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Abstract

With the constant increase of the number of autonomous vehicles and

connected objects, tools to understand and reproduce their mobility mod-

els are required. We focus on chaotic dynamics and review their applica-

tions in the design of mobility models. We also provide a review of the

nonlinear tools used to characterize mobility models, as it can be found in

the literature. Finally, we propose a method to generate traces for a given

scenario involving moving people, using tools from the nonlinear analysis

domain usually dedicated to topological analysis of chaotic attractors.

Keywords Mobile networks; Mobility models; Chaotic dynamics; Poincaré sec-
tion; First return map

1 Introduction

The number of applications that use autonomous devices, for instance robots
or Unmanned Aerial Vehicles (UAVs), increases nowadays. In this context,
defining and analysing their mobility is particularly important. A mobility
model describes the behaviour of an entity considering its capacities, possible
moves and speed. The mobility models are described either analytically at
the individual level, or by the interactions between the parts of the system
(between UAVs, UAVs and planes, UAVs and points to survey, etc.). The
resulting behaviours described with these simple rules can induce the emergence
of a global intelligent behaviour. Inversely, from the resulting behaviour of such
a swarm, these initial simple rules are hard to discover. A similar phenomenon
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occurs for chaotic dynamics where a chaotic process appears to be random
while it arises from a deterministic process. Therefore, the idea is to study the
connections between the two concepts.

Literature on chaotic dynamics and nonlinear dynamics has been developed
at the end of the century while the main concepts of this theory come from
the early nineties (see Fig. 1 of [1]). Chaos is observed, described and analysed
in numerous domains, for instance: electronic circuits [29], chemical reactions
[47], laser behaviours [30] or biological models [62]. The first example of the
use of chaos (from the Chua system [9]) to design a mobility model has been
proposed in 1997 [49]. The authors proposed to use the properties of chaotic
dynamics to ensure a good coverage of an area. Chaotic dynamics is defined
as follows: the solution of a deterministic process is chaotic if it is sensitive
to initial conditions, aperiodic and globally time invariant. These properties
induce that this chaotic solution will be unpredictable when considering a long
term behaviour. Nowadays, several tools improve the understanding of a chaotic
behaviour, chaotic mechanism and bifurcation diagrams and some authors use
them to provide mobility models. Because “little is known of the potential
relationship between swarm and chaotic systems” [21], the main goal of this
paper is to explore the uses of chaotic dynamics in the domain of mobility
models. This can be done either by designing chaotic deterministic models or
by using tools coming from nonlinear analysis.

In this paper we first present a review of mobile networks including chaotic
dynamics using chaotic maps or ordinary differential equations. We then review
the tools used to analyse these systems. In section 3, we propose a method
to generate traces using nonlinear analysis tools. This method is supported
by numerical simulations using the Lorenz system and permits to reproduce
congestion and distribution patterns. We finally present the conclusion along
with our future work in section 4.

2 Mobility models and chaotic dynamics

In this section, we present models from the literature including chaotic dynam-
ics and the tools used to analyse them. In these models, chaos is obtained from
well-known discrete or continuous systems. The chaotic variables of these sys-
tems are used to design mobility models. Sections 2.1 and 2.2 detail the two
main approaches used to generate chaotic dynamics for mobility models using:
a chaotic attractor from a discrete system or a chaotic attractor solution of a
continuous system. Section 2.3 is dedicated to the tools from nonlinear analysis
and their applications. The last section (Sec. 2.4) details our previous contri-
butions in this domain in which we proposed to use periodic orbits of chaotic
dynamics to define mobility models of UAVs in order to enhance the coverage
of an area.
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2.1 Models using chaotic maps

Chaotic maps are nonlinear recurrent relations. The most used in the literature
is the logistic map defined by xn+1 = αxn(1− xn). Introduced by Verhulst [58]
it represents the growth of population x at each step where α is the growth
rate. This map contains only one nonlinear term and can exhibit both periodic
and chaotic dynamic. When varying α from 2 to 2.4, its bifurcation diagram
results in a period doubling cascade: a classical route to chaos found in several
systems. For details on the logistic map, the reader is referred to [5]. Charrier
et al. [7] propose to use the logistic map to reproduce the behaviour of flocks.
In the original paper [39], Reynolds introduced boids to reproduce the flocking
behaviour with three rules (collision avoidance, velocity matching and flock
centring) that generates a force vector for each agent in the swarm. In the
Charrier et al. model the synchronization between agents is performed by the
environment: the control parameter of the logistic map is updated depending on
the neighbourhood of each agent. This model does not use the standard rules of
flocking but reproduces their behaviour. The authors use a bifurcation diagram
to emphasize the convergence of the system and to show the global dynamics of
their agents and the transition to chaotic dynamics.

