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ABSTRACT
In plants, RNA-directed DNA Methylation (RdDM) is a mechanism of silencing that relies on the
production of 24-nt siRNAs by RNA POLYMERASE IV (Pol IV) to trigger methylation and thus
inactivation of transposable elements (TEs). We present the construction and characterisation of
osnrpd1, a knock-down RNA interference line of OsNRPD1 gene that encodes the largest subunit of
Pol IV in rice (Oryza sativa ssp japonica cv Nipponbare). We show that osnrpd1 displays a lower
accumulation of OsNRPD1 transcripts, associated to an overall reduction of 24-nt siRNAs and DNA
methylation level in all three contexts, CG, CHG and CHH. We uncovered new insertions of known
active TEs, the LTR retrotransposons Tos17 and Lullaby and the LINE-type retrotransposon Karma.
However, we did not observe any clear developmental phenotype, contrary to what was expected
for  a  mutant  severily  affected  in  RdDM. In  addition,  despite  the  presence  of  many putatively
functional  TEs  in  the  rice  genome,  we  found  no  evidence  of  in  planta global  reactivation  of
transposition. This knock-down of OsNRPD1 likely led to a weakly affected line, with no effect on
development  and a  limited  effect  on  transposition.  We discuss the  possibility  that  a  knock-out
mutation of OsNRPD1 would cause sterility in rice. 
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BACKGROUND
The DNA of flowering plants as a whole is predominantly made up of transposable elements (TEs),
mobile genetic units able to proliferate in their host genomes. First described by B. McClintock
more than 60 years ago, they are grouped into two classes based on their transposition mechanisms :
Class I elements or retrotransposons transpose via an RNA-mediated copy-and-paste mechanism
whereas class II elements or DNA transposons transpose without using an RNA intermediate (1,2).
LTR  retrotransposons  (LTR-RTs)  are  the  most  abundant  in  plants.  Non-LTR  retrotransposons
include  long  interspersed  nuclear  elements  (LINEs)  and  short  interspersed  nuclear  elements
(SINEs) (3). 
TEs have been shown to be one of the most important factors driving the structure, function and
evolution  of  eukaryotic  genomes  (4–6).  However,  because  of  their  combined  mutagenic  and
replicative properties, they also may threaten the overall structure and function of the genome of
their host. A balance between both consequences have been reached : host organisms have evolved
strong  controls  of  transposition  that  allowed  the  taming  of  TE  proliferation  while  keeping
transposition possible. Young TE copies are thus silenced by epigenetic marks such as cytosine
methylation, ensuring a stable repression of TE expression and preventing their proliferation  (7).
This de novo DNA methylation can be initiated via the RNA-directed DNA Methylation (RdDM)
mechanism,  a  plant-specific  pathway  through  which  small  interfering  RNAs  (siRNAs)  target
homologous DNA regions through base-pairing to methylate them. The RdDM pathway is well
characterised in  A. thaliana  (8,9). The canonical one is initiated by the  RNA POLYMERASE IV
(Pol IV) which generates a single strand RNA of the target locus which is a template for  RNA-
DEPENDENT RNA POLYMERASE 2 to generate a double strand RNA (dsRNA). Then, DICER-
LIKE 3 cleaves these dsRNA into 24 nucleotides siRNAs (24nt siRNA) one strand of which are
loaded into ARGONAUTE 4 that  can  target  nascent  scaffold  RNA POLYMERASE V (Pol  V)
transcripts or genomic DNA by base-pairing. Finally, this targeting leads to the recruitment of the

