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Abstract

Patterns of mother–embryo fractionation of 13C and 15N were assessed for their pre-

dictability across three species of batoids caught as by-catch in south-eastern

Australia. Stable isotope analysis of 24 mothers and their litters revealed that isotope

ratios of embryos were significantly different from their corresponding mothers and

that the scale and direction of the difference varied within and across species. The

range of variation across species was 3.5‰ for δ13C and 4‰ for δ15N, equivalent to

a difference in trophic level. In one species (Urolophus paucimaculatus) litters could be

significantly enriched or depleted in 13C and 15N relative to their mothers' isotope

signatures. These results suggest that patterns of mother–embryo isotope fraction-

ation vary within and between species and that these patterns may not be explained

only by developmental mode. Contrasting patterns of fractionation between and

within species make it difficult to adjust mother–embryo fractionation with broad-

scale correction factors.
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1 | INTRODUCTION

The use of stable isotope analyses to answer questions relating to

diet preference (Plass-Johnson et al., 2013), carbon provisioning

(Phillips et al., 2014), trophic relationships (Raoult et al., 2015; Chan

et al., 2022) and anthropogenic impacts (Vizzini and Mazzola, 2006)

or to examine movement patterns (Shimada et al., 2014; Raoult

et al., 2020) of elasmobranchs is increasing (Fisk et al., 2002; Speed

et al., 2012; Shipley et al., 2017a; Bird et al., 2018). This field of

research has expanded due to the relatively low cost of analysis and

the comparatively reliable data that can be obtained for larger sam-

ple sizes, especially in comparison to labour-intensive gut content

examination that can provide accurate species-specific prey

information, but is not as effective at examining food-web-level

interactions (Martínez del Rio et al., 2009). One area where isotope

analysis can be beneficial to elasmobranch research is the determi-

nation of nursery site contributions to diet (Dale et al., 2011; Kinney

et al., 2011; Belicka et al., 2012; Carlisle et al., 2015), where isotopes

can provide information on long-term habitat use and diet of neo-

nates and young-of-the-year. Although the use of stable isotope

analysis has proved reliable and the technique is now widely

accepted by ecologists, one aspect that is still poorly understood

and has been identified as requiring further investigation is the

effect of maternal provisioning on neonate or young-of-the-year iso-

tope ratios, which leads to a maternal isotope signature in the off-

spring (Olin et al., 2011; Shipley et al., 2017a).

Received: 13 December 2021 Accepted: 2 March 2022

DOI: 10.1111/jfb.15034

FISH

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.

J Fish Biol. 2022;1–9. wileyonlinelibrary.com/journal/jfb 1

 10958649, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfb.15034 by C

ochrane France, W
iley O

nline L
ibrary on [23/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-9459-111X
https://orcid.org/0000-0003-0094-7926
https://orcid.org/0000-0003-3627-4508
mailto:vincent.raoult@newcastle.edu.au
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jfb
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjfb.15034&domain=pdf&date_stamp=2022-03-29


The concept of a maternal isotope signature is not novel

(Doucett et al., 1999; Grey, 2001) and stipulates that neonates or

young-of-the-year generally exhibit isotopic signatures that relate

more to the isotope values of their mother rather than their own diet

preference (Olin et al., 2011). Because many but not all species of

elasmobranchs exhibit ontogenetic shifts in diet to higher trophic

levels (de la Morinière et al., 2003; Estrada et al., 2006; Knoff

et al., 2008), maternal isotope signatures could incorrectly suggest

that neonates have diets at a higher trophic level than their true diet.

In elasmobranchs, this pattern has been confirmed in neonates of

some species (Matich et al., 2010; Olin et al., 2011), but direct exam-

ination of embryonic isotope signatures has provided conflicting evi-

dence in some sharks with some apparent mother–embryo

fractionation (McMeans et al., 2009; Vaudo et al., 2010; Kim

et al., 2012c; Le Bourg et al., 2014; Olin et al., 2018). In marine mam-

mals, foetuses were generally enriched relative to their mothers

(Borrell et al., 2016), whereas lactating young that should theoreti-

cally be a trophic level above their mother were generally less

enriched than predicted (Jenkins et al., 2001; Cherel et al., 2015).