A chaotic map (the standard map [24]) can also be used to produce chaotic
motion for a robot [28]. From such a two-dimensional map, a planning is as-
signed to the robot using two coordinate points obtained from the chaotic map.
Then a robot visits these points in their order of appearance. As the purpose of
the robot is to cover a square surface, the authors evaluate their system using
coverage rate. Curia et al. [11] proposed to use another map, the Hénon map,
to move a mobile robot with unpredictable trajectories. Their mobility model
combines a guiding line that the robot follows with a chaotic motion obtained
from the map. While the robot follows the guideline, the chaotic motion con-
trols the evolution of the robot around this line. Here again, the authors use a
bifurcation diagram to underline the chaotic properties of their system. Even
if their system is made of six equations (including the Hénon map), they prove
that it has a chaotic solution when a = 1.4 as it is the case for the Hénon map.
The additional equations dedicated to the movement around the line do not
influence the chaotic dynamics.

2.2 Models using ordinary differential equations systems

In this section, we present models that use a set of ordinary differential equations
as a source of chaotic dynamics. We are now considering chaotic continuous so-
lutions instead of discrete solution from a map. However, there is a way to
discretely represent these continuous chaotic dynamics. These solutions are em-
bedded in the phase space, for instance the Lorenz attractor [26] is a famous
attractor in a three-dimensional phase space. Introduced by H. Poincaré [37];
the Poincaré section is a transversal surface of the flow that provides a dis-
crete description of the chaotic dynamics obtained from continuous systems.
The original idea is to consider only the discrete points when the flow crosses
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a Poincaré section instead of the whole trajectory in the phase space. The dis-
crete sequence of points contains a synthesis of the dynamical properties of the
attractors. Most of the references presented below use the chaotic dynamics
from the chaotic attractor using a Poincaré section.

There are many examples of such systems where nonlinearity induces chaotic
behaviour. Among the most studied one: Lorenz, Rössler, Chua systems; there
are several articles about robots, the mobility models of which use a set of
ordinary differential equations. For instance, Nakamura & Sekiguchi [34] use
the Arnold equations to model the behaviour of a mobile robot with chaotic
motion. They prove that the coverage of their chaotic robot is better than the
coverage of a robot using a random walk. Further to this work, Bae et al. [3]
proposed a “chaotic UAV” with the Chua system, Arnold equations and Van
Der Pol equations. They also introduce an obstacle avoidance method without
decreasing the performance of the model in terms of coverage.

Fallahi & Leung [16] proposed a cooperative set of four mobile robots syn-
chronized using Chen [8] and Lorenz [26] systems. They used one of the variables
of these systems to define the movements of their robots. In their system, one
of the robots is the master, and the others are synchronized with it. This sys-
tem is efficient compared to unsynchronized robots or random walks in terms of
coverage rate and travelled distances. Similarly, Mukhopadhyay & Leung [33]
present synchronized robots with chaotic path planners. They add a symbolic
dynamic description of their robots. The symbolic dynamic is a nonlinear anal-
ysis tool used to describe chaotic dynamics. Its purpose is to label a discrete
trajectory obtained from a Poincaré section. Thus, it gives a symbol according
to the dynamical aspect of the solution depending on the topological period of
the system. At the end, the solution is no longer a variable but a sequence
of symbols indicating dynamical aspects of the system studied. The authors
use this sequence of symbols to evaluate the synchronization rate between their
robots. We also would like to mention the work of Bezzo et al. [4] where synchro-
nization of chaos is used to detect changes in the topology of a mobile robotic
network. The authors study the motion of mobile agents through an unknown
environment with obstacles (see also [54, 55] for details on this method).

