

Construction and characterisation of a knock-down RNA interference line of OsNRPD1 in rice (Oryza sativa ssp japonica cv Nipponbare)

Emilie Debladis, Tzuu-Fen Lee, Yan-Jiun Huang, Jui-Hsien Lu, Sandra M. Mathioni, Marie-Christine Carpentier, Christel Llauro, Davy Pierron, Delphine Mieulet, Emmanuel Guiderdoni, et al.

▶ To cite this version:

Emilie Debladis, Tzuu-Fen Lee, Yan-Jiun Huang, Jui-Hsien Lu, Sandra M. Mathioni, et al.. Construction and characterisation of a knock-down RNA interference line of OsNRPD1 in rice (Oryza sativa ssp japonica cv Nipponbare). Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375 (1795), pp.20190338. 10.1098/rstb.2019.0338. hal-04274817

HAL Id: hal-04274817 https://univ-perp.hal.science/hal-04274817

Submitted on 8 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

1 Construction and characterisation of a knock-down RNA interference line of *OsNRPD1* in

- 2 rice (*Oryza sativa ssp japonica* cv Nipponbare).
- 3
- 4 Emilie Debladis^{1,2}, Tzuu-Fen Lee⁴, Yan-Jiun Huang⁵, Jui-Hsien Lu⁵, Sandra M. Mathioni⁴, Marie-
- 5 Christine Carpentier^{1,2}, Christel Llauro^{1,2}, Davy Pierron^{1,2}, Delphine Mieulet⁶, Emmanuel
- 6 Guiderdoni⁶, Pao-Yang Chen⁵, Blake C. Meyers^{4,7}, Olivier Panaud^{1,2,3}, Eric Lasserre^{1,2,*}
- 7
- 8 ¹ Université de Perpignan Via Domitia, Laboratoire Génome et Développement
- 9 des Plantes, 52, avenue Paul alduy, 66860 Perpignan cedex, France.
- 10 ² Centre National de la Recherche Scientifique, Laboratoire Génome et Développement
- des Plantes, 52, avenue Paul alduy, 66860 Perpignan cedex, France.
- ¹² ³Institut Universitaire de France, Paris, France.
- ⁴ Donald Danforth Plant Science Center, St Louis, MO, USA
- ⁵ Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- ¹⁵ ⁶ CIRAD, UMR AGAP, F34398 Montpellier, Cedex 5, France
- ¹⁶ ⁷ University of Missouri-Columbia, Division of Plant Sciences, Columbia, Missouri 65211
- ¹⁷ ^{*} Corresponding author, eric.lasserre@univ-perp.fr

18 ABSTRACT

In plants, RNA-directed DNA Methylation (RdDM) is a mechanism of silencing that relies on the 19 production of 24-nt siRNAs by RNA POLYMERASE IV (Pol IV) to trigger methylation and thus 20 inactivation of transposable elements (TEs). We present the construction and characterisation of 21 osnrpd1, a knock-down RNA interference line of OsNRPD1 gene that encodes the largest subunit of 22 Pol IV in rice (Oryza sativa ssp japonica cv Nipponbare). We show that osnrpd1 displays a lower 23 accumulation of *OsNRPD1* transcripts, associated to an overall reduction of 24-nt siRNAs and DNA 24 methylation level in all three contexts, CG, CHG and CHH. We uncovered new insertions of known 25 active TEs, the LTR retrotransposons *Tos17* and *Lullaby* and the LINE-type retrotransposon *Karma*. 26 27 However, we did not observe any clear developmental phenotype, contrary to what was expected for a mutant severily affected in RdDM. In addition, despite the presence of many putatively 28 functional TEs in the rice genome, we found no evidence of in planta global reactivation of 29 transposition. This knock-down of *OsNRPD1* likely led to a weakly affected line, with no effect on 30 31 development and a limited effect on transposition. We discuss the possibility that a knock-out mutation of OsNRPD1 would cause sterility in rice. 32

33

36

34 KEYWORDS

35 Polymerase IV, RNA-dependent DNA Methylation, Transposable elements, RNA interference

37 BACKGROUND

38 The DNA of flowering plants as a whole is predominantly made up of transposable elements (TEs),

39 mobile genetic units able to proliferate in their host genomes. First described by B. McClintock

40 more than 60 years ago, they are grouped into two classes based on their transposition mechanisms :

41 Class I elements or retrotransposons transpose via an RNA-mediated copy-and-paste mechanism

42 whereas class II elements or DNA transposons transpose without using an RNA intermediate (1,2).

LTR retrotransposons (LTR-RTs) are the most abundant in plants. Non-LTR retrotransposons
include long interspersed nuclear elements (LINEs) and short interspersed nuclear elements
(SINEs) (3).

TEs have been shown to be one of the most important factors driving the structure, function and 46 evolution of eukaryotic genomes (4-6). However, because of their combined mutagenic and 47 48 replicative properties, they also may threaten the overall structure and function of the genome of their host. A balance between both consequences have been reached : host organisms have evolved 49 strong controls of transposition that allowed the taming of TE proliferation while keeping 50 transposition possible. Young TE copies are thus silenced by epigenetic marks such as cytosine 51 methylation, ensuring a stable repression of TE expression and preventing their proliferation (7). 52 This *de novo* DNA methylation can be initiated via the RNA-directed DNA Methylation (RdDM) 53 mechanism, a plant-specific pathway through which small interfering RNAs (siRNAs) target 54 homologous DNA regions through base-pairing to methylate them. The RdDM pathway is well 55 characterised in A. thaliana (8,9). The canonical one is initiated by the RNA POLYMERASE IV 56 57 (Pol IV) which generates a single strand RNA of the target locus which is a template for RNA-DEPENDENT RNA POLYMERASE 2 to generate a double strand RNA (dsRNA). Then, DICER-58 LIKE 3 cleaves these dsRNA into 24 nucleotides siRNAs (24nt siRNA) one strand of which are 59 loaded into ARGONAUTE 4 that can target nascent scaffold RNA POLYMERASE V (Pol V) 60 transcripts or genomic DNA by base-pairing. Finally, this targeting leads to the recruitment of the 61