The ability to correct for these patterns of mother–embryo fraction-

ation on population scales would enable researchers to determine

more precisely the potential diets of neonates and juveniles, as well

as the habitats they rely on for nutrition (Shiffman et al., 2012). This

is especially important given work suggesting that muscle stable iso-

tope values can reflect their mothers’ values for years after parturi-

tion (Niella et al., 2021), possibly preventing this tool from being

used to answer questions relating to ecology or management for

these size classes.

In many cases it appears that separate isotopic fractionation

occurs within the embryos, which leads to isotopic signatures that do

not necessarily reflect the values of their mother. Nonetheless, these

studies generally have small sample sizes (i.e., only one adult in Vaudo

et al., 2010, and a maximum of five in Olin et al., 2018), are generally

conducted on a single species or species with similar developmental

modes (Vaudo et al., 2010) and are thus unlikely to depict patterns on

larger scales that could be applied across species. Some research sug-

gests that developmental mode is a possible explanation for patterns

in mother–embryo fractionation (McMeans et al., 2009; Olin

et al., 2018; Broadhurst et al., 2019); nonetheless, this has not been

explicitly tested because of small sample sizes or comparisons of simi-

lar species.

This study determined whether maternal isotope signatures were

observable in the embryos of three species of batoids frequently cau-

ght as by-catch in trawl fisheries in south-eastern Australia: the

sparsely spotted stingaree (Urolophus paucimaculatus), the greenback

stingaree (Urolophus viridis) and the Tasmanian numbfish (Narcine

tasmaniensis). Because urolophid species exhibit aplacental viviparous

histotrophy (White and Potter, 2005; Last and Stevens, 2009; Yick

et al., 2011), and Tasmanian numbfish are aplacental with yolk provi-

sioning only (like other members of the genus, De Carvalho

et al., 2002; Last and Stevens, 2009), it was hypothesised that pat-

terns of mother–embryo fractionations would differ between genera

but remain similar within each genus.

2 | MATERIALS AND METHODS

2.1 | Fieldwork and sample processing

Sparsely spotted stingarees (U. paucimaculatus), banded stingarees

(U. viridis) and Tasmanian numbfish (N. tasmaniensis) were collected as

by-catch from research trawls conducted by the University of Tasma-

nia vessel FTV Bluefin in November and December 2014 and in

December 2015 along the north-eastern coastline of Tasmania,

Australia (40� 18.101 S, 148� 33.596 E). These were exploratory

trawls at depths of c. 30 m using a 70 mm mesh demersal fish net and

a speed of c. 3 kts. Individuals were snap frozen on board the vessel

on capture and transported to Macquarie University for analysis.

Trawling for research purposes was permitted in accordance with eth-

ical guidelines number A0015366, UTAS AEC. All procedures per-

formed were in accordance with the ethical standards of the

University of Newcastle and Macquarie University.

Once thawed, individuals were weighed and measured for total

weight and length. Reproductive stage was determined by assessing

the development of ovaries and the thickness of the uterine wall for

females or by the degree of calcification of claspers for males (Awruch

et al., 2008). If females were gravid, embryos were extracted and

underwent the same morphological assessments. In total, the authors

captured and processed 82 N. tasmaniensis, including 9 mothers;

122 U. paucimaculatus, including 14 mothers; and 8 U. viridis, including

1 mother. Thus, 24 gravid females and 62 associated embryos were

examined, with litter sizes that ranged between 1 and 5 pups.

Muscle tissue was removed from each individual, dried in an

oven at 65�C for 24 h and ground to a fine powder using a mortar

and pestle. Muscle was removed from wings by separating off the

muscle from the underlying ceratotrichia using a sterilised scalpel.

About 1–2 mg of ground muscle tissue from each individual was

weighed in a separate tin capsule for analysis. The samples were

analysed for stable carbon (13C) and nitrogen (15N) isotopes with a

Europa EA GSL Elemental analyser coupled to a Hydra 20–22 auto-

mated Isoprime isotope ratio mass spectrometer (Sercon Ltd.) at

Griffith University (Queensland, Australia). The ratio of isotopes was

expressed as relative per thousand difference (‰) between the sam-

ple and the standards, which were Pee Dee Belemnite for carbon

and atmospheric nitrogen for nitrogen (IAEA-NA, IAEA-N2 for 15N

and IAEA-CH-6 for 13C). Ten standards per plate at minimum were

treated as samples, with precision for δ15N and δ13C that

was <0.1‰.