Volos and co-workers [59] proposed another use of chaos which consists in
designing a path planning generator for autonomous mobile robots. From the
double scroll chaotic circuit (Chua system [9]), they obtained a chaotic true
random bit generator. They use it to define the path planning of the robots
i.e., the list and the order of the points the robots have to visit. The effi-
cient coverage rate and the unpredictability of the robot trajectories are the
main characteristics of this system. This system is similar to the system using
chaotic map [28]. Comparing their coverage rate in terms of the number of
planned points, the system designed by Volos and co-workers [59] is ten times
better. From the same authors, similar results are obtained when the Arnold
map is used to generate waypoints for path planning [12]. Finally, we would
like to point out a recent work done by Pimentel-Romero and co-workers [36]
using Poincaré sections of chaotic attractors as threshold to generate random
numbers. They conclude that these particular Random Number Generators
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(RNGs) using chaotic dynamics are efficient for generating random paths for
autonomous mobile robots.

Another way to include chaos to support mobile robot mobility is presented
by Rosyid et al. [48]. Their method does not use any well-known Ordinary
Differential Equations (ODE) system to drive the robots. Robots communicate
using sound that all can hear. Each robot moves in a direction depending on
the “total amount” of sound received. This is modelled by an ODE that details
how this system is synchronized because their relative positions influence the
sound emitted and received. The authors use the coverage rate to compare their
system to the previously presented methods for robots driven with Lorenz or
Arnold equations to prove that their model has better performance. They also
compute the Largest Lyapunov Exponent (LLE) to ensure that chaos occurs in
their system. This value is a measure of the separation rate of two infinitely
initially closed trajectories [35, 60]. The LLE refers to the predictability of a
system and is commonly used as an indicator of a chaotic behaviour. This is
a metric approach that does not permit to distinguish chaotic solutions that
have distinct structures in the state space. The reader is referred to [6, 17,
31] for details about chaotic mechanisms (e.g. folding mechanism or tearing
mechanism). The 0–1 test can also be used as an indicator to distinguish chaotic
dynamics from periodic one (the reader is referred to [19] for details). We
also mention that diffusion coefficient can be computed for first return maps
to measure the difference between the dynamics when a parameter is varied
[20, 23].

We recently proposed mobility models [41–43] using chaotic behaviour based
on the Rössler system using Poincaré section and periodic orbits. In the next
section we will present nonlinear tools used to analyse mobility models. Then,
in section 2.4, we present our mobility models and the nonlinear tools used to
build and analyse them.

2.3 Nonlinear analysis tools

We gave above examples of mobility models built from chaotic dynamics. Some
of them have been analysed with tools coming from the domain of nonlinear
analysis. In this section we present studies carried out on mobility models using
these nonlinear tools to understand and describe their behaviour.

In 2014, Timme & Casadiego wrote an article entitled “Revealing networks
from dynamics” [56]. This paper gives an overview of approaches considering
collective nonlinear network dynamics, but few details are given about tools
from the domain of nonlinear analysis that could be used when chaotic systems
are identified. These tools are well introduced by Qu et al. [38] in their paper
about emergence in swarming systems. The authors detail the emergence phe-
nomenon and the following tools: Lyapunov Exponents, Attractor, Recurrence
plot, Poincaré section. They also extract periodic orbits from a Poincaré sec-
tion. The “periodic” term of periodic orbits refers to the state space and not
to the time space (topological period). Periodic orbits are time invariant while
the system evolves in a chaotic state (from initial condition, the solution evolves
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and successively visits the unstable periodic orbits). From a chaotic time series
and with a Poincaré section, orbits can be extracted, and this acquisition is a
preliminary step of the topological characterization [17]. For dissipative systems,
the purpose of this method is to obtain the structure of the chaotic mechanism
from a topological invariant (the linking number) computed between periodic
orbits (the reader is referred to [18] for details).

Hazan et al. [22] opt for this approach because the aim of their work is to
classify the behaviour of robots using periodic orbits. The authors explain that
their method is not based on a metric (for instance the LLE) because it is “highly
sensitive to perturbations such as noise contamination” [22]. They use the
topological characterization tool after building an embedding (they reconstruct
a phase space from one variable) of the behaviour from the x–axis motion of
the robot. They build a Poincaré section in order to extract periodic orbits and
then describe the behaviour of the robots using the linking numbers between
the orbits.