2

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61



DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE 2 to mediate  de
novo methylation in all three different sequences contexts, CG, CHG and CHH, where H is A, C or
T (10). However, De novo methylation of cytosines in the CHH context is the specific hallmark of
RdDM since methylation at the symetrical CG and CHG sites can be maintained at each round of
replication by METHYLTRANSFERASE 1 and CHROMOMEHTYLASE 3, respectively (11).
In  addition  to  the  canonical  pathway,  Pol  II  expression-dependent  forms  of  RdDM that  partly
incorporate components typically associated with post-transcriptional gene silencing have recently
been identified in A. thaliana (9,12). 
In rice (Oryza sativa ssp japonica), TEs account for at least 35 % of the genome  (13). Despite
evidence of many polymorphic insertions of TEs in different accessions or cultivars of the same
species  (14,15),  showing  that  in  planta transposition  was  ongoing  in  the  field,  very  few
transposition events could be triggered and observed in laboratory conditions. This was the case for
three LTR-Retrotransposons,  namely  Tos17 (16),  Lullaby (17) and  Karma (18) and two related
DNA transposons, mPing and Pong (19,20). However, transposition of these elements did not occur
in planta but was triggered by an intermediate step of long-term in vitro culture of cells or anthers.
Only some mutants affected in methylation of histones  (21) or DNA (22,23) have been shown to
display transposons reactivation in planta.
Recent advances have shed light on epigenetic regulation and the epigenomic landscape in rice (7).
Key actors of DNA methylation have been characterised  (23–26). However, only few genes have
been fully  identified as actors  in  the RdDM mechanism. OsDCL3a is  the rice  DICER-LIKE 3
homolog involved in 24-nt siRNA processing (26). Reduction of OsDCL3a function reduced the 24-
nt siRNAs predominantly from MITEs and elevated expression of nearby genes involved in the
homeostasis of the plant hormones gibberellin and brassinosteroid. The osdcl3a RNAi lines thus
displayed  several  developmental  alterations  compared  to  wild-type.  Targeted  disruption  of
OsDRM2, coding the rice methyltransferase responsible for de novo methylation, lead to a 13.9%
decrease in 5-methylcytosine in both CG and non CG contexts and impaired both vegetative and
reproductive development  (24).  However,  since none of  these studies  focused on transposition,
nothing  is  known  about  the  impact  of  those  mutations,  and  by  extension  RdDM,  on  TEs
mobilization in rice. 
Foremost among these factors and central  to  the mechanism of RdDM, as described above for
Arabidopsis, is the RNA POLYMERASE IV because it is needed to produce the siRNA trigger for
methylation. Pol IV is a large holoenzyme composed of 12 subunits (27). NRPD1 is the largest one
and  is  derived  from the  duplication  of  Pol  II  subunit  NRPB1.  It  is  specific  to  Pol  IV and  a
component of the catalytic center (27). Two orthologs of NRPD1 have been identified in rice (28)
and present the same domain structure than in A. thaliana, suggesting a similar molecular function. 
Interestingly, however, no knockout mutant has been described for any of the primary components
of the RdDM pathway, Pol IV and Pol V in rice, suggesting that they could be lethal (29) in contrast
to Arabidopsis. This is further supported by the observation that mutations in genes encoding other
RdDM factors strongly affected rice development  (24,26) when their counterparts in Arabidopsis
did not show obvious defects (8).
In this paper, we describe the construction and the characterisation of osnrpd1, a knock-down RNAi
line of OsNRPD1 gene. Our initial goal was to create a rice line with a broadly relaxed epigenetic
control over TEs to study their transcriptional regulation. OsNRPD1, being of central importance in
producing the siRNA triggers that maintain TEs silent,  was a target of choice.  osnrpd1 did not
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displayed any obvious growing defects but we show that 24-nt small RNAs are under-accumulated
and that the methylation of cytosines residues in all  contexts is reduced compared to wild-type
plants. However, while we observed new insertions of three known active retrotransposons, namely
Tos17,  Lullaby and  Karma,  OsNRPD1 knock-down  was  not  sufficient  to  broadly  trigger
transposition of many putatively functional TEs populating the rice genome.

METHODS
Plant material
Oryza sativa ssp. japonica cv. Nipponbare rice plants and the derived osnrpd1 RNAi line have been
obtained from CIRAD, Montpellier, France. They were cultivated in a growth chamber (Percival)
under a 12h light-dark cycle (12h-28°C/12h-26°C) and with a relative humidity of 80% during the
day and 70% during the night. The light intensity varied gradually in 40 min at the beginning and
end of the day. 
For the construction of osnrpd1, a 150 nucleotides-long fragment belonging to a region coding for
the RNAP_IV_NRPD1 C-terminal conserved domain of NCBI Gene LOC4336722 (nucleotides
3886 to 4036) has been amplified by PCR (primers are described in table S5, additional file 5) and
cloned into the hpRNA binary vector pBIOS738 as described in figure S1.
To generate  the  osnrpd1 RNAi line,  an  Agrobacterium-mediated transformation of  mature seed
embryo-derived callus was performed as previously described (30). The one T-DNA-containing T0
regenerated plants, 6.2, 8.1, 20.1 and 23.1 were selected (Figure 1). Further generations of single-
seed descents have been obtained by selfing.