- 62 DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE 2 to mediate *de*
- 63 novo methylation in all three different sequences contexts, CG, CHG and CHH, where H is A, C or
- 64 T (10). However, *De novo* methylation of cytosines in the CHH context is the specific hallmark of
- 65 RdDM since methylation at the symetrical CG and CHG sites can be maintained at each round of
- replication by METHYLTRANSFERASE 1 and CHROMOMEHTYLASE 3, respectively (11).
- In addition to the canonical pathway, Pol II expression-dependent forms of RdDM that partly incorporate components typically associated with post-transcriptional gene silencing have recently
- 69 been identified in *A. thaliana* (9,12).
- In rice (Oryza sativa ssp japonica), TEs account for at least 35 % of the genome (13). Despite 70 71 evidence of many polymorphic insertions of TEs in different accessions or cultivars of the same species (14,15), showing that in planta transposition was ongoing in the field, very few 72 transposition events could be triggered and observed in laboratory conditions. This was the case for 73 three LTR-Retrotransposons, namely Tos17 (16), Lullaby (17) and Karma (18) and two related 74 75 DNA transposons, *mPing* and *Pong* (19,20). However, transposition of these elements did not occur *in planta* but was triggered by an intermediate step of long-term *in vitro* culture of cells or anthers. 76 Only some mutants affected in methylation of histones (21) or DNA (22,23) have been shown to 77
- 78 display transposons reactivation *in planta*.
- Recent advances have shed light on epigenetic regulation and the epigenomic landscape in rice (7). 79 Key actors of DNA methylation have been characterised (23-26). However, only few genes have 80 been fully identified as actors in the RdDM mechanism. OsDCL3a is the rice DICER-LIKE 3 81 homolog involved in 24-nt siRNA processing (26). Reduction of OsDCL3a function reduced the 24-82 83 nt siRNAs predominantly from MITEs and elevated expression of nearby genes involved in the 84 homeostasis of the plant hormones gibberellin and brassinosteroid. The osdcl3a RNAi lines thus displayed several developmental alterations compared to wild-type. Targeted disruption of 85 OsDRM2, coding the rice methyltransferase responsible for *de novo* methylation, lead to a 13.9% 86 decrease in 5-methylcytosine in both CG and non CG contexts and impaired both vegetative and 87 reproductive development (24). However, since none of these studies focused on transposition, 88 nothing is known about the impact of those mutations, and by extension RdDM, on TEs 89 mobilization in rice. 90
- Foremost among these factors and central to the mechanism of RdDM, as described above for Arabidopsis, is the RNA POLYMERASE IV because it is needed to produce the siRNA trigger for methylation. Pol IV is a large holoenzyme composed of 12 subunits (27). NRPD1 is the largest one and is derived from the duplication of Pol II subunit NRPB1. It is specific to Pol IV and a component of the catalytic center (27). Two orthologs of NRPD1 have been identified in rice (28)
- 96 and present the same domain structure than in *A. thaliana*, suggesting a similar molecular function.
- 97 Interestingly, however, no knockout mutant has been described for any of the primary components 98 of the RdDM pathway, Pol IV and Pol V in rice, suggesting that they could be lethal (29) in contrast 99 to Arabidopsis. This is further supported by the observation that mutations in genes encoding other 99 DNM for the support of t
- RdDM factors strongly affected rice development (24,26) when their counterparts in Arabidopsisdid not show obvious defects (8).
- 102 In this paper, we describe the construction and the characterisation of *osnrpd1*, a knock-down RNAi
- 103 line of *OsNRPD1* gene. Our initial goal was to create a rice line with a broadly relaxed epigenetic
- 104 control over TEs to study their transcriptional regulation. OsNRPD1, being of central importance in
- 105 producing the siRNA triggers that maintain TEs silent, was a target of choice. osnrpd1 did not

- 106 displayed any obvious growing defects but we show that 24-nt small RNAs are under-accumulated
- and that the methylation of cytosines residues in all contexts is reduced compared to wild-type
- 108 plants. However, while we observed new insertions of three known active retrotransposons, namely
- 109 *Tos17*, *Lullaby* and *Karma*, *OsNRPD1* knock-down was not sufficient to broadly trigger 110 transposition of many putatively functional TEs populating the rice genome.
- 110 i 111

112 METHODS

113 Plant material

- 114 *Oryza sativa* ssp. *japonica* cv. Nipponbare rice plants and the derived *osnrpd1* RNAi line have been
- obtained from CIRAD, Montpellier, France. They were cultivated in a growth chamber (Percival)
- under a 12h light-dark cycle (12h-28°C/12h-26°C) and with a relative humidity of 80% during the
- day and 70% during the night. The light intensity varied gradually in 40 min at the beginning andend of the day.
- 119 For the construction of *osnrpd1*, a 150 nucleotides-long fragment belonging to a region coding for
- 120 the RNAP_IV_NRPD1 C-terminal conserved domain of NCBI Gene LOC4336722 (nucleotides
- 121 3886 to 4036) has been amplified by PCR (primers are described in table S5, additional file 5) and
- cloned into the hpRNA binary vector pBIOS738 as described in figure S1.
- 123 To generate the *osnrpd1* RNAi line, an *Agrobacterium*-mediated transformation of mature seed
- embryo-derived callus was performed as previously described (30). The one T-DNA-containing T0
- regenerated plants, 6.2, 8.1, 20.1 and 23.1 were selected (Figure 1). Further generations of single-
- seed descents have been obtained by selfing.
- 127

128 **DNA and RNA extraction**

- For DNA-seq and PCR analysis, total DNA was extracted from 50 mg of frozen leaves harvestedfrom one month old plants by a CTAB-based method as previously described (31).
- 131 For RNA-seq and RT-PCR analysis, total RNA was extracted from 50 mg of leaves using the
- 132 TRIzol reagent (Invitrogen Life Technologies) and treated with DNAse I (RQ1 RNase-Free DNase,
- 133 Promega). RNAs were checked on 1 % agarose gels and quantified using a Qubit® RNA Assay Kit
- 134 in a Qubit[®] 2.0 Fluorometer (Life Technologies).
- 135

