motility (Morita et al., 2010), time to gastrulation (Chua et al., 316 

2013) and larval settlement (Albright et al., 2010; Doropoulos et al., 2012; Jiang et al., 2020; Pitts et 317 

al., 2020; Viyakarn et al., 2015). Finally, effects of seawater acidification on coral mortality were only 318 

showed under pH 7.6-7.8 (37.5% of affected endpoints, n=24). Mortality on adult colonies included 319 

partial mortality (local tissue loss; Bahr et al., 2016; Kavousi et al., 2016) and total mortality (death of 320 

the colonies; Yang et al., 2020). Studies also showed mortality of coral larvae (Cumbo et al., 2013; 321 

Doropoulos et al., 2012) and recruits (Dufault et al., 2012, 2013) under seawater acidification. 322 

 323 

Respiration and photophysiology 324 

Measurement of the coral host respiration rate is often used as an indicator of the metabolism’s 325 

state/activity level. Moreover, the proper functioning of the algal symbiont photosynthetic activity is 326 

fundamental as it provides an energy source as photosynthates to the host (Muscatine et al., 1981). 327 

As the host, coral has some control over the photosynthetic activity of the algal symbionts (by 328 

contributing to the low pH of the symbiosome via H+-ATPase, Barott et al., 2015), maintaining this 329 

vital function is thus critical. The endpoints related to coral host respiration rate and algal symbiont 330 

photosynthetic activity were poorly affected by seawater acidification, regardless of the pH level (Fig. 331 

3). Despite this, studies on the effects of seawater acidification on photosynthetic processes gave 332 

ambiguous results, with multiple studies showing an increased photosynthetic rate under low pH 333 

(Anderson et al., 2019; Biscéré et al., 2019; Langdon, 2005). Response heterogeneity could be linked 334 

to strain-specific responses by distinct Symbiodinium sp. (Brading et al., 2011; Graham & Sanders, 335 

2016) or even attributed to differences in experimental parameters such as light or nutrients, which 336 

both contributes to photosynthesis (Chauvin et al., 2011). It is expected that the effect of seawater 337 

acidification on the coral’s metabolism is small as compared to the effect of increasing temperature 338 

(Agostini et al., 2013; Cumbo et al., 2013; Edmunds & Burgess, 2016; Van der Zande et al., 2020).  339 

 340 

Biomolecules 341 
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Quantification of biomolecules such as lipids, carbohydrates and proteins is often used as an 342 

indicator of energetic reserves of organisms. As such, their depletion under stressful conditions is 343 

often related to increased metabolic demands in ectotherms (Deutsch et al., 2008). Endpoints 344 

related to lipid, protein and carbohydrate metabolisms seemed to remain relatively stable under 345 

decreased pH (Fig. 3). Yet, for lipids, 55.6% of endpoints were affected for pH 7.6-7.8 (n=9) and 33.3% 346 

for pH 7.4-7.6 (n=6). Reduction of lipid content may show that maintenance of coral performances 347 

and calcification under seawater acidification increase energetic costs, which is met through 348 

catabolism of energy reserves. The subcategory “energy content” (here, the sum of lipids, 349 

carbohydrates and proteins) showed to be greatly affected at pH 7.6-7.8, but this requires further 350 

attention as it has only been studied in one experiment (Wall et al., 2017). 351 

 352 

Cellular stress-response mechanism 353 

Changes in the environment, like OA, are likely to drive cellular stress response, a universally 354 

conserved mechanism used to protect macromolecules within cells from the potential damage that 355 

OA may cause (Kaniewska et al., 2012). Here, a number of studies indicated that endpoints involved 356 

in cellular stress-response mechanisms were affected by seawater acidification (Fig. 3). In the 357 

subcategory “other molecular actors”, 19.2% of endpoints were affected for pH 7.8-8.0 (n=26), 16.7% 358 

for pH 7.6-7.8 (n=6), 0% for pH 7.4-7.6 (n=2) and 100% for pH 7.2-7.4 (n=1). These were attributed to 359 

genes involved in innate immunity (Kaniewska et al., 2012) and heat shock response (Liew et al., 360 

2018; Moya et al., 2015; Putnam et al., 2013). Thirty-one percent of endpoints associated with 361 

oxidative stress were affected at pH 7.8-8.0 (n=26) and 36.6% at pH 7.6-7.8 (n=41). These were 362 

essentially affecting the activity level of antioxidant enzymes (Bielmyer-Fraser et al., 2018; Jiang et 363 

al., 2019; Soriano-Santiago et al., 2013) or genes involved in the antioxidant response (Kaniewska et 364 

al., 2012; Moya et al., 2015). These later studies also indicated up/down regulation of anti-apoptotic 365 

genes, as showed with 50% of endpoints affected under pH 7.8-8.0 (n=2) and 100% under pH 7.6-7.8 366 