DNA and RNA  extraction
For DNA-seq and PCR analysis, total DNA was extracted from 50 mg of frozen leaves harvested
from one month old plants by a CTAB-based method as previously described (31).
For RNA-seq and RT-PCR analysis,  total  RNA was extracted from 50 mg of  leaves  using the
TRIzol reagent (Invitrogen Life Technologies) and treated with DNAse I (RQ1 RNase-Free DNase,
Promega). RNAs were checked on 1 % agarose gels and quantified using a Qubit® RNA Assay Kit
in a Qubit® 2.0 Fluorometer (Life Technologies).

PCR and RT-PCR methods
For  PCR  analysis  of  Tos17 insertions,  20  ng  of  total  DNA were  used.  30  cycles  of  PCR
amplifications were performed with a hybridization step at 58 °C.
For semi quantitative RT-PCR analysis of OsNRPD1a and ACTIN transcripts accumulation, cDNAs
were  synthesized  from  800  ng  of  isolated  RNA using  an  oligonucleotide  dT primer  and  the
GoScript reverse transcriptase (Promega). 24 cycles of PCR amplifications were performed with a
hybridization step at 58 °C.
Analyses by quantitative real-time PCR (qRT-PCR) were established using 7 to 35 ng of cDNA,
synthesized as described above. qRT-PCRs were run on a LightCycler 480 (Roche) using Takyon
No  Rox  SYBR  MasterMix  dTTP Blue  Kit  (Eurogentec).  The  qRT-PCR  conditions  were  the
following : a first denaturation step at 95°C for 5 min followed by 40 cycles at 95°C for 15s, an
annealing and elongation step at 60°C for 60s, and a melting curve analysis at 95°C for 10s, 60°C
for 10s, an increase of 0.04°C per second until 95°C and a final step of cooling at 40°C for 30s.
Primers were used at a concentration of 2μM. Three biological replicates were analyzed for each
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plant. OsNRPD1 expression level relative to ACTIN was calculated using the ΔΔCt method. 
All primers sequences are listed in table S5, additional file 5.

DNA-seq and read mapping
DNA quality and concentration were determined using a high sensitivity DNA Bioanalyzer chip
(Agilent Technologies). 350 base pairs DNA libraries have been prepared using Illumina’s PCR-free
DNA kit and sequenced at 2x102 nt or 2x151 nt on a Hiseq2500 instrument (HudsonAlpha Genome
Sequencing Center,  Huntsville,  USA).  Quality  control  of  FASTQ files  was evaluated using the
FastQC tool (version 0.10.1 www.bioinformatics.babraham.ac.uk/projects/fastqc). To remove any
read originating from organelle genomes, reads were mapped against the mitochondria (GenBank
NC_011033) and chloroplast genomes (GenBank X15901) using the program BOWTIE2 version
2.2.2 (32) with --sensitive-local mapping. Unmapped reads were then considered for the systematic
search of TEs insertions as described in additional file 6.

RNA-seq and OsNRPD1 transcript accumulation
Six stranded cDNA libraries (WT and T1-15, 3 biological replicates each) from poly-A-enriched
RNAs have been generated using Illumina’s stranded RNAseq kit and sequenced at 2x102 nt on a
Hiseq 2500. Quality control of FASTQ files was made as for DNA-seq. Analysis of  transcript
accumulation of  OsNRPD1a and  OsNRPD1b was performed as follows : a BOWTIE2 index has
been  done  for  each  mRNA sequence.  Then,  reads  from the  6  libraries  were  mapped  on  both
sequences using BOWTIE2 in the default mode with the --no-unal option to suppress SAM records
for reads that failed to align. SAMTOOLS utilities were then used to select and count concordant
alignments with no mismatches. Since many transcripts were produced from the inverted repeat of
osnrpd1, those reads that mapped to the 150 bp region that was used for the RNAi construct were
removed in each analysis.

sRNA-seq and mapping
Total  RNA from  the  materials  described  above  was  isolated  using  Tri  Reagent™  (Molecular
Research Center). Small RNA libraries were constructed using the Illumina TruSeq Small RNA
Sample Preparation Kit, and sequenced on an Illumina HiSeq2000 instrument. Raw sequencing data
were first trimmed of adapter sequences, with trimmed lengths between 18 and 34 nt. The read
counts  were  normalized  based  on  the  total  abundance  of  genome-matched  reads,  excluding
structural  sRNAs  originating  from  annotated  tRNA,  rRNA,  small  nuclear  and  small  nucleolar
RNAs. Read counts were normalized to 20M reads per library as well as to 21 nt abundances. The
21-nt abundances were used for normalization control as osnrpd1 knock-down causes a reduction of
24-nt siRNA. 
To assess  regions  of  OsNRPD1a  targeted  by  siRNAs,  reads  were  aligned  to  the  variant  6  of
OsNRPD1a mRNA with BOWTIE. Only reads with perfect match were kept. Coverage at each
nucleotide was calculated. 