136 **PCR and RT-PCR methods**

- For PCR analysis of *Tos17* insertions, 20 ng of total DNA were used. 30 cycles of PCR amplifications were performed with a hybridization step at 58 °C.
- 139 For semi quantitative RT-PCR analysis of *OsNRPD1a* and *ACTIN* transcripts accumulation, cDNAs
- 140 were synthesized from 800 ng of isolated RNA using an oligonucleotide dT primer and the
- GoScript reverse transcriptase (Promega). 24 cycles of PCR amplifications were performed with a
 hybridization step at 58 °C.
- Analyses by quantitative real-time PCR (qRT-PCR) were established using 7 to 35 ng of cDNA,
- 144 synthesized as described above. qRT-PCRs were run on a LightCycler 480 (Roche) using Takyon
- 145 No Rox SYBR MasterMix dTTP Blue Kit (Eurogentec). The qRT-PCR conditions were the
- 146 following : a first denaturation step at 95°C for 5 min followed by 40 cycles at 95°C for 15s, an
- annealing and elongation step at 60°C for 60s, and a melting curve analysis at 95°C for 10s, 60°C
- for 10s, an increase of 0.04°C per second until 95°C and a final step of cooling at 40°C for 30s.
- 149 Primers were used at a concentration of $2\mu M$. Three biological replicates were analyzed for each

- 150 plant. *OsNRPD1* expression level relative to *ACTIN* was calculated using the $\Delta\Delta$ Ct method.
- 151 All primers sequences are listed in table S5, additional file 5.
- 152

153 DNA-seq and read mapping

DNA guality and concentration were determined using a high sensitivity DNA Bioanalyzer chip 154 (Agilent Technologies). 350 base pairs DNA libraries have been prepared using Illumina's PCR-free 155 DNA kit and sequenced at 2x102 nt or 2x151 nt on a Hiseg2500 instrument (HudsonAlpha Genome 156 Sequencing Center, Huntsville, USA). Quality control of FASTQ files was evaluated using the 157 FastQC tool (version 0.10.1 www.bioinformatics.babraham.ac.uk/projects/fastqc). To remove any 158 read originating from organelle genomes, reads were mapped against the mitochondria (GenBank 159 NC_011033) and chloroplast genomes (GenBank X15901) using the program BOWTIE2 version 160 2.2.2 (32) with --sensitive-local mapping. Unmapped reads were then considered for the systematic 161 search of TEs insertions as described in additional file 6. 162

163

164 **RNA-seq and OsNRPD1 transcript accumulation**

Six stranded cDNA libraries (WT and T1-15, 3 biological replicates each) from poly-A-enriched 165 RNAs have been generated using Illumina's stranded RNAseq kit and sequenced at 2x102 nt on a 166 Hiseq 2500. Quality control of FASTQ files was made as for DNA-seq. Analysis of transcript 167 accumulation of OsNRPD1a and OsNRPD1b was performed as follows : a BOWTIE2 index has 168 been done for each mRNA sequence. Then, reads from the 6 libraries were mapped on both 169 sequences using BOWTIE2 in the default mode with the --no-unal option to suppress SAM records 170 for reads that failed to align. SAMTOOLS utilities were then used to select and count concordant 171 alignments with no mismatches. Since many transcripts were produced from the inverted repeat of 172 osnrpd1, those reads that mapped to the 150 bp region that was used for the RNAi construct were 173 removed in each analysis. 174

175

176 sRNA-seq and mapping

Total RNA from the materials described above was isolated using Tri Reagent[™] (Molecular 177 Research Center). Small RNA libraries were constructed using the Illumina TruSeq Small RNA 178 Sample Preparation Kit, and sequenced on an Illumina HiSeq2000 instrument. Raw sequencing data 179 180 were first trimmed of adapter sequences, with trimmed lengths between 18 and 34 nt. The read counts were normalized based on the total abundance of genome-matched reads, excluding 181 structural sRNAs originating from annotated tRNA, rRNA, small nuclear and small nucleolar 182 RNAs. Read counts were normalized to 20M reads per library as well as to 21 nt abundances. The 183 21-nt abundances were used for normalization control as osnrpd1 knock-down causes a reduction of 184 24-nt siRNA. 185

- To assess regions of *OsNRPD1a* targeted by siRNAs, reads were aligned to the variant 6 of *OsNRPD1a* mRNA with BOWTIE. Only reads with perfect match were kept. Coverage at each nucleotide was calculated.
- 189

190 Genome-wide methylome profiling by methylC-seq

191 For methylC-seq library construction, 200 ng of RNA-free genomic DNA (gDNA) were used for

192 library construction following a protocol previously described with some variations (33). Briefly,

193 gDNA in TE buffer was fragmented in a Covaris focused ultrasonicator to generate approximately

200 bp fragments. The fragmented gDNA was kit-purified (QIAquick PCR purification kit, 194 Qiagen), end-repaired (End-It DNA end repair kit, Epicentre), and 'A' bases were added to the 3' 195 end of DNA then kit- purified again. Next, the methylated adapters were ligated to DNA fragments 196 using Fast-Link[™] DNA ligation kit (Epicentre) then kit-purified. 250-500 bp DNA fragments in the 197 ligated products were extracted from a 2% agarose gel (BioRad) and purified (QIAquick Gel 198 Extraction Kit, Qiagen). The adaptor-ligated gDNA was treated with sodium bisulfite for cytosine 199 conversion with the MethylCode kit (Life Technologies). The bisulfite-converted gDNA was then 200 amplified by PCR using Pfu Turbo Cx Hotstart DNA polymerase and PCR program as described in 201 the above-mentioned paper with 14 cycles of amplification. The amplified library was purified 202 using Agencourt Ampure XP beads (Bechman-Coulter) and sequenced with Illumina technology. 203 Bisulfite converted reads were aligned to the rice reference genome (IRGSP1.0) using BS-Seeker2 204 with default parameters (34). Genome-wide DNA methylation profiles were generated by 205 determining methylation levels for each cytosine in the genome. We only included cytosines that are 206 207 covered by at least four reads. We estimated the bisulfite conversion rate with respect to rice chloroplast genome : 96.35% for WT, 97.25% for T0, 98.04% for T1-15 and 97.21% for T1-23. BS-208 seq libraries and mapping data are presented in additional file 3. 209

