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Abstract
Spatial and temporal monitoring of species threatened with extinction is of critical im-
portance for conservation and ecosystem management. In the Mediterranean coast, 
the fan mussel (Pinna nobilis) is listed as critically endangered after suffering from a 
mass mortality event since 2016, leading to 100% mortality in most marine popula-
tions. Conventional monitoring for this macroinvertebrate is done using scuba, which 
is challenging in dense meadows or with low visibility. Here we developed an environ-
mental DNA assay targeting the fan mussel and assessed the influence of several en-
vironmental parameters on the species detectability in situ. We developed and tested 
an eDNA molecular marker and collected 48 water samples in two sites at the Thau 
lagoon (France) with distinct fan mussel density, depths and during two seasons (sum-
mer and autumn). Our marker can amplify fan mussel DNA but lacks specificity since it 
also amplifies a conspecific species (Pinna rudis). We successfully amplified fan mussel 
DNA from in situ samples with 46 positive samples (out of 48) using ddPCR, although 
the DNA concentrations measured were low over almost all samples. Deeper sam-
pling depth slightly increased DNA concentrations, but no seasonal effect was found. 
We highlight a putative spawning event on a single summer day with much higher 
DNA concentration compared to all other samples. We present an eDNA molecular 
assay able to detect the endangered fan mussel and provide guidelines to optimize 
the sampling protocol to maximize detectability. Effective and non-invasive monitor-
ing tools for endangered species are promising to monitor remaining populations and 
have the potential of ecological restoration or habitat recolonization following a mass 
mortality event.
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1  |  INTRODUC TION

Monitoring biodiversity is critical to assess the effects of rising 
anthropogenic stressors on natural ecosystems, as well as evalu-
ating and implementing policy and management initiatives (Díaz 
et  al., 2019). Spatial and temporal monitoring of species threat-
ened with extinction is especially important to quickly detect 
declining populations and to set appropriate conservation mea-
sures (Robinson et al., 2018). Since many threatened species have 
national or international protected statutes, reliable monitoring, 
and detection are crucial for various purposes, such as species 
distribution modeling, landscape planning and the creation of po-
tentially impacting infrastructures in their habitats to adopt mea-
sures to avoid or minimize their destruction (Loiseau et al., 2020; 
Woinarski et al., 2017). Efficient monitoring methods are needed 
for environmental managers and stakeholders to accurately detect 
protected or species of interest, while also minimizing sampling 
effort, economic costs, mortality, and disturbance to threatened 
species (Scheele et al., 2019).

On the Mediterranean coast, the fan mussel (Pinna nobilis) is crit-
ically endangered and under a protected species list both nation-
ally and internationally (Annex IV of European Community, 1992; 
Annex II Barcelona convention 1976; Annex IV French habitat di-
rective). It is endemic to the shallow waters of the Mediterranean 
region from Spain to Turkey, exploited in antiquity by the Romans 
for its shell and byssus. The fan mussel is the second largest in-
vertebrate in the world with up to 1 m in height. Its reproduction 
season ranges from June to August, during which gametes are emit-
ted by the successive hermaphrodite adults to be dispersed via sea 
currents (Degaulejac, 1995). In 2019, the fan mussel was listed as 
critically endangered (CR) in the IUCN red list (Kresting et al. 2019), 
following a mass mortality event. Over the entire basin, a disease 
outbreak caused by the protozoan parasite Haplosporidium pinnae 
that emerged in Spain in 2016 devastated fan mussel populations 
(Cabanellas-Reboredo et al., 2019; Vázquez-Luis et al., 2017). Since 
then, the disease has spread, and marine populations of P. nobilis 
have been decimated in France and Italy, where most sites showed 
almost 100% mortality (Cabanellas-Reboredo et  al.,  2019; García-
March et al., 2020). A 800 km coastline survey in Italy in 2022 found 
no live individual remaining (Pensa et  al.,  2022). The last known 
environment harboring healthy fan mussels are brackish lagoons 
surrounding the Mediterranean shore (Nebot-Colomer et al., 2022; 
Peyran et al., 2022).