(n=9). 367 

 368 

Other biological category 369 

Coral reefs form complex network of interactions between species. Each of its component plays a 370 

role and contributes to the overall equilibrium of the reef as well as its resilience to environmental 371 

change. Working on the coral community is therefore necessary as it allows considering the 372 

interactions between coral species and therefore provides more realistic responses. Yet, few studies 373 
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have experimentally worked on the effects of seawater acidification on coral community, likely owing 374 

to the difficulty of having a realistic community in an aquarium. For this aspect, we suggest to refer 375 

to the numerous in situ studies, which naturally consider the coral community. Endpoints indicated 376 

that community structure was changed under pH 7.6-8.0 (100% of affected endpoints, n=2; Edmunds 377 

et al., 2019, 2020).  378 

As acidifying conditions affect corals, their energy requirements increase and must be compensated 379 

in order to sustain the proper biological functioning of the coral. This may be studied by looking at 380 

feeding rate (the input of energy via heterotrophy) and excretion rate (ammonium ion 381 

concentration; the output of energy through protein catabolism) of corals. Towle et al. (2015) 382 

indicated that coral can buffer OA effects by increasing feeding rates under pH 7.8-8.0 and Edmunds 383 

& Wall (2014) showed that catabolism of proteins and amino acids is accelerated by OA (pH 7.8-8.0), 384 

supporting that OA may perturb protein metabolism.  385 

Phenotypic plasticity has the potential to facilitate rapid acclimatization of corals, a requirement in 386 

view of the rapid rate of change in the environment, driven by human activities. Mechanisms of rapid 387 

acclimatization may include changes in microbial community, with 50% of endpoints affected for pH 388 

7.8-8.0 (n=4), 50% for pH 7.6-7.8 (n=4), 50% for pH 7.6-7.4 (n=2) and 87.5% for pH 7.2-7.4 (n=16) 389 

(Meron et al., 2011; Webster et al., 2013, 2016; Yang et al., 2020; Zhou et al., 2016). Another 390 

potential mechanism is epigenetics (i.e. the heritable postsynthesis modification of DNA or DNA-391 

associated proteins, without a change in the DNA sequence itself, Feil & Fraga, 2012), with 50% of 392 

endpoints affected for pH 7.6-7.8 (n=2) and 100% for pH 7.2-7.4 (n=1) (Liew et al., 2018; Putnam et 393 

al., 2016). Finally, metabolomic profiling is a useful molecular tool that allows quantifying the 394 

intermediates and products of many biochemical processes. Putnam et al. (2016) found lower 395 

amount of metabolites under OA, suggesting a general suppression of metabolic activities. These 396 

techniques have started to be used on corals recently and deserve more attention in future 397 

investigations. 398 

 399 

Gene expression 400 

Understanding the fitness consequences of observed changes in endpoints is not always 401 

straightforward. This is particularly evident for changes in gene expression. An over or 402 

downregulations of a given gene does not implicitly translate into a positive or negative effect on  403 

protein level, function or fitness (Feder & Walser, 2005; Koussounadis et al., 2015; Greenbaum et al., 404 

2003). Moreover, the intensity of an observed change at the gene expression level that is biologically 405 

significant is often poorly understood. For example, a 200% change in the expression of genes 406 
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involved in calcification does not necessarily translate into a 200% change in calcification. For these 407 

reasons, we did not use the gene expression data to infer biological impacts of seawater acidification. 408 

 409 

3.3 Biological effects of pH 7.6-7.8 on tropical scleractinian corals  410 

Many factors can modulate the biological response of tropical scleractinian corals to seawater 411 

acidification, including the tested species, life-history stage, tested pH or duration of exposure. As 412 

shown in the previous section, the effects on various endpoints tend to increase with decreasing pH. 413 