Genome-wide methylome profiling by methylC-seq
For methylC-seq library construction, 200 ng of RNA-free genomic DNA (gDNA) were used for
library construction following a protocol previously described with some variations  (33). Briefly,
gDNA in TE buffer was fragmented in a Covaris focused ultrasonicator to generate approximately
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200  bp  fragments.  The  fragmented  gDNA was  kit-purified  (QIAquick  PCR  purification  kit,
Qiagen), end-repaired (End-It DNA end repair kit, Epicentre), and ‘A’ bases were added to the 3’
end of DNA then kit- purified again. Next, the methylated adapters were ligated to DNA fragments
using Fast-Link™ DNA ligation kit (Epicentre) then kit-purified. 250-500 bp DNA fragments in the
ligated  products  were  extracted  from a  2% agarose  gel  (BioRad)  and  purified  (QIAquick  Gel
Extraction Kit, Qiagen). The adaptor-ligated gDNA was treated with sodium bisulfite for cytosine
conversion with the MethylCode kit (Life Technologies). The bisulfite-converted gDNA was then
amplified by PCR using Pfu Turbo Cx Hotstart DNA polymerase and PCR program as described in
the above-mentioned paper  with 14 cycles of amplification.  The amplified library was purified
using Agencourt Ampure XP beads (Bechman-Coulter) and sequenced with Illumina technology.
Bisulfite converted reads were aligned to the rice reference genome (IRGSP1.0) using BS-Seeker2
with  default  parameters  (34).  Genome-wide  DNA  methylation  profiles  were  generated  by
determining methylation levels for each cytosine in the genome. We only included cytosines that are
covered  by at  least  four  reads.  We estimated  the  bisulfite  conversion  rate  with  respect  to  rice
chloroplast genome : 96.35% for WT, 97.25% for T0, 98.04% for T1-15 and 97.21% for T1-23. BS-
seq libraries and mapping data are presented in additional file 3.

RESULTS
Design of the osnrpd1 RNAi construct
Two orthologs of NRPD1 were identified in rice, corresponding to NCBI Gene IDs LOC4336722
and LOC4347810, both giving rise to several variants (Figure S1, additional file 1). Hereafter, the
corresponding genes or transcripts will be named  OsNRPD1a and  OsNRPD1b, respectively, and
collectively  named  OsNRPD1.  Because  we  could  not  identify  a  viable  insertional  mutant  of
OsNRPD1a from the available collections (see discussion),  we used an RNAi strategy to post-
transcriptionally  inactivate  both  OsNRPD1 genes.  We selected a  150 nucleotides-long fragment
belonging to a region coding for the RNAP_IV_NRPD1 C-terminal conserved domain of the locus
LOC4336722, characteristic of NRPD1 proteins that diverged from NRPB1 of Pol II  (35). Both
mRNAs are 93% identical in this region (Figure S1, additional file 1). This fragment was cloned
into a binary vector in the form of two inverted repeats separated by an intron and inserted into the
genome of a Oryza sativa cv. Nipponbare plant by transformation with Agrobacterium tumefaciens
(Figure S1, additional file 1). One T0 regenerant and a progeny of three T1 plants obtained by self-
propagation  (named T1-15,  T1-17,  T1-23),  homozygous  for  the T-DNA insertion harboring the
RNAi construct, were the objects of this study.

The accumulation of OsNRPD1 transcripts is drastically lowered.
The T0 regenerant described in this study (plant 23.1 on Figure 1A) had been selected among four
and self-propagated because it displayed the lowest expression level of OsNRPD1a based on semi-
quantitative RT-PCR analysis (Figure 1A). Three T1 plants (T1-15, T1-17 and T1-23), displaying a
lowest accumulation of the OsNRPD1a transcript, have then been selected (Figure 1A). The lower
accumulation of the OsNRPD1a transcript has been confirmed on T1-15, T1-17, and T1-23 by RT-
qPCR (Figure 1B). We also obtained RNA-Seq data from T1-15. These data confirmed that the
accumulation of the OsNRPD1a transcript was lower (Figure 1C). In addition, they showed that the
OsNRDP1b transcripts  were  much  less  accumulated  than  the  OsNRPD1a ones  and,  more
importantly, that the RNAi construct was able to reduce the accumulation of both (Figure 1C). This
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lower abundance of  OsNRPD1a transcripts  in the RNAi lines is  in  agreement  with the precise
targeting of OsNRPD1a gene by 21-nt siRNAs at the 150-nt long region used to devise the RNAi
construct (Figure S2, additional file 1).