Das and co-authors [13, 14] propose to use Lyapunov exponents to distin-
guish transitions in a multi-agent swarm system. The system is designed to
solve an optimization problem where the agents have to reach a particular point.
Computing Lyapunov exponents enables the authors to find the range of pa-
rameters where chaos occurs and where the system is no longer periodic. The
authors propose an application of their system: each robot is an automatic fire
extinguisher, and they have to reach a burning place. “In any swarming dy-
namics, emergence of chaos is a very important situation to be dealt with” [13]
and this is illustrated by the work of Wu and co-workers [61]. In the latter
article, the authors use Lyapunov exponents to analyse their swarming system
and concluded that the chaos in swarm model becomes weaker while the emer-
gence becomes stronger. The Lyapunov exponents are also used to analyse a
swarm model of Self Propelled Particles (SPP) by Shiraishi and Aizawa [52, 53].
This tool permits to understand the relations between the behaviour of the sys-
tem and the number of agents: “the Lyapunov exponents reflect the biological
sensitivity hidden behind the motion of swarm” [52].

Chaos in neuronal network is also studied with Lyapunov exponents [15] or
more recently, using reconstructed attractors with time-delay coordinates and
with a Poincaré section [25]. These latest tools are robust to well define the
chaotic mechanism because the first return map to the Poincaré section with
unimodal structure indicates that there is a stretching and folding mechanism:
it is a signature of the classical “horseshoe” mechanism (also known as folding
mechanism). This type of chaotic mechanism is also present in the work of
Sato and co-workers [50, 51] as illustrated by Fig. 6 of [50]. They work on a
multiagent system using reinforcement learning that is modelled with coupled
differential equations. This is applied to game theory: Matching Pennies and
Rock-Scissors-Paper games. The stretching and folding mechanisms describe
the effect of mutual adaptation and memory loss with non-transitive structure
for their system. This leads to Hamiltonian chaos if there is no memory loss
and to a dissipative system where there is memory loss. The dissipative system
exhibits limit cycles, intermittency and deterministic chaos. To study their
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system, they employ Lyapunov exponents, Poincaré section, bifurcation diagram
and extract periodic orbits. These tools are also used to study languages and
learning mechanisms where chaotic dynamics appears [32].

2.4 Mobility models based on periodic orbits

We recently proposed mobility models using chaotic behaviour based on the
Rössler system [41–43]. These mobility models permit to enhance the coverage
of an area compared to random mobility models. We used the first return map
from a Poincaré section of a chaotic attractor solution of the Rössler system
and considered the periodic orbits to build efficient mobility models in terms of
coverage rate. The Rössler system [47] is given by the equations







ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c)
(1)

and its Poincaré section is defined as follows:

P = {(yn, zn)|xn = 0, ẋn > 0} (2)
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Figure 1: Chaotic attractor solution of the Rössler system (1) (values of pa-
rameters a = 0.1775, b = 0.215 and c = 5.995) with the Poincaré section (2)
represented by an arrow.

These tools are used to obtain the topological structure of the Rössler attrac-
tor [45] where ρn ∈ [0; 1] is the normalized value of yn in the Poincaré section
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(Fig. 2). We introduce a new concept to provide trajectories for UAVs: the
dynamics of the first return map enable us to obtain a local direction. The first
return map is a step-by-step process used to update the direction of the UAVs
based on a three symbols dynamic (L for left, R for right and A for ahead).
The periodic orbits of an attractor are considered as its skeleton because they
structure the dynamics of the system. From the first return map, we extract
the periodic orbits of attractors to obtain these recurrent points often visited
with the same order. Thus, our UAVs can follow these specific patterns that
allow them to explore a wide area. We obtained straight lines and wide turns
with respectively period one orbit (AAAA . . . for ahead, ahead, ahead, . . . )
and period two orbit (ARARAR . . . for ahead, right, ahead, . . . ) (Fig. 2). The
period one orbit leads to a straight forward line to enable exploration while
the period two orbit enables the UAV to make large right turns to change its
direction. The reader is referred to [43] for details about the periodic orbits of
attractors for mobility models of UAVs. The increase in performance provided
by these mobility models using first return maps indicates that they deserve fur-
ther investigation. In the next section, we propose a method to generate traces
for mobile agents using this specific tool from nonlinear analysis. We would like
to answer the following question: from a global point of view, can first return
maps be useful to produce and/or analyse traces of UAVs?