211 RESULTS

210

212 Design of the osnrpd1 RNAi construct

Two orthologs of NRPD1 were identified in rice, corresponding to NCBI Gene IDs LOC4336722 213 and LOC4347810, both giving rise to several variants (Figure S1, additional file 1). Hereafter, the 214 corresponding genes or transcripts will be named OsNRPD1a and OsNRPD1b, respectively, and 215 collectively named OsNRPD1. Because we could not identify a viable insertional mutant of 216 OsNRPD1a from the available collections (see discussion), we used an RNAi strategy to post-217 transcriptionally inactivate both OsNRPD1 genes. We selected a 150 nucleotides-long fragment 218 belonging to a region coding for the RNAP_IV_NRPD1 C-terminal conserved domain of the locus 219 LOC4336722, characteristic of NRPD1 proteins that diverged from NRPB1 of Pol II (35). Both 220 mRNAs are 93% identical in this region (Figure S1, additional file 1). This fragment was cloned 221 into a binary vector in the form of two inverted repeats separated by an intron and inserted into the 222 genome of a Oryza sativa cv. Nipponbare plant by transformation with Agrobacterium tumefaciens 223 224 (Figure S1, additional file 1). One T0 regenerant and a progeny of three T1 plants obtained by selfpropagation (named T1-15, T1-17, T1-23), homozygous for the T-DNA insertion harboring the 225 RNAi construct, were the objects of this study. 226

227

228 The accumulation of *OsNRPD1* transcripts is drastically lowered.

The T0 regenerant described in this study (plant 23.1 on Figure 1A) had been selected among four 229 and self-propagated because it displayed the lowest expression level of OsNRPD1a based on semi-230 quantitative RT-PCR analysis (Figure 1A). Three T1 plants (T1-15, T1-17 and T1-23), displaying a 231 lowest accumulation of the OsNRPD1a transcript, have then been selected (Figure 1A). The lower 232 233 accumulation of the OsNRPD1a transcript has been confirmed on T1-15, T1-17, and T1-23 by RTqPCR (Figure 1B). We also obtained RNA-Seq data from T1-15. These data confirmed that the 234 accumulation of the OsNRPD1a transcript was lower (Figure 1C). In addition, they showed that the 235 OsNRDP1b transcripts were much less accumulated than the OsNRPD1a ones and, more 236 237 importantly, that the RNAi construct was able to reduce the accumulation of both (Figure 1C). This

lower abundance of *OsNRPD1a* transcripts in the RNAi lines is in agreement with the precise
targeting of *OsNRPD1a* gene by 21-nt siRNAs at the 150-nt long region used to devise the RNAi
construct (Figure S2, additional file 1).

241

242 The accumulation of 24-nt siRNAs is lowered.

243 Since OsNRPD1 is a subunit of the Pol IV enzyme, it was expected that a lower accumulation of its transcripts would impair the accumulation of 24-nt siRNAs. We therefore generated small RNAs 244 libraries (Table S1, additional file 2) from leaves harvested at the same developmental stage on 245 wild-type plantlets, the T0 and three T1 (T1-15, T1-17 and T1-23), sequenced them and compared 246 the abundance of each size class between the libraries. Contrary to 24-nt siRNAs, the 21-nt class 247 were expected to be unimpacted in the RNAi lines. The siRNAs abundances were thus normalized 248 to those of 21-nt ones in the WT library. As expected, we observed that the proportion of 24-nt 249 siRNA abundances were lower in the T0 and all T1 libraries compared with the wild-type one 250 (Figure 2). 251

252

253 The overall DNA methylation level is lowered in all three contexts, CG, CHG and CHH.

As a consequence of impairing the accumulation of 24-nt small RNAs, an overall decrease in 254 cytosine methylation was expected. To investigate this aspect, we profiled the whole genome DNA 255 methylation of the T0 regenerant and two T1 individuals of its progeny (T1-15 and T1-23). We then 256 examined the methylation differences between the RNAi lines and the WT on common sites that 257 were available for all samples and found that the RNAi lines were globally hypomethylated in CHH 258 context (Figure 3), the hallmark of RdDM, but also in CG and CHG (Figure S3, additional file 1). 259 Moreover, 10 subclasses of transposable elements were analyzed across all samples and in all 260 contexts and were found to be, on average, hypomethylated (Figure 4). 261

262

Some new insertions of known active TEs, but no generalized reactivation of transposition in osnrpd1 RNAi lines

We initially hypothesized that *OsNRPD1* was a target of choice to broadly relax epigenetic control 265 over TEs. We then try to systematically assess the transpositional activity in *osnrpd1* and compare it 266 to WT plants. To identify and follow the inheritance of transposition events, we have generated, 267 starting from the T1 plants described above, two more generations of single-seed descents. We thus 268 obtained T2 and T3 generations from T1-15 and T1-23 (Figure 5, top) and until T6 from T1-23. We 269 thus resequenced the genomes of nine individuals, including the T0 as indicated in Figure 5, using 270 the Illumina-based paired-end technology. As a control, we resequenced the genome of the wild-271 type progenitor of the RNAi lines. All reads were mapped against the reference genome of Oryza 272 sativa cv. Nipponbare. 273

We then used three different approaches, based on these alignments, to identify TEs mobilization. They are briefly described here, the details can be found in additional file 6. We first used a candidate approach : *Tos17* and *Lullaby* are retrotransposons that have been previously shown to be mobilized both in *in vitro*-cultured cells and *in planta* in mutants impaired in methylation. Based on a simple visual analysis of the alignments in a genome browser (figure S4, additional file 1), we identified 12 new insertions of *Tos17* and one new insertion of *Lullaby* in the T0 plant (Figure 5). Some of them were still present in each of the three T1 plants (Figure 5). All of them were confirmed by PCR (Figure S5, additional file 1) and sequencing. No new insertion was detected in
the T1 and further generations except one insertion of *Tos17* (Tos17-13 in Figure 5).