To better understand the role of the other modulating factors while minimizing the effect of the pH 414 

intensity, we decided to focus on pH class 2 (pH 7.6-7.8) for 2 reasons: (i) it is the class with the most 415 

available data (n endpoints=608); and, (ii) this range of pH corresponds to projected scenarios 416 

expected for 2100 (SSP3-7.0 and SSP5-8.5; IPCC, 2021).  417 

 418 

General trends  419 

Tested endpoints were only moderately affected under pH 7.6-7.8 (Fig. 4). No strong effects of the 420 

duration of exposure, coral genus or life stage could be identified, even when endpoints were 421 

separated into different categories.  422 

 423 

Effects of the duration of exposure 424 

The effect of the duration of the exposure in seawater acidification experiment is still poorly 425 

understood (Cumbo et al., 2013). Time-dependent response patterns were previously documented 426 

(Castillo et al., 2014; Schoepf et al., 2013). For example, Castillo et al. (2014) observed an increase in 427 

the calcification rate of S. siderea until the 60th day of exposure to acidified conditions, which 428 

thereafter started to decline. Similar results were reported for A. millepora, with a decrease of 429 

calcification that appeared only during the second half of the experiment (viz. after 1 month; Schoepf 430 

et al., 2013). In these specific cases, the parabolic responses to decreased pH would not have been 431 

detected if the duration of the experiments was shorter. These results might result from the ability of 432 

corals to compensate for the extra energy costs associated with the exposure to decreased pH, until 433 

reaching a time-dependent threshold beyond which the organism does not have the energy reserve 434 

allowing to counteract the extra costs associated with the stress. In other taxonomic groups, a 435 

different pattern was observed with a milder effect observed over longer period of time. For 436 

example, Dupont et al. (2013) showed that the strong negative effect of pH on adult sea urchin 437 
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fecundity observed after a 4-month exposure disappeared after 16 months. The negative effect 438 

observed over the first part of the experiment was interpreted as short-term costs associated with 439 

physiological acclimation to the new low pH environment. These examples highlight the value of 440 

long-term experiments. 441 

 442 

Effects of the coral life stage 443 

Early life stages are generally more vulnerable to environmental conditions than adults (Byrne, 2011), 444 

so dismissing the effects of decreasing pH on multiple life stages in current prediction models would 445 

represent an important bias for the projection of the fate of coral reef ecosystems. Indeed, if pH 446 

disrupts early-life processes, it would compromise sexual recruitment and therefore affect future 447 

population dynamics and the ability of coral reefs to recover from a disturbance (Caroselli et al., 448 

2019). This question has received relatively poor attention and experiments that have considered 449 

more than one life stage are few (5%). Albright et al. (2010) suggested that OA has the potential to 450 

affect multiple, early-life history stages of Acropora palmata, with negative effects on gametes 451 

fertilization, larval settlement and post settlement growth. More experiment addressing this 452 

question and considering multiple life stages are thus crucial. 453 

 454 

Effects of the coral genera 455 

The biological responses of corals to decreased pH are highly variable and often considered to be 456 

species-specific (Bahr et al., 2016; Bedwell-Ivers et al., 2017; Bove et al., 2019; Brown & Edmunds, 457 

2016; Edmunds et al., 2012; Hoadley et al., 2015; Sekizawa et al., 2017; Strahl et al., 2015). Several 458 

other parameters were proposed to explain the diversity of response observed between studies. 459 

While methodological differences could contribute to the difference between studies such as light 460 

intensities (Crawley et al., 2010; Dufault et al., 2013), feeding regime (Comeau et al., 2013; Edmunds, 461 

2011; Houlbrèque et al., 2015) or water motion (Comeau et al., 2015), acclimation (i.e. their life 462 

history; Strahl et al., 2015), competition (Brien et al., 2016; Evensen et al., 2015; 2016; Horwitz et al., 463 

2017), or even the size of the fragments used (Edmunds & Burgess, 2016), biological differences 464 

between taxa could explain the variability in coral sensitivity to seawater acidification. First, the 465 

“biomass plasticity” hypothesis (Edmunds, 2011) supports that corals reduce their sensitivity by 466 

increasing tissue thickness at low pH (Comeau et al., 2013; 2014; Edmunds, 2011). Indeed, thicker 467 

tissue allow isolating the site of calcification from the surrounding seawater, better protecting the 468 

zooxanthellae by changing the intensity and internal properties of the internal light field (Dimond et 469 
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al., 2012; Loya et al., 2001), as well as providing more energy reserves, which may be advantageous 470 

under low pH (as for Turbinaria reniformis, Hoadley et al., 2015). Massive Porites is known for having 471 

an unusually thick tissue layer that penetrates deeply into the skeleton (Edmunds, 2011). Second, the 472 

“pH regulation” hypothesis (Holcomb et al., 2015) suggests that scleractinians which have a high 473 

control over the regulation of their calcifying fluid’s pH will be less affected by low pH conditions. 474 