3 Traces generation from multi-components Poincaré

section

In this section we first present the concept of partial first return map as a tool
to describe data with an unknown part. Conversely to the classical first return
map, this partial first return map allows input and output which is a mandatory
property to provide data traces. The main purpose of this article is to analyse
and generate traces of agents in an open environment which means that the
agents can be added or removed in the model. Then, section 3.2 provides a
scenario where a partial first return map can describe the behaviour of agents.
In section 3.3 we present a proof of concept supported by numerical experiments
using a theoretical dynamical system: the Lorenz system [26].

3.1 Concept

The purpose of this section is to propose a methodology to generate traces of
mobile entities named agents (robots, persons, UAVs, . . . ) using the most ac-
curate tools related to the chaotic behaviour. We consider that the agents move
in a well-defined area (the environment). The agents can enter, move and exit
this area after a while. We suppose that the behaviour of the agents is mainly
induced by constraints of the environment that force them to follow certain
paths . As a consequence, we can make an analogy between the environment
and the phase space of a deterministic dynamical system. We do consider that
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these paths are similar to unstable periodic orbits of an attractor in a phase
space that agents might follow.

The classical method applied in this case is to reconstruct the whole phase
space from one measured variable (for instance one coordinate of the position).
Contrary to Hazan et al. [22], we do not consider that the traces contain the
whole dynamical properties, but only a portion of it because of the capability of
the considered robot to enter and exit the area. They use the standard way to
reconstruct the phase space. For the same reason, we are not able to use even
better global modelling methodology for time series data [27].

Based on our experiment in mobility models design [41–43], we can say that
an approach using the orbits of an attractor as guidelines is very efficient in
terms of coverage of an area. This efficiency is due to the patterns followed by
the UAV during the exploration process. Such an approach including patterns
repetition can be applied to the generation of traces of mobile agents. Fig. 2 is
the first return map of a Poincaré section of a Rössler attractor used in several
research projects [41–43]. This first return map is an unimodal map made
of an increasing branch and a decreasing branch: this illustrates the folding
mechanism (“horseshoe” mechanism). However, this first return map details
the whole chaotic dynamics of a bounded and globally time invariant process
of a given chaotic attractor. Thus, the periodic points of Fig. 2 describe the
entire periodic orbits and considering the analogy with the mobility model,
this prevents entrance or exit of agents. As we are aiming to obtain a trace
data generator, this global perspective is a drawback to overcome, because the
agents cannot be considered as permanently evolving in a dedicated well-defined
environment. Therefore, we propose a new method using partial data from a
chaotic attractor.

For attractors bounded by high genus torus, the Poincaré section is made of
several components that can be used to properly describe chaotic dynamics using
symbolic dynamics [45]. For instance, the multispiral chaotic attractor (Fig. 3)
introduced by Aziz-Alaoui [2] is bounded by a genus–5 torus. To describe the
dynamics in a discrete way, the Poincaré section has to detail the transitions
between the spirals. Consequently, the Poincaré section will be made of several
components. These components are chosen accordingly to the bounding torus
theory [57] using the fixed points. For the multispiral attractor (Fig. 3) this
theory indicates that four components are required to build the Poincaré section.
The Poincaré section is no longer one plane but a set of planes. The flow crosses
these planes and from a continuous flow we obtain discrete values. We used
a concatenation of these values to build one variable representing the whole
Poincaré section: ρn. Each component is represented by a range of values in
ρn: component ci for ρn ∈ [i− 1, i] (see Fig. 3). Thus, ρn is a variable between
0 and 4 that describes the Poincaré section. The four components synthesized
in ρn describe the entire dynamic of the system.