2.2 | Analyses

Stable isotope ratios can be misleading if tissues demonstrate a high

C:N ratio indicative of high lipid content (Hussey et al., 2012a; Hussey

et al., 2012b). In addition, the high urea content of elasmobranch tis-

sues can affect stable isotope ratios (Kim and Koch, 2012; Carlisle

et al., 2016; Li et al., 2016; Shipley et al., 2017b). Because relative

comparisons between mothers and embryos within species were
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being made rather than the absolute ecological values per Carlisle

et al. (2016), lipid or urea extractions were not believed to be neces-

sary. Intraspecific lipid and urea content variations in muscle tissue

have not been widely explored, because muscle tissue is generally not

used as an energy reserve (Pethybridge et al., 2014) and the authors

did not expect significant mother–embryo muscle tissue differences in

lipid or urea content. In addition, some studies on mother–embryo

fractionation have conducted lipid and urea extractions (McMeans

et al., 2009; Olin et al., 2018), whereas others have not (Vaudo

et al., 2010; Broadhurst et al., 2019). Because chemical lipid or urea

extractions were not conducted for this study, results should be inter-

preted within that context.

Authors’ interpretation of lipid and urea content effects relied on

the common assumption that within-species C:N ratios do not vary

significantly. To verify whether this was indeed the case, they ran an

ANOVA with C:N ratios as the response variable, with fixed factors

stage of maturity (embryo, juvenile and adult) and an interaction with

species, including all sampled individuals (not just mothers and

embryos). To determine whether differences in C:N ratios are driving

the differences in stable isotope values, the authors ran general linear

models with δ13C and δ15N values as response variables, C:N ratio as

a determinant and an interaction with species.

To determine whether there were patterns of mother–embryo

fractionation in embryos extracted from corresponding mothers (i.e.,

assuming the isotope values did not differ between the two), δ13C

and δ15N values were analysed using separate linear mixed-effect

models for each species with one isotope as the response variable,

where samples were a mother or embryo as a fixed factor, and

embryos nested within their associated parent to separate individual

clutches according to their parent.

Although there may be significant differences between mothers

and their clutches, the direction of these patterns may not be consis-

tent on a species scale, because the patterns of fractionation may vary

interspecifically between litters. Separate ANOVAs were run for each

species and for 13C and 15N isotopes. The difference in isotope values

between litters and the stable isotope values of their associated

mothers was a continuous variable and each mother and associated

litter as a fixed factor.

Previous research has indicated that there is a relationship

between the size of embryos and stable isotope ratios (McMeans

et al., 2009). The range of embryo sizes was variable in this study due

to species-specific differences in seasonal reproduction; therefore,

the isotope ratios of the embryos were tested in a linear regression

with their lengths for each species and isotope.

All analyses were conducted in R (v. 3.3.3) (R Development Core

Team, 2013) and RStudio with the lmer and ggplot2 packages

(Wickham, 2009; Bates et al., 2014).

3 | RESULTS

There were no significant differences in C:N ratios between adults,

juveniles and embryos for U. paucimaculatus and minor but

untestable (due to sample size) differences between embryos and

adult U. viridis. Nonetheless, there were significant differences

between C:N ratios of embryos and both juvenile and adult

N. tasmaniensis (TukeyHSD, P < 0.001, Figure 1). There was a signif-

icant negative relationship between C:N ratios and δ13C values that

was approximately thrice weaker in U. paucimaculatus (df = 162,

F = 12.34, P < 0.001, R2 = 0.16) than for N. tasmaniensis (df = 149,

F = 43.51, P < 0.001, R2 = 0.46, Figure 3). There were weak but sig-

nificant opposite relationships between C:N ratios and δ15N values

for U. paucimaculatus (df = 162, F = 6.77, P = 0.01, R2 = 0.08) and

N. tasmaniensis (df = 149, F = 10.42, P = 0.002, R2 = 0.16, Figure 2)

(Appendix S1).