Secondly, these 14 insertions were used as a testing set to develop an algorithm to identify 283 insertions of other elements. As depicted in figure S6 (additional file 1), clipped and discordant 284 alignments detected after short reads mapping against the reference genome were used to identify 285 insertion sites and the TE at the origin of each insertion. The parameters of the program were 286 progressively fine-tuned until the whole set of Tos17 and Lullaby insertions described above were 287 identified and all false positives eliminated. In addition, many new insertions of a LINE element, 288 Karma, were detected in one T1 and all other lines starting from the T2 and accumulating in the 289 subsequent generations but not in the parental T0 plant (Figure 5). No new insertion from any other 290 TE was detected. Finally, we checked the uncovered neo-insertions by visual inspection of the 291 alignments with a genome browser (IGV) : we confirmed that all of them were present in the RNAi 292 lines and that none of them were present in the wild-type progenitor of *osnrpd1*. 293

294 Finally, it is well known that short reads mapping is not adapted to the identification of insertions that occur in repetitive regions because this identification rests upon accurate alignments of reads at 295 the insertion site, a prerequisite which is unreachable when the insertion occurs into repeats. To 296 circumvent this problem, we tried to detect TEs that multiply in the genome without identifying 297 their insertion site. We then developed another algorithm based on Depth of Coverage (DOC). 298 Briefly, in a first step, we normalized the read coverage for each analyzed genome by counting the 299 number of reads aligned on a set of 59 unique genes (Table S2, additional file 4) and normalizing to 300 the length of each gene (Table S3, additional file 4). In a second step, the reads aligned on each TE 301 locus were counted and normalized to their length and to the number of reads corresponding to 302 303 unique regions, giving an estimation of the copy number for each TE (Figure S7, additional file 1). This estimated copy number was obtained for the T0 and the three T1 plants and compared to that 304 of the WT. The method was first validated using the previously known copy number for *Tos17* and 305 *Lullaby.* We then applied the strategy to the whole set of 295 LTR-RTs from our curated database. 306 However, we could not detect a consistent increase in copy number for any of them (Table S4, 307 additional file 4). 308

Therefore, we could not observe any *in planta* generalized reactivation of transposition in *osnrpd1*, except one *Tos17* insertion and the continuous retrotransposition, starting from the T2 generation, of the LINE-type TE called *Karma*. All other neo-insertions (*ie* : detected in *osnrpd1* but not in the WT progenitor) were already present in the T0 regenerant from callus after transformation.

313

314 DISCUSSION

In this paper, we have described the effects of a knock-down of *OsNRPD1* gene in rice. The RNAi 315 construct was effective because we could observe the targeting of the OsNRPD1 gene with 21-nt 316 siRNAs (Figure S2, additional file 1) and the reduction of the accumulation of OsNRPD1 317 transcripts (Figure 1). We then observed a reduction of the accumulation of 24-nt siRNAs (Figure 318 2), an overall slight reduction of cytosine methylation in all contexts, CG, CHG and CHH (Figure 3, 319 4, S3) and transposition of three retrotransposons, Tos17, Lullaby and Karma. However, the 320 question arises whether we can attribute these effects to the knock-down of OsNRPD1 because the 321 construction of this RNAi line included an *in vitro* culture of cells which could explain at least part 322 of them. It has indeed been shown that rice plants that were regenerated after prolonged tissue 323

culture displayed both losses of methylation (36) and new insertions of Tos17, Lullaby and Karma

325 (16–18). Some observations may nevertheless indicate that the knock-down of *OsNRPD1* could

- enhance these effects. 326 Firstly, we detected 12 new insertions of *Tos17* in the *osnrpd1* regenerant (T0 generation), when the 327 average was 3,37 per line, and no more than 8, in a collection of 384 rice T-DNA mutants which had 328 been obtained at the same facility, with the same protocol of transformation and callus culture (37). 329 In a WT background, where it was established that *Tos17* copy number correlated with the duration 330 of tissue culture, several months were necessary to reach such a level of transposition (16,38) when 331 the transformation and regeneration process to obtain the osnrpd1 regenerant only took 7 weeks. A 332 similar observation can be made for Karma : we have detected as many as 5 new insertions in a 333 single T3 plant (T3-23 in Figure 5) and 20 new other in three further generations (T6-23 in Figure 334 5) when the original publication reported an average number of new insertions per plant lesser than 335 one (18). It should be noted here that transposition events in the papers cited above were evaluated 336 337 by hybridization after Southern blotting and not genome sequencing as reported here. We however showed in a previous work that both methodologies identified the same number of Tos17 insertions 338 (39). Therefore, this higher rate of transposition may be a sign of the effect of OsNRPD1 knock-339
- 340 down.

Secondly, we detected a *Tos17* insertion in a T1 plant when it was absent from the analyzed tissues (first leaves of a plantlet) of the parental T0 plant (Tos17-13 in Figures 5 and S5). Such an *in planta* transposition of *Tos17* has never been described in a WT background (16,38) but only in mutants impaired in methylation of DNA (23) or histones (21). Similarly, this event may be interpreted as a transposition that occurred *in planta* in the T0 genome as a consequence of the *OsNRPD1* knockdown, at a late developmental stage, that have been transmitted to some individuals of the progeny.