The accumulation of 24-nt siRNAs is lowered.
Since OsNRPD1 is a subunit of the Pol IV enzyme, it was expected that a lower accumulation of its
transcripts would impair the accumulation of 24-nt siRNAs. We therefore generated small RNAs
libraries (Table S1, additional file 2) from leaves harvested at the same developmental stage on
wild-type plantlets, the T0 and three T1 (T1-15, T1-17 and T1-23), sequenced them and compared
the abundance of each size class between the libraries. Contrary to 24-nt siRNAs,  the 21-nt class
were expected to be unimpacted in the RNAi lines. The siRNAs abundances were thus normalized
to those of 21-nt  ones in the WT library. As expected, we observed that the proportion of 24-nt
siRNA abundances were lower in the T0 and all  T1 libraries compared with the wild-type one
(Figure 2).

The overall DNA methylation level is lowered in all three contexts, CG, CHG and CHH.
As a consequence of  impairing  the  accumulation  of  24-nt  small  RNAs,  an overall  decrease  in
cytosine methylation was expected. To investigate this aspect, we profiled the whole genome DNA
methylation of the T0 regenerant and two T1 individuals of its progeny (T1-15 and T1-23). We then
examined the methylation differences between the RNAi lines and the WT on common sites that
were available for all samples and found that the RNAi lines were globally hypomethylated in CHH
context (Figure 3), the hallmark of RdDM, but also in CG and CHG (Figure S3, additional file 1).
Moreover,  10 subclasses  of  transposable  elements  were  analyzed across  all  samples  and in  all
contexts and were found to be, on average, hypomethylated (Figure 4).

Some new insertions of known active TEs, but no generalized reactivation of transposition in
osnrpd1 RNAi lines
We initially hypothesized that OsNRPD1 was a target of choice to broadly relax epigenetic control
over TEs. We then try to systematically assess the transpositional activity in osnrpd1 and compare it
to WT plants. To identify and follow the inheritance of transposition events, we have generated,
starting from the T1 plants described above, two more generations of single-seed descents. We thus
obtained T2 and T3 generations from T1-15 and T1-23 (Figure 5, top) and until T6 from T1-23. We
thus resequenced the genomes of nine individuals, including the T0 as indicated in Figure 5, using
the Illumina-based paired-end technology. As a control, we resequenced the genome of the wild-
type progenitor of the RNAi lines. All reads were mapped against the reference genome of Oryza
sativa cv. Nipponbare.
We then used three different approaches, based on these alignments, to identify TEs mobilization.
They are  briefly  described here,  the  details  can  be  found in additional  file  6.  We first  used  a
candidate approach :  Tos17 and Lullaby are retrotransposons that have been previously shown to be
mobilized both in in vitro-cultured cells and in planta in mutants impaired in methylation. Based on
a simple visual analysis of the alignments in a genome browser (figure S4, additional file 1), we
identified 12 new insertions of Tos17 and one new insertion of Lullaby in the T0 plant (Figure 5).
Some of  them were  still  present  in  each  of  the  three  T1  plants  (Figure  5).  All  of  them were
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confirmed by PCR (Figure S5, additional file 1) and sequencing. No new insertion was detected in
the T1 and further generations except one insertion of Tos17 (Tos17-13 in Figure 5).
Secondly,  these  14  insertions  were  used  as  a  testing  set  to  develop  an  algorithm  to  identify
insertions of other elements. As depicted in figure S6 (additional file 1), clipped and discordant
alignments detected after short reads mapping against the reference genome were used to identify
insertion sites and the TE at  the origin of each insertion.  The parameters  of the program were
progressively fine-tuned until the whole set of Tos17 and Lullaby insertions described above were
identified and all false positives eliminated. In addition, many new insertions of a LINE element,
Karma, were detected in one T1 and all other lines starting from the T2 and accumulating in the
subsequent generations but not in the parental T0 plant (Figure 5). No new insertion from any other
TE was detected.  Finally,  we checked the uncovered neo-insertions by visual  inspection of the
alignments with a genome browser (IGV) : we confirmed that all of them were present in the RNAi
lines and that none of them were present in the wild-type progenitor of osnrpd1. 
Finally, it is well known that short reads mapping is not adapted to the identification of insertions
that occur in repetitive regions because this identification rests upon accurate alignments of reads at
the insertion site, a prerequisite which is unreachable when the insertion occurs into repeats. To
circumvent this problem, we tried to detect TEs that multiply in the genome without identifying
their  insertion site.  We then developed another  algorithm based on Depth of  Coverage (DOC).
Briefly, in a first step, we normalized the read coverage for each analyzed genome by counting the
number of reads aligned on a set of 59 unique genes (Table S2, additional file 4) and normalizing to
the length of each gene (Table S3, additional file 4). In a second step, the reads aligned on each TE
locus were counted and normalized to their length and to the number of reads corresponding to
unique regions, giving an estimation of the copy number for each TE (Figure S7, additional file 1).
This estimated copy number was obtained for the T0 and the three T1 plants and compared to that
of the WT. The method was first validated using the previously known copy number for Tos17 and
Lullaby. We then applied the strategy to the whole set of 295 LTR-RTs from our curated database.
However, we could not detect a consistent increase in copy number for any of them (Table S4,
additional file 4).
Therefore, we could not observe any in planta generalized reactivation of transposition in osnrpd1,
except one Tos17 insertion and the continuous retrotransposition, starting from the T2 generation, of
the LINE-type TE called  Karma. All other neo-insertions (ie : detected in  osnrpd1 but not in the
WT progenitor) were already present in the T0 regenerant from callus after transformation.