Indeed, as the concentration of H+ in seawater increases under OA, the concentration gradient 475 

between seawater and the site of calcification increases accordingly (Cohen & McConnaughey, 2003; 476 

Jokiel, 2011; Ries, 2011; Von Euw et al., 2017). Transporting H+ will require more energy for the coral, 477 

which may alter calcification (McCulloch et al., 2012). As such, the coral’s capacity/strategy to 478 

overcome higher energy requirements (through efficient zooxanthellae photosynthesis, McCulloch et 479 

al., 2012) or increased heterotrophic feeding (Towle et al., 2015) under more acidic conditions is also 480 

crucial in explaining interspecific differences in sensitivity. Despite this, increasing heterotrophic 481 

feeding under low pH conditions was not experimentally proven in all coral genera yet (such as 482 

Porites; Grottoli et al., 2006). This goes along with the hypothesis suggesting that differences in 483 

skeletal porosity may also explain differences in sensitivity of calcification among species. Indeed, 484 

scleractinians with highly porous skeletons require less CaCO3 to calcify than corals that have low 485 

porosity skeletons, so these species may be less susceptible to seawater acidification (Brown & 486 

Edmunds, 2016; Jokiel, 2011). Finally, the “growth rate” hypothesis (Comeau et al., 2014) states that 487 

species characterized by higher calcification rate will be more vulnerable. Previous studies suggested 488 

that different calcification strategies exist across populations (Bove et al., 2019; Leong & Pawlik, 489 

2010; Metcalfe & Monaghan, 2001). It relies on the theory that fast-growing coral species are more 490 

likely to be impaired under stressful conditions as their energy requirements for growth are higher 491 

than slow-growing species, which mainly store energy when the environment is favorable, allowing 492 

them to calcify normally under less-favorable conditions. However, this trend was not verified by 493 

Chan & Connolly (2013). 494 

 495 

Evolutionary potential of corals under OA: local adaptation, carry over effects, parental effects  496 

Overall, there is very little information on the potential of marine organisms to adapt to OA. To 497 

better understand the evolutionary responses of scleractinians to global changes, the best approach 498 

is to evaluate the effects of environmental drivers through multiple generations (Putnam et al., 499 

2016). While trans-generational effects of OA has received more attention in the previous years 500 

(Allan et al., 2014; Donelson et al., 2012; Dupont et al., 2013; Hettinger et al., 2012; Kurihara et al., 501 

2019; Miller et al., 2012; Munday, 2014; Parker et al., 2012), studies evaluating these effects on 502 
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scleractinian corals are few, likely due to their long life span. Among the available studies, evidences 503 

suggested that trans-generational acclimatization processes (e.g. epigenetics) have the potential to 504 

influence the sensitivity of corals to changing conditions (Putnam et al., 2016). This approach is of 505 

great importance to determine whether the exposure as an adult might enhance their descendant 506 

tolerance in order to better assess the status of future coral reef ecosystems. A high variability of 507 

response between individual corals and a high heritability for corals exposed to low pH conditions 508 

was observed, suggesting an adaptation potential (Jury et al., 2019). As highlighted by Putnam 509 

(2021), non-genetic, yet heritable phenotypic plasticity, will have significant ecological and 510 

evolutionary implications for sessile marine organisms persistence under rapid environmental 511 

changes. We support the need to consider the interactions of rapid and evolutionary responses 512 

(microbiome, epigenetic effects, parental carry-over effects; see Putnam, 2021), that have been 513 

overlooked so far, but deserve more attention as they provide additional avenues for rapid 514 

acclimatization. 515 

 516 

The future of the reef: past environmental exposure, multiple stressors/drivers interactions 517 

OA acts in conjunction with a myriad of other stressors/drivers, which presence and intensity vary 518 

locally. Among those, global ocean warming has received particular attention as it represents the 519 

main stressor on the reefs, inducing coral bleaching and widespread mortality in multiple regions. 520 

Studies considering a combination of increasing temperatures with seawater acidification often 521 

showed additive effects, thus worsening the effects observed when considering a single stressor (e.g. 522 

Albright & Mason, 2013; Anlauf et al., 2011; Anthony et al., 2008; Horvath et al., 2016; Kavousi et al., 523 