I we assume that, based on these observations, part of the losses in methylation and transpositions 347 events is the consequence of the knock-down of OsNRPD1, the effect of the latter is weak. An 348 illustrative aspect is that we were not able to detect any other transposition events than those 349 described above. This is in contrast to what has been reported for oscmt3, impaired in CHG 350 methylation, where other TEs were found to be mobilized in addition to Tos17 and Lullaby (23). If 351 we can not rule out the possibility that transposition events have occurred that were not detected, it 352 seems that *OsNRPD1* knock-down had a limited impact on transposition. This may be explained by 353 354 a limited importance of OsNRPD1 activity in that matter because this selective impact on transposition is reminiscent of what has been observed in NRPD1 mutants of Arabidopsis thaliana 355 (35,40–42). Similarly, the osdcl3a mutation, that reduced the expression of OsDCL3 which encodes 356 the rice DICER-LIKE 3 primarily responsible for 24-nt siRNA processing in canonical RdDM, 357 reduced 24-nt siRNA predominantly from MITEs (26). Although this study did not focus on 358 transposition, this observation also underlined the selective release of the epigenetic control over 359 TEs caused by the impairment of individual components of the RdDM machinery (43,44). 360

Alternatively and more probably, these limited effects are the result of the limited impact of the knock-down itself, raising the possibility, as discussed below, that a null mutant of *OsNRPD1* would be sterile. We indeed gathered several other indications that we only obtained weakly affected *osnrpd1* lines. The most obvious one is that we did not observe any clear developmental phenotype. Pol IV mutants in other species than Arabidopsis, whether mono- or dicotyledonous, display severe phenotypes. In maize, the *ZmRPD1* mutant called *rmr6* is pleiotropically affected in development (45,46). Tilling mutants *braA.nrpd1* of *Brassica rapa* notably displayed asynchronous seed abortion (47). Tomato *slnrpd1* null mutants have also been reported to be sterile (48). Moreover, in contrast to *osnrpd1*, pleiotropic developmental abnormalities have been observed in mutants in other components of the RdDM pathway in rice, like *osdrm2* (24) and *osdcl3a* (26). A strong *osnrpd1* mutant would therefore expected to be affected the same way. In addition, an important reduction of genome-wide methylation was associated with those developmental defects. For instance, a 13.9% decrease in 5-methylcytosine in both CG and non CG contexts was reported for *osdrm2* (24) when *osnrpd1* displayed less than 5% reduction in all contexts (Figure 3, S3).

The fact that we likely obtained an RNAi line only sligthly affected in *OsNRPD1* activity indicates, 375 as previously suggested by others (29), that a null mutant would be sterile in rice. It is indeed 376 surprising that a mutant of this central component of the RdDM machinery has never been 377 described in such an important plant, as both a model species and a crop. Data are nevertheless 378 available for other actors of RdDM. The osdrm2 null mutant, obtained by homologous 379 recombination, is sterile (24). The two described osdcl3a lines are knock-down RNAi lines, but 380 381 they affect phenotypes with a severity correlated with the knockdown level of OsDCL3a (26), questioning the possibility to obtain null mutants. Finally, we decided to target OsNRPD1 by RNAi 382 because we previously failed to find a viable insertional mutant in the available collections 383 (unpublished data). We actually first focus ourselves on a T-DNA insertional mutation into the 384 OsNRDP1a gene identified in the Oryza Tag Line library (http://oryzatagline.cirad.fr/, line 385 AFVB01) based on the existence of a Flanking Sequence Tag (SAG8G10) corresponding to 386 OsNRPD1a. However, we could not confirm the presence of any T-DNA at this position in the T2 387 plants that we could grow. Based on the recent demonstrations, as described above, that NRPD1 388 null mutants in tomato and *Brassica* are sterile, it is therefore possible that this insertion gave rise to 389 a sterile phenotype at the homozygous state in rice and that the seeds collected had segregated away 390 this T-DNA. This hypothesis rests upon the speculation that *OsNRPD1b* could not complement the 391 mutation. However, it would explain why no *nrdp1* knock-out mutant is available for rice, and that 392 only weak mutants, like *osnrpd1* we presented in this paper, may survive. 393

395 CONCLUSION

We have constructed an knock-down RNAi line of *OsNRPD1*, encoding the largest subunit of POLYMERASE IV, a central component of RdDM in rice. This line displayed reduced 24-nt siRNAs and DNA methylation compared to wild-type. We also detected new insertions of three retrotransposons. However, we could not clearly distinguish between the impact of *in vitro* culture and the knock-down of *OsNRPD1*, even if we have some indications of the effect of the latter. This may be explained by the fact that we only obtained a weakly affected line. We expose reasons that support the hypothesis of the sterility of a null mutant of *OsNRPD1*.

403

394

404 ACKNOWLEDGEMENTS

We thank Moloya Gohain and Pearl Chang for the preliminary analysis of rice methylome, Edouard
JOBET for the RT-qPCR analysis, Mayumi Nakano for assistance with data handling and Moaine
Elbaidouri for its critical reading of the manuscript.

408

409 FUNDING

410 Emilie DEBLADIS was supported by a grant from the french Ministry of Education. The funding

411 body had no role in the design of the study, analysis and interpretation of data nor in writing the

412 manuscript.

- 413 REFERENCES
 - 1. Feschotte C, Pritham EJ. DNA Transposons and the Evolution of Eukaryotic Genomes. Annu Rev Genet. 2007;41(1):331–68.
 - 2. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007 Dec;8(12):973.
 - 3. Schulman AH. Retrotransposon replication in plants. Curr Opin Virol. 2013 Dec 1;3(6):604–14.
 - 4. Lisch D. How important are transposons for plant evolution? Nat Rev Genet. 2013 Jan;14(1):49–61.
 - 5. Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505–30.
 - 6. Mita P, Boeke JD. How retrotransposons shape genome regulation. Curr Opin Genet Dev. 2016 Apr;37:90–100.
 - 7. Deng X, Song X, Wei L, Liu C, Cao X. Epigenetic regulation and epigenomic landscape in rice. Natl Sci Rev. 2016 Sep 1;3(3):309–27.
 - 8. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014 Jun;15(6):394–408.
 - 9. Cuerda-Gil D, Slotkin RK. Non-canonical RNA-directed DNA methylation. Nat Plants. 2016 Nov 3;2:16163.
 - 10. Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, et al. Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation. Curr Biol. 2003 Dec 16;13(24):2212–7.
 - 11. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010 Mar;11(3):204.
 - 12. Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. Curr Opin Plant Biol. 2015 Oct 1;27(Supplement C):67–76.
 - 13. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005 Aug;436(7052):793.