DISCUSSION
In this paper, we have described the effects of a knock-down of OsNRPD1 gene in rice. The RNAi
construct was effective because we could observe the targeting of the  OsNRPD1 gene with 21-nt
siRNAs  (Figure  S2,  additional  file  1)  and  the  reduction  of  the  accumulation  of  OsNRPD1
transcripts (Figure 1). We then observed a reduction of the accumulation of 24-nt siRNAs (Figure
2), an overall slight reduction of cytosine methylation in all contexts, CG, CHG and CHH (Figure 3,
4,  S3)  and  transposition  of  three  retrotransposons,  Tos17,  Lullaby and  Karma.  However,  the
question arises whether we can attribute these effects to the knock-down of OsNRPD1 because the
construction of this RNAi line included an in vitro culture of cells which could explain at least part
of them. It has indeed been shown that rice  plants that were regenerated after prolonged tissue
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culture displayed both losses of methylation (36) and new insertions of Tos17, Lullaby and Karma
(16–18). Some observations may nevertheless indicate that the knock-down of  OsNRPD1  could
enhance these effects.
Firstly, we detected 12 new insertions of Tos17 in the osnrpd1 regenerant (T0 generation), when the
average was 3,37 per line, and no more than 8, in a collection of 384 rice T-DNA mutants which had
been obtained at the same facility, with the same protocol of transformation and callus culture (37).
In a WT background, where it was established that Tos17 copy number correlated with the duration
of tissue culture, several months were necessary  to reach such a level of transposition (16,38) when
the transformation and regeneration process to obtain the osnrpd1 regenerant only took 7 weeks. A
similar observation can be made for  Karma : we have detected as many as 5 new insertions in a
single T3 plant (T3-23 in Figure 5) and 20 new other in three further generations (T6-23 in Figure
5) when the original publication reported an average number of new insertions per plant lesser than
one (18). It should be noted here that transposition events in the papers cited above were evaluated
by hybridization after Southern blotting and not genome sequencing as reported here. We however
showed in a previous work that both methodologies identified the same number of Tos17 insertions
(39). Therefore, this higher rate of transposition may be a sign of the effect of  OsNRPD1 knock-
down.
Secondly, we detected a Tos17 insertion in a T1 plant when it was absent from the analyzed tissues
(first leaves of a plantlet) of the parental T0 plant (Tos17-13 in Figures 5 and S5). Such an in planta
transposition of Tos17 has never been described in a WT background (16,38) but only in mutants
impaired in methylation of DNA (23) or histones (21). Similarly, this event may be interpreted as a
transposition that occurred in planta in the T0 genome as a consequence of the OsNRPD1 knock-
down, at a late developmental stage, that have been transmitted to some individuals of the progeny.
I we assume that, based on these observations, part of the losses in methylation and transpositions
events is the consequence of the knock-down of  OsNRPD1, the effect of the latter is weak. An
illustrative  aspect  is  that  we were  not  able  to  detect  any other  transposition  events  than  those
described  above.  This  is  in  contrast  to  what  has  been  reported  for  oscmt3,  impaired  in  CHG
methylation, where other TEs were found to be mobilized in addition to Tos17 and Lullaby (23). If
we can not rule out the possibility that transposition events have occurred that were not detected, it
seems that OsNRPD1 knock-down had a limited impact on transposition. This may be explained by
a  limited  importance  of  OsNRPD1 activity  in  that  matter  because  this  selective  impact  on