2016; Reynaud et al., 2003). Then, to predict more realistically the future of coral reefs, their 524 

vulnerability must be assessed over long term and consider the stressors experienced by the reef 525 

organisms in the past. There is a temporality in the action of stressors on the reef that will condition 526 

the response of reef organisms. For example, multiple evidences showed that corals that have gone 527 

through repeated heat stress events in the past may have become more tolerant to future heat 528 

stress (Guest et al., 2012; Maynard et al., 2008; Thompson & van Woesik, 2009). Similarly, decreased 529 

thermal susceptibility was described with corals preconditioned to mild heat stress for a short period 530 

(Bay & Palumbi, 2015; Bellantuono et al., 2012a, 2012b; Middlebrook et al., 2008). In addition, OA 531 

will impair coral reefs previously altered by several bleaching events. Coral reef communities will be 532 

fragilized by the intensity and frequency of bleaching and it is likely that their capacity to endure 533 

additional stressor as OA will be highly detrimental.  534 

 535 
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4. Research gaps and perspectives 536 

  537 

Based on all aforementioned points, we selected a list of priorities and actions that should be 538 

addressed for future experimental works investigating the effects of seawater acidification on 539 

tropical scleractinians (Table 3). 540 

 541 

Table 3. List of actions and priorities for future research on the effects of seawater acidification on tropical 542 

scleractinians. 543 

Type Recommended action(s) 

 

Coral 

characteristics 

 

Investigate corals from less-studied ecoregions, mesophotic depths 

 

  

Experimental 

design 

Consider multigenerational approaches 

Use multiple life-history stages, including early stages 

Realism: select the diversity and abundance of species based on the local 

assemblage, favour multi-species approach  

Include key species interacting with the tested species 

Avoid short-term exposure, consider multiple duration of exposure when 

feasible 

 

Carbonate 

chemistry and 

scenarios 

Monitor and consider the local variability of carbonate chemistry while 

defining scenarios and rely on local projections 

Include the natural variability for the carbonate chemistry and other key 

environmental drivers (multiple stressors) 

Apply best practices for carbonate chemistry parameters measurement 

(Dickson et al., 2007). Report pH in total scale. 

 

Biological 

endpoints 

Focus on endpoints to better understand the acclimatization capacity: 

epigenetic effects, microbiome and endolithic algae composition 

Consider multiple complementary approaches: genetic and physiological tools 

 

 544 
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Figure legends 551 

 552 

Figure 1. World map of coral reefs that have been the subject of an experimental study (blue circles) 553 

on the effects of seawater acidification. Circle size: number of experimental study. Red colour: Global 554 

distribution of coral reefs (UNEP-WCMC, WorldFish Centre, WRI, TNC, 2010; version of March 2021). 555 

Figure 2. General trends in the experimental research of the effects of seawater acidification on 556 

biological functions of tropical scleractinian corals. (A) Number of experiments per country/location 557 

that experimentally examined the effects of seawater acidification on tropical scleractinian corals 558 

(total n=169). (B) Number of ex situ (total n= 169) and in situ (total n=27) studies published before 559 

2021 that experimentally examined the effects of seawater acidification on tropical scleractinian 560 

corals. Relative proportion of (C) coral life stages (n=180) and (D) coral genera (n=240) studied in the 561 

169 experiments that looked at the effects of seawater acidification on tropical scleractinian corals 562 

before 2021. Relative proportion of experimental design by (E) assemblages (n=169; i.e. number of 563 

studied species per experiment) and (F) duration of exposure (n=182) to seawater acidification in the 564 

same 169 experiments. (G) Relative proportion of the main biological categories studied in the same 565 

169 experiments (n=255), with (H) specific focus on the fitness category. (I) Relative proportion of 566 

the pH scale used in the 169 experiments. Some of these bar charts have a (n) superior to 169 567 

because some of the 169 experiments that were selected used more than one life stage, genera, 568 

duration of exposure and/or biological endpoint. 569 

Figure 3. Effects of pH intensity on tropical scleractinian corals biological functions. Heatmaps 570 

indicate the number of endpoints (circle size) and the proportion of affected endpoints (color, in %) 571 

in each biological subcategory. Full red (100%) indicates that all endpoints are affected and full green 572 

(0%) that no endpoints were affected.  573 

Figure 4. Effects of pH 7.6-7.8 on tropical scleractinian corals biological functions according to the 574 

duration of exposure, the coral genus and life stage. Heatmaps indicate the number of endpoints 575 
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(circle size) and the proportion of affected endpoints (color, in %) in each biological subcategory. Full 576 

red (100%) indicates that all endpoints are affected and full green (0%) that no endpoints were 577 

affected.   578 
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