In a first return map to this Poincaré section, orbits can be extracted, and a
symbolic dynamic can be assigned as it has been done for the Rössler attractor
(See Fig. 2 that details periodic points associated to periodic orbits). Fig. 4
shows a first return map of a Poincaré section made of four components for the
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Figure 2: First return map to the Poincaré section of the Rössler attractor
(Fig. 1). This map is partitioned in three parts that give the UAV directions:
L (left), A (ahead) and R (right). Orbits of period 1 and 2 illustrate patterns
(AAAAA. . . ) and (ARARA. . . ), respectively straight lines and large turns.
These patterns are efficient to cover an area with UAVs [43].
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Figure 4: First return map of a Poincaré section describing a multispiral attrac-
tor (Fig. 3) using a Poincaré section made of four components [45].

multispiral attractor (Fig. 3) by plotting ρn+1 versus ρn. This first return map
contains both horseshoe mechanisms and tearing mechanisms. This map is a
discrete description of the flow and permits to obtain information concerning
possible transitions between components of the Poincaré section. The reader is
referred to [45] for details on the methodology used to build a Poincaré section
with several components using the properties of fixed points and the bounding
torus theory. One of the way to build a bounding torus is to place the hole
where the fixed point of the attractor are. For the multispiral attractor there
are details in [45] and for the Rössler system, there are details in [40] including
parameters variation ensuring the robustness of the method.

In this multispiral attractor there are transitions from a component to the
same component (e.g. c2 to c2) and transitions to another component (e.g. c2
to c3). The first return map (Fig. 4) details the chaotic mechanism occurring to
perform these transitions and describes the whole dynamics of the system. The
novelty of our approach lies on the use of only a part of the data to introduce
chaotic mechanisms as a model for traces generation. We develop a new tool to
handle this unknown part of the data: the partial first return map. A partial
return map is an incomplete map with at least one component with incoming
flow, the initial components, and at least one component with outgoing flow,
the final components. The flow is split in such a way that the partial first return
map describes the transitions between the initial components and the final com-
ponents using transitional components. With this repartition of components, we
propose to follow a particular ordering to build the partial first return map: the
initial components, the transitional components and the final components.

Our new concept is to consider only a part of the trajectory in the environ-
ment. Thus, a partial first return map is only an uncompleted first return map
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with transitions between a subset of components of a Poincaré section. This
permits to represent experimental data without taking into account the rest of
the trajectories. Consequently, this missing or unknown data can be considered
as input and output for traces model indicating where agents enter or leave the
environment. In the next section we first present a scenario for our methodology
and in section 3.3 we detail the method to build partial first return map.

3.2 Scenario

We consider the following scenario. The environment is an exhibition centre
where we want to reproduce the behaviour of the visitors. We consider one entry
door and one exit door. The exposition is composed of two rooms (Fig. 5). The
room 1 is accessible from the entry and the room 2 is before the exit. Visitors
can stay in room 1 as long as they want before leaving the exhibition. As
there are two rooms to visit in the exhibition centre, we consider the transition
between these rooms. Thus, we have visitors coming from the entry door and
going to the first room. There is a transition from the entry to room 1 and also
from room 1 to room 2.

room 1

room 2

en
tr

y
ex

it

Figure 5: Scenario using an exhibition centre with two rooms. The shape is
intentionally similar to the considered phase space (Fig. 6) to underline the asset
of our method but this is not mandatory: only transitions between components
are significant.

These transitions refer to the way chaotic multispiral attractors are analysed.
As there are multiple spirals, and since the trajectory evolves from one spiral to
another, it is required to consider these transitions. The Poincaré section is com-
posed of several components to handle these multiples transitions. The analogy
of transition between spirals is with transitions from one room to another room
to generate traces. Moreover, this approach does not prevent to include more
components to highlight patterns as it has been done to provide templates of
attractors (See Fig. 15 of [45]). For instance, for a Malasoma attractor bounded
by a genus one torus, a Poincaré section made of four components has been used
to detail torsions or permutations movements [46]. This kind of mechanism can
be used to reproduce the movements of the agents.

In this particular scenario, we consider some parts of our model as com-
ponents of a Poincaré section: the entry and the exit as two components of a
Poincaré section and the transition between room 1 and 2 is another compo-
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nent. To build the first return map, we set up the following order: the entry
is an initial component, the transition between room 1 and 2 is a transitional
component and the exit is a final component.