Embryos had isotopic ratios that were distinct from those of

their mothers, suggesting that mother–embryo fractionation was

occurring. Linear mixed models with embryos nested within parents

showed significant differences in δ13C muscle tissue values between

adults and the embryos for N. tasmaniensis and U. paucimaculatus

but not for U. viridis (Table 1). Additional models showed significant

differences in δ15N muscle tissue values between adults and their

embryos across all species (Table 1). U. paucimaculatus and U. viridis

embryos were generally enriched in 13C relative to their mothers,

but δ15N maternal differences were highly variable. N. tasmaniensis

embryos were generally depleted in 13C and 15N relative to their

mothers (Figure 3).

Significant within-species differences between mothers and their

pups were observed. Mother-isotope stable isotope values between

litters of pups differed significantly in δ13C and δ15N for both

N. tasmaniensis (df = 8, F = 8.72, P < 0.001; df = 8, F = 9.56,

P < 0.001) and U. paucimaculatus (df = 13, F = 8.97, P < 0.001;

df = 13, F = 14.6, P < 0.001). Because only one litter of U. viridis was

caught, this species was not included in this analysis.

No significant relationship between the total length of embryos

and their δ15N or δ13C values was observed, suggesting there is no

isotope enrichment with size (Table 2; Figure 4).

2.7

3.0

3.3

3.6

N. tasmaniensis U. paucimaculatus U. viridis

C:
N
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o

F IGURE 1 Boxplots overlayed with raw data of C:N ratios of
batoid species at different life stages, including gravid and non-gravid
adults. Stage ( ) Embryo, ( ) Juvenile, and ( ) Adult
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4 | DISCUSSION

This is the first study to examine mother–embryo fractionation across

numerous species of batoid. Embryos of the three species of elasmo-

branchs exhibited stable isotope signatures that were significantly dif-

ferent from their corresponding mothers' tissues. Both species of

urolophid had embryos with significantly higher δ13C values, but

U. viridis did not significantly differ in δ15N values, but the sample size

for this species was small (just one mother and its five pups). Con-

versely, N. tasmaniensis embryos were depleted in 13C and 15N

relative to their mothers' isotopic signature. The patterns of differ-

ences between mothers and offspring were also significantly different

between clutches within N. tasmaniensis and U. paucimaculatus. Ratios

of C:N, traditionally assumed to be constant within a species, were

significantly different between embryos, and juveniles and adults of

N. tasmaniensis, suggesting novel ways to store energy in embryos.

Together, these results reiterate that patterns of mother–embryo

fractionation and provisioning vary within and between species and

that there are species-specific trends in isotope enrichment or deple-

tion of embryos relative to the maternal isotope signatures.
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p < 0.001; R 2 = 0.46

p = 0.002; R 2 = 0.16
p = 0.012; R 2 = 0.08

p < 0.001; R 2 = 0.15

F IGURE 2 Relationships between C:N ratios and stable isotope values in batoids examined in this study, overlayed with significant linear
relationships. Species ( ) N. tasmaniensis, ( ) U. paucimaculatus, and ( ) U. viridis

TABLE 1 Results of linear mixed
models for δ13C and δ15N with embryos
nested within parents for batoid species
and the fixed factor “stage” comparing
adults from their embryos

Species Value Factor Estimate S.E. T-value P-value

Narcine tasmaniensis δ13C Stage (embryo) �1.16 0.12 �9.61 <0.001

δ15N Stage (embryo) �0.99 0.36 10.46 <0.001

Urolophus paucimaculatus δ13C Stage (embryo) 0.76 0.08 8.99 <0.001

δ15N Stage (embryo) 0.39 0.14 2.74 0.012

Urolophus viridis δ13C Stage (embryo) 1.11 0.23 4.81 <0.01

δ15N Stage (embryo) �0.34 0.59 �0.57 >0.05
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These opposed isotope enrichment and depletion trends between

mothers and their litters for the species examined were surprising.