Given the important threats to the fan mussel, it is critical to use 
accurate methods to detect and monitor its remnant populations 
while limiting disturbances. Such methods should be able to detect 
rare or elusive species that are difficult to detect using traditional 
methods (Mathon et  al.,  2022). Indeed, most biomonitoring for 
large benthic invertebrates including the fan mussel is done using 
scuba, so detectability is impaired when the water visibility is lim-
ited due to weather conditions or in murky waters such as estuaries, 
brackish waters, or harbors (Centoducati et al., 2007; Katsanevakis 
et  al.,  2021). Low abundance of the species further challenges its 

detection. The fan mussel is often associated with Posidonia oceanica 
seagrass meadows and buried up to 1/3 of its height in the sedi-
ment, which further challenge the visual detection of the smallest 
individuals, or even adults when meadows are dense (Richardson 
et al., 1999). Its status as a protected species by the European hab-
itat directive (Council Directive 92/43/EEC of 21 May 1992) pro-
hibits developers from destroying it. Environmental DNA (eDNA) 
analyses are now commonly used for both full community screening 
and species-specific detection assays (Deiner et al., 2017) and used 
as a complementary or alternative method to more traditional de-
structive and/or visual-based detection methods (Cole et al., 2021; 
Deiner et  al.,  2017; Polanco Fernández et  al., 2020). eDNA relies 
on discarded tissue material in the environment from organisms, 
where DNA can then be extracted and PCR amplified. Species-
specific assays require the development of specific markers (Klymus 
et  al.,  2020), and are generally amplified using quantitative PCR 
(qPCR) or digital droplet PCR (ddPCR), either with or without probes 
to increase specificity (Brys et al., 2021). Some studies suggest that 
ddPCR is more sensitive than qPCR to detect rare species with low 
abundances in the environment (Dimond et  al., 2022; Mauvisseau 
et al., 2019, but see Johnsen et al., 2020). Additional advantages of 
ddPCR include a better tolerance to PCR inhibitors present in plants, 
soil, water, and food (Morisset et al., 2013; Rački et al., 2014) and the 
access to DNA absolute quantification without relying on a standard 
curve (Hunter et al., 2018).

Many eDNA species-specific assays have been developed for 
aquatic species from fish to invertebrates such as mussels or cray-
fish (Hernandez et  al., 2020; Uthicke et  al.,  2018), but -up to our 
knowledge- no eDNA-based assay exists to specifically target the 
fan mussel. Generally, despite their importance in aquatic systems, 
invertebrates tend to be underrepresented in eDNA studies (Belle 
et  al.,  2019). While eDNA methods are now increasingly used to 
monitor some freshwater mussel species (Prié et al., 2023; Stoeckle 
et al., 2021), there is still a lack of applicable approaches for marine 
mussels like the fan mussel. Invertebrates are known to shed less 
DNA compared to organisms such as fish, making their detection 
more challenging using DNA-based methods (Andruszkiewicz Allan 
et al., 2021). Mauvisseau et al. (2019) failed to detect an endangered 
freshwater mussel using qPCRs, and detected low DNA concentra-
tion using ddPCRs. Some parameters are known to influence eDNA 
detection and quantification, such as the distance to the organisms 
(Murakami et  al.,  2019), water temperature (Lacoursière-Roussel 
et al., 2016), water chemistry or turbidity (Stoeckle et al., 2017), or 
spawning events (Bracken et al., 2019; Bylemans et al., 2017), but 
quantifying the exact effect of each parameter on species detect-
ability remains challenging. From an applied perspective, environ-
mental managers require clear guidelines to design appropriate 
biomonitoring programs that maximize species detectability using 
DNA-based methods.

This study aims at (i) developing and testing an eDNA assay to 
detect the fan mussel, (ii) providing a proof of concept on whether 
the fan mussel can be detected from environmental samples, 
and (iii) determining the influence of several environmental and 
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sampling parameters on detectability and DNA concentration of 
the fan mussel in  situ. To address these objectives, we designed 
and tested a mitochondrial marker targeting the fan mussel using in 
silico and in vitro testing. Then, we applied the ddPCR method from 
in situ samples in a Mediterranean lagoon with different densities 
of fan mussels previously estimated with visual-based methods. 
We investigate the effects of density, sampling depth, and season 
on fan mussel eDNA detectability. We hypothesize an effect of 
abundance, depth, and season, with higher detectability in deeper 
samples as the fan mussel is a sessile benthic invertebrate, and in 
summer during the reproduction and higher metabolism activity 
season.