3.3 Numerical experimentation using the Lorenz system

We perform experimentations using the Lorenz system [26]







ẋ = σ(y − x)
ẏ = Rx− y − xz

ż = −βz + xy

(3)

in order to illustrate our methodology on a chaotic attractor bounded by a
torus with a genus higher than one. This system is solved using a 4th order
Runge-Kutta method. We obtain an attractor solution to this system for the
parameters values R = 70, β = 8

3
and σ = 10. Fig. 6 represents the projection

of the attractor in the plane (x, y). The hatch part is not used to perform the
experimentation of our method because we do not consider the whole solution.
As a consequence, a partial first return map is obtained from the data (Fig. 6)
with a list of three components:

• initial component A: Entry

• transitional component B: Transition where an agent decides to stay in
room 1 or to proceed to room 2

• final component C: Exit

These components are given by the following equations:

PA = {(yn, zn)|xn = 0, ẋn > 0}
PB = {(yn, zn)|xn = 10, ẋn < 0}
PC = {(yn, zn)|xn = 0, ẋn < 0}

(4)

The three components are represented Fig. 6 with arrows showing the flow of the
attractor between them. Here we choose arbitrarily 10 for our partition based
on bounding torus theory, but we remind that fixed point of the differential
equations system can also be used to ensure good partition according to this
theory.

As we have done for attractors bounded by high genus torus [45], we build
one variable ρn with different values to represent the position of the component
in the partial first return map depending on its value:

• initial component A: ρn < 1;

• transitional component B: 1 < ρn < 2 and

• final component C: 2 < ρn < 3.
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Figure 6: Phase portrait of an attractor solution to the Lorenz system (3) for
the parameters values R = 70, β = 8

3
and σ = 10. Arrows highlight the possible

transitions from a component to another component (A to B, B to B or C).

As introduced in one of our previous work [44], we choose to follow the orien-
tation convention that gives the values of each component from the inside to
the outside of the attractor. This convention is mandatory to compare chaotic
mechanisms of attractors [44]. Thus, the ρn values close to and lower than 1,
2 and 3 are respectively associated to positions in the components close to the
letters A, B and C (Fig. 6).

We build the partial first return map (Fig. 7) based on ρn to highlight the
possible transitions between all components. It describes the transition between
components X → Y with X the abscissa an Y the ordinate:

• The absence of points with ordinate value for the component A underlines
the fact that it is an initial component. In this map, it is not possible to
reach component A.

• A → B in the case (A,B) and B → B in the case (B,B) indicate that the
next choice for the agent depends on the value of component B: stay in
room 1 or proceed to room 2.

• B → C in the case (B,C) indicates that the agent will leave the room 1
to the room 2 and then leave the exhibition

• The absence of points with abscissa value for the component C underlines
the fact that it is a final component. From component C there is no
successor point.
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Figure 7: Partial first return map based on ρn illustrating the possible tran-
sitions between the components. Even if some parts of this figure are empty,
we chose to show them to make the partial first return map mechanism under-
standable. Transitions from A to B are possible and generate congestion; for
instance, β and γ have the same image (δ). Conversely, after the component B,
there is a tearing mechanism that results in by the separation of closed points
(the green and cyan areas underline this split).

From the dynamical point of view, even though we do not have the whole
dynamical system, such kind of maps gives details on the possible chaotic mech-
anisms of the system. For instance, if we only consider the (A,B) area, it is
an unimodal map with an increasing and a decreasing branch describing the
classical “horseshoe” mechanism (stretching and folding mechanisms). This is
illustrated by the positions of the points β and γ in the partial first return map
(Fig. 7). These two points have the same ordinate but not the same abscissa.
Using the map, we obtain only one image from these points: the point δ. In the
range [β; γ] there exist pairs of points in that interval for which this happens
because there is only one image for two fibres. In terms of mobility model anal-
ysis, it means that even if two agents do not come from the same position in
the entry (component A) they can reach the same position in the next compo-
nent B. Such a mechanism illustrates congestion, i.e. the convergence of agents
to the same point. The topological description of a chaotic attractor can be
viewed as a series of mechanisms: stretching and folding are enough to generate
chaos. Considering the flow of the attractor, a folding mechanism is responsible
for gathering trajectories before a stretching mechanism. The congestion is the
result of a folding mechanism (continuous map with several branches) because
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trajectory will collapse to the same area.
Now considering points with abscissa in component B, their ordinate are in