The authors predicted that if enrichment or depletion occurred, it

would relate to the type of embryonic development (e.g., placental,

aplacental) due to the differences in how nutrients are allocated for

each developmental mode. Unlike other studies, all species tested in

this study have aplacental histotrophic viviparous development,

suggesting that only the mode of embryonic development may not

explain the differences in patterns of fractionation, because opposite

patterns were detected between species with identical developmental

modes. Rate of histotrophy has been suggested as impacting mother–

embryo differences in stable isotope values (Broadhurst et al., 2019),

and authors’ results corroborate this hypothesis given N. tasmaniensis

does not have histotrophy, whereas the Urolophus rays do. Controlled

experiments that focus on the stable isotope values of yolk, histo-

troph and placental inputs would help determine the interaction

between these factors. These patterns are further complicated by a

lack of knowledge on trophic fractionation patterns in batoids, which

should receive broader focus so more isotope research can be con-

ducted on these charismatic and widespread animals.

Trends of fractionation were also highly variable within species

and ranged from 0‰ to 2‰ for both δ13C and δ15N, respectively.

Trophic fractionation or enrichment factors are generally assumed to

be 1‰ for 13C and 2‰ for 15N in sharks (Hussey et al., 2010a),

although they can range up to 3.5‰ for 13C and 5.5‰ for 15N (Kim

et al., 2012a; Kim et al., 2012b). Due to the intraspecific variability of

mother to embryo fractionation observed in this study across species,

trophic assessments of neonates could result in falsely attributing

higher or lower trophic levels or misidentifying the sources of carbon.

Studies on stable isotope ratios of placentatrophic Atlantic

sharpnose sharks (Rhizoprionodon terraenovae) found similar trends as

those observed in the present urolopid species, with offspring enrich-

ment in 13C and 15N (McMeans et al., 2009). The placentatrophic sca-

lloped hammerhead shark (Sphyrna lewini) and its offspring also

displayed similar trends (Vaudo et al., 2010); nonetheless, only one indi-

vidual was examined in this study, making rigorous comparisons difficult.

Aplacental viviparous Squalus megalops and Centrophorus moluccensis

mothers and embryos had no difference in δ13C values but displayed sig-

nificantly depleted δ15N values (Le Bourg et al., 2014). Thus, it appears

−2
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−2 −1 0 1
δ13C difference from parent (‰)

δ15
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F IGURE 3 Mean ± S.E. δ13C and
δ15N isotopic ratio difference in litters
of embryos from each parent Narcine
tasmaniensis, Urolophus paucimaculatus
and Urolophus viridis from this study.
Species ( ) N. tasmaniensis,
( ) U. paucimaculatus, and ( ) U. viridis

TABLE 2 Results of linear regressions examining the relationship
between the total length of embryos and δ13C and δ15N

Species Value df F-statistic P-value

Narcine tasmaniensis δ15N 1, 26 3.72 >0.05

δ13C 1, 26 0.16 >0.05

Urolophus paucimaculatus δ15N 1, 31 2.67 >0.05

δ13C 1, 31 2.09 >0.05

Urolophus viridis δ15N 1, 3 0.41 >0.05

δ13C 1, 3 1.08 >0.05
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that the depletion of both 13C and 15N observed in N. tasmaniensis is a

novel pattern to date, though interactive effects of urea and lipids on

the stable isotope values, which demonstrate a high degree of species-

specific effects (Kim and Koch, 2012; Carlisle et al., 2016), should be

tested to determine if they impacted the present results. The present

results taken in the context of other findings underline that mother–

embryo isotope fractionation can occur positively or negatively for both

isotopes, may be independent of developmental regime and can vary

substantially within and across species. Thus, no broad batoid correction

can be applied, and species-specific maternal patterns need to be deter-

mined before any isotopic corrections can occur.

The present research demonstrates the difficulties in extrapolat-

ing species-wide trends for isotopic differences from small numbers

of litters. Most studies have access to only a handful of mothers and

pups, and this reduces the possibility of assessing effect size.