- 14. Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, et al. Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci. 2006 Nov 21;103(47):17620–5.
- 15. Petit J, Bourgeois E, Stenger W, Bès M, Droc G, Meynard D, et al. Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa) and the AA genome of the Oryza genus. Mol Genet Genomics. 2009 Dec 1;282(6):633–52.
- 16. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci. 1996 Jul 23;93(15):7783–8.
- 17. Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, et al. Identification of an active LTR retrotransposon in rice. Plant J. 2009 Jun;58(5):754–65.
- Komatsu M, Shimamoto K, Kyozuka J. Two-Step Regulation and Continuous Retrotransposition of the Rice LINE-Type Retrotransposon Karma. Plant Cell Online. 2003 Aug 1;15(8):1934–44.
- 19. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, et al. An active DNA transposon family in rice. Nature. 2003 Jan;421(6919):163.
- 20. Kikuchi K, Terauchi K, Wada M, Hirano H-Y. The plant MITE mPing is mobilized in anther culture. Nature. 2003 Jan;421(6919):167.
- 21. Ding Y, Wang X, Su L, Zhai J, Cao S, Zhang D, et al. SDG714, a Histone H3K9 Methyltransferase, Is Involved in Tos17 DNA Methylation and Transposition in Rice. Plant Cell. 2007 Jan 1;19(1):9–22.
- 22. La H, Ding B, Mishra GP, Zhou B, Yang H, Bellizzi M del R, et al. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proc Natl Acad Sci. 2011 Sep 13;108(37):15498–503.
- 23. Cheng C, Tarutani Y, Miyao A, Ito T, Yamazaki M, Sakai H, et al. Loss of function mutations in the rice chromomethylase OsCMT3a cause a burst of transposition. Plant J. 2015 Sep 1;83(6):1069–81.
- 24. Moritoh S, Eun C-H, Ono A, Asao H, Okano Y, Yamaguchi K, et al. Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J. 2012 Jul 1;71(1):85–98.
- 25. Hu L, Li N, Xu C, Zhong S, Lin X, Yang J, et al. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc Natl Acad Sci. 2014 Jul 22;111(29):10642–7.
- 26. Wei L, Gu L, Song X, Cui X, Lu Z, Zhou M, et al. Dicer-like 3 produces transposable elementassociated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci. 2014 Nov 3;111(10):3877–82.

- 27. Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. Curr Opin Plant Biol. 2015 Oct 1;27:154–64.
- 28. Huang Y, Kendall T, Forsythe ES, Dorantes-Acosta A, Li S, Caballero-Pérez J, et al. Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Mol Biol Evol. 2015 Jul 1;32(7):1788–99.
- 29. Arikit S, Zhai J, Meyers BC. Biogenesis and function of rice small RNAs from non-coding RNA precursors. Curr Opin Plant Biol. 2013 May 1;16(2):170–9.
- 30. Sallaud C, Meynard D, Boxtel J van, Gay C, Bès M, Brizard JP, et al. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet. 2003 May 1;106(8):1396–408.
- Debladis E, Llauro C, Carpentier M-C, Mirouze M, Panaud O. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. BMC Genomics. 2017 Jul 17;18(1):537.
- 32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Apr;9(4):357–9.
- 33. Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc. 2015 Mar;10(3):475–83.
- 34. Guo W, Fiziev P, Yan W, Cokus S, Sun X, Zhang MQ, et al. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics. 2013 Dec;14(1):774.
- 35. Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi M-A, et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 2005 Jan 9;19(17):2030–40.
- 36. Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. Baulcombe D, editor. eLife. 2013 Mar 19;2:e00354.
- 37. Piffanelli P, Droc G, Mieulet D, Lanau N, Bès M, Bourgeois E, et al. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol. 2007 Nov 1;65(5):587–601.
- 38. Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol. 2001 Apr 1;4(2):118–22.
- 39. Sabot F, Picault N, El-Baidouri M, Llauro C, Chaparro C, Piegu B, et al. Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput resequencing data. Plant J. 2011 Apr 1;66(2):241–6.

- 40. Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS. Plant Nuclear RNA Polymerase IV Mediates siRNA and DNA Methylation-Dependent Heterochromatin Formation. Cell. 2005 Mar 11;120(5):613–22.
- 41. Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet. 2005 Jul;37(7):761.
- 42. Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. RNA Polymerase IV Directs Silencing of Endogenous DNA. Science. 2005 Apr 1;308(5718):118–20.
- 43. Lippman Z, May B, Yordan C, Singer T, Martienssen R. Distinct Mechanisms Determine Transposon Inheritance and Methylation via Small Interfering RNA and Histone Modification. PLOS Biol. 2003 Dec 22;1(3):e67.
- 44. Rigal M, Mathieu O. A "mille-feuille" of silencing: Epigenetic control of transposable elements. Biochim Biophys Acta BBA Gene Regul Mech. 2011 Aug 1;1809(8):452–8.
- 45. Erhard KF, Stonaker JL, Parkinson SE, Lim JP, Hale CJ, Hollick JB. RNA Polymerase IV Functions in Paramutation in Zea mays. Science. 2009 Feb 27;323(5918):1201–5.
- 46. Parkinson SE, Gross SM, Hollick JB. Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Dev Biol. 2007 Aug 15;308(2):462–73.
- 47. Grover JW, Kendall T, Baten A, Burgess D, Freeling M, King GJ, et al. Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa. Plant J. 2018 May 1;94(4):575–82.
- 48. Gouil Q, Baulcombe DC. DNA Methylation Signatures of the Plant Chromomethyltransferases. PLoS Genet. 2016 Dec 20;12(12).
- 414 415

416 LEGENDS TO FIGURES

417

418 **Figure 1 : Transcript accumulation of** *OsNRPD1* **genes is lower in the** *osnrpd1* **mutants.**

A. Top, semi-quantitative RT-PCR analysis of *OsNRPD1a* transcripts accumulation in four T0 regenerants (6.2, 8.1, 20.1 and 23.1) and the wild-type progenitor (WT). Bottom, same analysis in 8 T1 individuals of the T0-23.1 progeny after selfing. The dashed frames indicate the plants that displayed a strong reduction in transcripts accumulation and that have been selected and further described in this study.