components B and C. For an agent coming from component B, there is a split
into two different places. The chaotic mechanism associated to such behaviour
is the tearing mechanism, which is well known for Lorenz attractors (for details
about mechanisms in the Lorenz system, see [6]). The coloured areas (Fig. 7)
underline such a split directly from component A where two points (agents)
close to α will move to B but one will stay in component B (green area of
Fig. 7) while the other will proceed to component C (cyan area of Fig. 7). This
mechanism is similar in chaotic In the mobility model, it highlights the fact that
agents can stay in the same room or proceed to the last room before leaving the
exhibition.

Finally, we can use one dynamical system (e.g. Lorenz system) to generate
the global pattern of the traces with respects to some conditions based on the
transition between areas. This is a proof of concept validated by numerical
simulations, a preliminary step before considering experimental data instead of
a solution to a dynamical system. From data, we are expecting to find some
patterns similar to tearing mechanism or folding mechanism by identify their
dynamical signature in partial first return map generated from the data. Be-
tween the mechanisms of transitions in experimental real world data we will
then look for a dynamical system with similar dynamical properties to use it
as a trace generator. The dynamical system will not be directly extracted from
the data with an algorithm. One differential equations system, with a set of
parameters, has to be found in a database of research articles detailing topology
of chaotic attractors (including the list of chaotic mechanisms). The additional
search of an appropriate dynamical system including equations and parameters
can be achieved using a method we developed providing templates of attractors
directly from a bifurcation diagram [40]. This article illustrates the richness
of non-equivalent chaotic dynamics that could be found in one dynamical sys-
tem, and it also provides various chaotic mechanisms with their parameters. To
complete, we have to mention that multiple attractors can provide same mecha-
nisms. For instance, the multispiral attractor can be used instead of the Lorenz
system because they share common chaotic mechanism. Once a system has
been found, the traces can be obtained by solving the dynamical system with
initial points (the mobile agent) in the initial components to let them evolve in
the environment by visiting the other components and escape via the final com-
ponents. We thus propose to find a model fitting the data by giving a similar
partial first return map. This model could provide a good mobility model, even
if there is a suppressed or hidden part that is not used. We consider agents as
particles in a flow where the chaotic dynamics provide enough variability despite
the deterministic process to be used as a mobility model with our methodology.
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4 Conclusion

In systems containing mobile entities, we emphasize the fact that chaos can be
built, as well as it can emerge, by synchronization of the entities or by interac-
tion with the environment. In both cases, if a chaotic state is observed, then
dedicated tools can be employed to analyse it. For instance, bifurcation dia-
grams can illustrate transition from limit cycles (periodic solution) to various
type of chaotic dynamics. We have seen that, Lyapunov exponents are indi-
cators to distinguish chaos from hyper-chaos. However, for chaotic dynamics,
this measure is not well adapted to detail the chaotic mechanism. Thus, others
tools (Poincaré section or periodic orbits for instance) leading to topological
characterizations can separate non-equivalent chaos, and provide more accurate
analysis of these chaotic dynamics. The recent improvements concerning com-
parison of chaotic attractors and topological characterization method can be
used to identify or distinguish chaotic mechanisms and consequently identify
and distinguish particular behaviours of dynamical mobile networks.

Consequently, we have focused on the dynamical structure exhibited by the
transitions between components of a Poincaré section. These transitions are
significant and reliable to design a mobility model with congestion or distribu-
tion of agents in a given area. The procedure is applied on a Lorenz system to
highlight the advantages of our methodology. The exhibited structure can be
used to both generate traces and analyse them. For instance, with the constant
increase in the number of connected devices carried by users, there are several
ways to collect real traces with their approval. It has been done for the students
of the University Politehnica of Bucharest [10] where their social interactions
have been studied. In our future work we will apply our methodology to analyse
agents traces obtained by such measurements to reproduce and generate traces
by finding the most appropriate dynamical system.
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