Explaining the observed variability in embryonic isotope ratios within

and across species of elasmobranchs without additional controlled

experiments is difficult. Perhaps the most parsimonious explanation is

maternal provisioning of higher-quality nutrients through higher lipid

content in yolk, histotroph or livers, which in this case possibly

explained the differences between embryo and juvenile/adult C:N

ratios in N. tasmaniensis. McMeans et al. (2009) suggest that this may

occur in sharks; nonetheless, their studies had higher relative δ15N in

embryos, which was not the case in N. tasmaniensis, occurred in only

some U. paucimaculatus and is not observed in other studies (Le Bourg

et al., 2014). In cases where embryos are depleted in 15N, it suggests

that in those species the maternal provisioning of embryos is of lower

quality, which is known to have transgenerational negative fitness

consequences for offspring of invertebrates within species (Frost

et al., 2010). Maternal provisioning also implies an energetic cost to

mothers, however, and there was no evidence of change in the

mothers' isotope ratios compared to other adults for both

N. tasmaniensis and U. paucimaculatus in the present study.

Studies examining trophic fractionation often assume that C:N

ratios and by association lipid and urea content are relatively constant

within species. Authors’ results show that within species, there can be

significant differences in C:N ratios between adults and embryos, a

difference in ratio as large as c. 0.5. These differences may be

explained by a lack of lipid and urea extractions in this study, which

can impact stable isotope measurements in elasmobranchs (Kim and

Koch, 2012; Carlisle et al., 2016), but by association suggest that lipid

and urea extractions may mask differences in tissue composition

between embryos and their mothers. The associated implication with

higher C:N ratios is that embryos have higher lipid and urea content in

their muscles than their mothers, and because the mothers had similar

C:N ratios as other adults and juveniles, this was not a result of lipid
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F IGURE 4 Relationship between total length and δ13C and δ15N of Narcine tasmaniensis, Urolophus paucimaculatus and Urolophus viridis embryos
from this study Species ( ) N. tasmaniensis, ( ) U. paucimaculatus, and ( ) U. viridis. Dotted and dashed vertical lines are the expected minimum size at
birth of N. tasmaniensis and U. paucimaculatus, respectively, sourced from Last and Stevens (2009). Species ( ) N. tasmaniensis, ( ) U. paucimaculatus,
and ( ) U. viridis
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depletion in mother muscle tissues. This effect could be a means for

newborns to have higher stores of energy post parturition, typically

considered to be associated with internalisation of yolk (Rodda and

Seymour, 2008) or enlarged livers (Gilmore et al., 1983; Hussey

et al., 2010b), and should be investigated further.

The location of the muscle tissue may also affect the results,

although this has not been tested. Because the present analyses were

on white muscle tissue, which is not a primary source of energy

reserves in elasmobranchs, it is possible that authors did not detect

the effects of maternal provisioning on the mothers' muscle tissue.

Livers are the main form of energy storage in elasmobranchs and are

twice as energy dense as muscle (Pethybridge et al., 2014). The few

studies that have examined maternal isotope signatures relative to

maternal muscle and liver found conflicting results, with embryo sig-

natures having a greater difference relative to maternal liver tissue

and liver tissue with little difference relative to maternal muscle

(McMeans et al., 2009; Le Bourg et al., 2014). These results suggest

that although maternal liver tissue may be where nutrients are sou-

rced for embryonic development, the higher temporal variability of

the tissue may make it less effective at predicting embryo isotope sig-

nature relative to muscle tissue in species that exhibit diet shifting,

which may be a better indicator of maternal isotope ratio over the

gestation term.

The degree of embryonic isotope fractionation can vary with

length of embryos during development (Grey, 2001; McMeans

et al., 2009; Olin et al., 2018). The results of the present study do not

corroborate these previous studies, as no significant relationships

between embryo size and stable isotope values in any of the species

were observed. Because the species examined here are aplacental,

differences between these results and previous research could be due

to the lack of a shift from yolk to placental feeding (as suggested for

placentatrophic species in Olin et al., 2018) in these species. Future

controlled experiments should measure the effects of maternal provi-

sioning on mothers and offspring over the pregnancy, which would

also aid in understanding the relationship between maternal muscle

and liver tissues during embryonic development.

This study provides a multispecies comprehensive assessment of

the isotopic relationship between mothers and their embryos in multi-

ple species of elasmobranchs. Due to the differences in fractionation

patterns across species, it is improbable that a single estimate of iso-

topic fractionation can be applied across species of elasmobranchs to

correct for maternal isotope signatures. This conclusion is in line with

the suggestion from Olin et al. (2011) that species-specific assess-

ments are necessary. The authors recommend that any research that

focuses on isotope ratios in elasmobranch neonates or young-of-the-

year use caution when extrapolating from such data.
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