- 424 B. RT-qPCR analysis of *OsNRPD1a* transcripts accumulation level relative to *ACTIN* ($\Delta\Delta$ Ct
- 425 method) in three selected T1 plants (T1-15, T1-17 and T1-23) compared to WT, three biological
- 426 replicates each, confirming the results above.

- 427 C. OsNRPD1 transcripts accumulation in T1-15 after RNA-Seq analysis showing, based on three
- biological replicates, that both genes are affected. Bars represent the standard deviation.
- 429

430 **Figure 2 : Accumulation of 24-nt small RNAs is lowered in the** *osnrpd1* **mutants.**

Small RNA size profiles in wild-type (WT) and *osnrpd1* mutants (T0 and three T1 plants), normalized to the percentage of 21-nt siRNAs abundance in the wild-type library. For each size class, siRNA abundance was calculated as a percentage to the sum of abundances of total genomematched reads.

435

436 Figure 3 : The whole genome level of CHH methylation is lower in the *osnrpd1* mutants.

437 Genome wide view of delta methylation in CHH context, showing that the T0 regenerant and both

- T1 progenies (T1-15 and T1-23) of the *osnrpd1* mutant have lower methylation than the wild-type (WT). Methylation in CHG and CG contexts is also affected as shown in figure S3, additional file 1.
- 440

441 Figure 4 : Methylation in 10 subclasses of transposons is lower in all contexts

To compare the methylation level distribution of differentially methylated transposable elements between each sample (T0, T1-15 and T1-23) and WT, we calculated the methylation differences of each DMTE between each sample and WT for ten known classes of transposable elements and generated boxplots. The analysis has been done for cytosins in CG, CHG and CHH context, respectively, from top to bottom. For each class, the columns 1, 2 and 3 refer to the T0 *vs* WT comparison, the T1-15 *vs* WT comparison and the T1-23 *vs* WT comparison, respectively. The horizontal line indicates the level 0 of delta methylation (no change) all across each boxplot.

449

450 **Figure 5 : List of all TEs insertions identified in** *osnrpd1* **mutants**

The pedigree of all plants tested is indicated at the top. The three columns at the left of the table indicate the chromosome, the coordinates and the name of the new insertion. The coordinates are the start and end positions of the sequence that has been duplicated upon insertion as detected by our program. The true position of the insertion is one of them, depending of the orientation of the TE. For *Tos17* and *Lullaby* insertions, the positions highlighted in bold have been determined by sequencing. A circle (green fo *Tos17*, red for *Lullaby*, blue for *Karma*) indicate the presence of the insertion in each plant.

Figure 1

Figure 2

Figure 3

Figure 4

							Т0				
			T1-17			T1-15		T1-23	_		
				_	T2-15				T2-23		
				T3-15						T3-23	
											T6-23
chr01	2729570- 2729576	Tos17-1		Q	O	o	O				
chr01	5815622-5815647	Tos17-13						O	Q	0	O
chr01	7120092 -7120098	Tos17-8					0				
chr01	40103765 -40103770	Tos17-9					0				
chr02	32884813 -32884818	Tos17-2		0	0	0	0				
chr03	5572694- 5572701	Tos17-3	0	0	0	0	0				
chr03	7989559 -7989564	Tos17-4		0	0	0	0	0	0	0	0
chr03	34643048- 34643054	Tos17-5			0	0	0	0	0		
chr07	856880- 856885	Tos17-10					0	0	0		
chr09	19674702- 19674711	Tos17-11	Ò				0	0	0	ò	Ò
chr09	21062779 -21062784	Tos17-6		0	Ó	Ó	0				
chr11	474941-474947	Tos17-12			ł		0				
chr11	25235933 -25235938	Tos17-7			Ó	Ó	0				
chr04	30363351-30363356	Lullahy-1	0	0	0	0	0	0	0	0	0
chr01	30070752-30070767	karma_1	Ŭ	Ĭ	Ĭ	Ŭ	Ŭ	Ŭ	Ŭ	Ĭ	Õ
chr01	25702512 25702526	karma 2									0
chi01	30702012-30702020 40100765 40100706	Kalilla-2									0
chr02	40192705-40192700	karma 4									0
chir02	25854044-25854000	Kanna-4									
chir03	3075005-3075010	Karma-5			0						
CHIU3	27312034-27312040	karma-6		0							
Chr03	2/5/5346-2/5/5359	karma-7									
chr03	28682063-28682086	karma-8									0
chr04	26182098-26182113	karma-9									0
chr04	29497865-29497879	karma-10									0
chr04	31184344-31184357	karma-11								0	0
chr05	2063432-2063444	karma-12									0
chr05	22568660-22568675	karma-13									0
chr05	26336453-26336466	karma-14									0
chr06	4641102-4641116	karma-15									0
chr06	28589555-28589560	karma-16									0
chr07	22547863-22547878	karma-17									0
chr07	28469296-28469312	karma-18									0
chr08	735615-735628	karma-19									0
chr08	20223745-20223758	karma-20								0	
chr08	27759923-27759936	karma-21								0	Ó
chr10	5286276-5286288	karma-22									0
chr10	19090767-19090783	karma-23									0
chr10	21680977-21680989	karma-24									0
chr11	25166110-25166123	karma-25									0
chr11	25227140-25227154	karma-26									0
chr11	25590955-25590968	karma-27								Ö	-
			-								