transposition is reminiscent of what has been observed in NRPD1 mutants of Arabidopsis thaliana
(35,40–42). Similarly, the osdcl3a mutation, that reduced the expression of OsDCL3 which encodes
the rice DICER-LIKE 3 primarily responsible for 24-nt siRNA processing in canonical RdDM,
reduced  24-nt  siRNA predominantly  from  MITEs  (26).  Although  this  study  did  not  focus  on
transposition, this observation also underlined the selective release of the epigenetic control over
TEs caused by the impairment of individual components of the RdDM machinery (43,44).
Alternatively and more probably, these limited effects are the result of the limited impact of the
knock-down itself,  raising  the  possibility,  as  discussed  below,  that  a  null  mutant  of  OsNRPD1
would  be  sterile.  We  indeed  gathered  several  other  indications  that  we  only  obtained  weakly
affected osnrpd1 lines. The most obvious one is that we did not observe any clear developmental
phenotype. Pol IV mutants in other species than Arabidopsis, whether mono- or dicotyledonous,
display severe phenotypes. In maize, the ZmRPD1 mutant called rmr6 is pleiotropically affected in
development (45,46). Tilling mutants braA.nrpd1 of Brassica rapa notably displayed asynchronous
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seed  abortion  (47).  Tomato  slnrpd1 null  mutants  have  also  been  reported  to  be  sterile  (48).
Moreover, in contrast to  osnrpd1, pleiotropic developmental abnormalities have been observed in
mutants in other components of the RdDM pathway in rice, like osdrm2 (24) and osdcl3a (26). A
strong  osnrpd1 mutant  would  therefore  expected  to  be  affected  the  same way.  In  addition,  an
important reduction of genome-wide methylation was associated with those developmental defects.
For instance, a 13.9% decrease in 5-methylcytosine in both CG and non CG contexts was reported
for osdrm2 (24) when osnrpd1 displayed less than 5% reduction in all contexts (Figure 3, S3) . 
The fact that we likely obtained an RNAi line only sligthly affected in OsNRPD1 activity indicates,
as previously suggested by others  (29), that a null mutant would be sterile in rice.  It  is indeed
surprising  that  a  mutant  of  this  central  component  of  the  RdDM  machinery  has  never  been
described in such an important plant, as both a model species and a crop. Data are nevertheless
available  for  other  actors  of  RdDM.  The  osdrm2 null  mutant,  obtained  by  homologous
recombination, is sterile (24). The two described  osdcl3a  lines are knock-down RNAi lines, but
they affect  phenotypes with a  severity  correlated with the knockdown level  of  OsDCL3a (26),
questioning the possibility to obtain null mutants. Finally, we decided to target OsNRPD1 by RNAi
because  we  previously  failed  to  find  a  viable  insertional  mutant  in  the  available  collections
(unpublished data).  We actually  first  focus ourselves  on a  T-DNA insertional  mutation into the
OsNRDP1a gene  identified  in  the  Oryza  Tag  Line  library  (http://oryzatagline.cirad.fr/,  line
AFVB01)  based  on  the  existence  of  a  Flanking  Sequence  Tag  (SAG8G10)  corresponding  to
OsNRPD1a. However, we could not confirm the presence of any T-DNA at this position in the T2
plants that we could grow. Based on the recent demonstrations, as described above, that  NRPD1
null mutants in tomato and Brassica are sterile, it is therefore possible that this insertion gave rise to
a sterile phenotype at the homozygous state in rice and that the seeds collected had segregated away
this T-DNA. This hypothesis rests upon the speculation that OsNRPD1b could not complement the
mutation. However, it would explain why no nrdp1 knock-out mutant is available for rice, and that
only weak mutants, like osnrpd1 we presented in this paper, may survive.

CONCLUSION
We have constructed an knock-down RNAi line of  OsNRPD1,  encoding the largest  subunit  of
POLYMERASE IV,  a  central  component  of  RdDM in  rice.  This  line  displayed  reduced  24-nt
siRNAs and DNA methylation compared to wild-type. We also detected new insertions of three
retrotransposons. However, we could not clearly distinguish between the impact of in vitro culture
and the knock-down of OsNRPD1, even if we have some indications of the effect of the latter. This
may be explained by the fact that we only obtained a weakly affected line. We expose reasons that
support the hypothesis of the sterility of a null mutant of OsNRPD1.
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LEGENDS TO FIGURES

Figure 1 : Transcript accumulation of OsNRPD1 genes is lower in the osnrpd1 mutants.
A.  Top,  semi-quantitative  RT-PCR analysis  of  OsNRPD1a  transcripts  accumulation  in  four  T0
regenerants (6.2, 8.1, 20.1 and 23.1) and the wild-type progenitor (WT). Bottom, same analysis in 8
T1 individuals of the T0-23.1 progeny after selfing.  The dashed frames indicate the plants that
displayed a strong reduction in transcripts accumulation and that have been selected and further
described in this study.
B.  RT-qPCR analysis  of  OsNRPD1a  transcripts  accumulation  level  relative  to  ACTIN (  ΔΔCt
method) in three selected T1 plants (T1-15, T1-17 and T1-23) compared to WT, three biological
replicates each, confirming the results above.
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C.  OsNRPD1 transcripts accumulation in T1-15 after RNA-Seq analysis showing, based on three
biological replicates, that both genes are affected. Bars represent the standard deviation.

Figure 2 : Accumulation of 24-nt small RNAs is lowered in the osnrpd1 mutants.
Small  RNA size  profiles  in  wild-type  (WT)  and  osnrpd1 mutants  (T0  and  three  T1   plants),
normalized to the percentage of 21-nt siRNAs abundance in the wild-type library. For each size
class, siRNA abundance was calculated as a percentage to the sum of abundances of total genome-
matched reads. 

Figure 3 : The whole genome level of CHH methylation is lower in the osnrpd1 mutants. 
Genome wide view of delta methylation in CHH context, showing that the T0 regenerant and both
T1 progenies (T1-15 and T1-23) of the osnrpd1 mutant have lower methylation than the wild-type
(WT). Methylation in CHG and CG contexts is also affected as shown in figure S3, additional file 1.

Figure 4 : Methylation in 10 subclasses of transposons is lower in all contexts
To compare the methylation level  distribution of differentially  methylated  transposable elements
between each sample (T0, T1-15 and T1-23) and WT, we calculated the methylation differences of
each DMTE between each sample and WT for ten known classes of transposable elements and
generated  boxplots. The  analysis  has  been  done  for  cytosins  in  CG,  CHG  and  CHH  context,
respectively, from top to bottom. For each class, the columns 1, 2 and 3 refer to the T0  vs WT
comparison,  the T1-15  vs WT comparison and the T1-23  vs WT comparison, respectively.  The
horizontal line indicates the level 0 of delta methylation (no change) all across each boxplot.

Figure 5 : List of all TEs insertions identified in osnrpd1 mutants
The pedigree of all plants tested is indicated at the top. The three columns at the left of the table
indicate the chromosome, the coordinates and the name of the new insertion. The coordinates are
the start and end positions of the sequence that has been duplicated upon insertion as detected by
our program. The true position of the insertion is one of them, depending of the orientation of the
TE. For  Tos17 and  Lullaby insertions, the positions highlighted in bold have been determined by
sequencing. A circle (green fo Tos17, red for Lullaby, blue for Karma) indicate the presence of the
insertion in each plant. 
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chr08 735615-735628 karma-19 O
chr08 20223745-20223758 karma-20 O
chr08 27759923-27759936 karma-21 O O
chr10 5286276-5286288 karma-22 O
chr10 19090767-19090783 karma-23 O
chr10 21680977-21680989 karma-24 O
chr11 25166110-25166123 karma-25 O
chr11 25227140-25227154 karma-26 O
chr11 25590955-25590968 karma-27 O

2729570-2729576
5815622-5815647
7120092-7120098
40103765-40103770
32884813-32884818
5572694-5572701
7989559-7989564
34643048-34643054
856880-856885
19674702-19674711
21062779-21062784
474941-474947
25235933-25235938
30363351-30363356