2  |  METHODS

2.1  |  Assay development

Reference sequences on the mitochondrial genome were down-
loaded for P. nobilis and co-occurring related species of the same 
family (Pinna rudis and Atrina fragilis) from EMBL (Kanz et al., 2005), 
and aligned using Geneious Prime 2020 (https://​www.​genei​ous.​
com/​). Primer selection was done by maximizing specificity on the 
binding sites for the target species while maximizing the number 
of mismatches of ligation sites of closely related species. Primers 
were designed manually with the assistance of the primer3 algo-
rithm on Geneious and amplified a sequence insert of ~202 bp on 
the mitochondrial COI gene for P. nobilis (Table S1), the full ampli-
fied sequence being ~243 pb. The selected primer pair (PN_COI_
M15; forward-TCAGC​TTT​TGT​AGA​GGGCGG; reverse-  AGAGA​
CTA​CCA​ACA​GCA​CAGC) was also tested on the entire NCBI 
database using in silico PCR with the ecoPCR software (Boyer 
et al., 2016) allowing up to three mismatches on each primer (so 
six in total), to verify the absence of unrelated species cross-
amplification. Additionally, a probe (PN_COIM15-Probe; FAM-5′ 
TGGAT​TTG​TTC​CCT​TGG​GCTGTTC 3′-  BHQ1) was designed to 
enhance specificity using the Primer3Plus software (Untergasser 
et al., 2012)

We tested this marker on Pinna nobilis tissues (nine individuals 
from several French coastal localities) and both A. fragilis and P. rudis 
(five and three individuals, respectively) (Table S2) all preserved in 
96% ethanol. Amplification tests were done both with the primers 
only, and with the combination of the primer and the probe. DNA 
was extracted using the Blood and Tissues Qiagen kit following man-
ufacturer's instructions. Reactions were performed with 0.5, 1, or 
2 μL of template DNA extract, 5-μL ReadyMix (at 2×; REDExtract-
N-Amp PCR readyMix, Sigma-Aldrich), and 2-μL of each primer (at 
2 pM). Thermocycling parameters were: 95°C for 30 s, 40 cycles 
of 95°C for 30 s. 60°C for 30 s. 72°C for 1 min, and a final elonga-
tion step of 72°C for 5 min. Purification and Sanger sequencing of 
PCR products were carried out by Eurofins Genomics (Ebersberg. 
Germany). Electropherograms were checked using Geneious Prime 
2020 (https://​www.​genei​ous.​com).

2.2  |  Sampling for eDNA

DNA sampling aimed to first collect live fan mussel from an aquar-
ium and then sample water in real field condition in a Mediterranean 
lagoon with known populations of fan mussel.

We took two 10 L-samples of water from an aquarium contain-
ing live fan mussels with a density of four mussels in 60 L at the 
Biodiversarium aquarium in Banyuls-sur-Mer (France, year 2020) 
to first test our assay on a controlled environment. Water sam-
pling was performed using an Athena peristaltic pump (Proactive 
Environmental Products, Bradenton, Florida) with a 1.0 L/min flow. 
Water was filtered through a VigiDNA 0.20 μm cross-flow filtration 
capsule (SPYGEN, le Bourget du Lac, France) and immediately after 
filtration, each filter unit was filled with CL1 Conservation buffer 
(SPYGEN) and stored at room temperature (20–25°C) until DNA 
extraction.

In a second step, we sampled water in the field with known 
presence and densities of fan mussels in the Thau lagoon (Sète, 
France) (Foulquie et  al., 2020), one of the last known locations to 
harbor healthy mussel populations in France. Sampling sites were 
chosen from the study of Foulquie et al. (2020) which assessed fan 
mussel densities in several sites around the lagoon 3 months prior 
to our sampling. We selected sites with at least 3 m of depth and 
varying densities: the Barrou (~9 ind/100 m2) and the Sete Canal (~4 
ind/100 m2) (Figure  1). Maximum depth of those sites was ~2.5 m. 
We filtered water from a boat using the same pump and settings as 
for the aquaria samples but made linear transects of ~300 m over the 
site area, for a total of 30 L per sample. Transects were made at low 
speed (5 knots) and by going back and forth to remain in the area, 
with one pump on each side of the boat and using disposable tub-
ing and gloves. Surface samples were done at ~0.5 m of the surface 
with short tubes, and deeper samples were done to target the ben-
thos using 3 m-long weighted tubes. We chose to sample seasonally 
during Summer and Autumn to encompass various environmental 
conditions and test a potential effect of the reproduction period, 
known to occur during the summer months. We collected a total of 
48 samples, with 24 samples over 2 days in summer in July (July 27, 
2020 and July 30, 2020), and 24 samples over 2 days in autumn in 
October (October 20, 2020 and October 21, 2020). Each day, 12 
samples were collected spanning both sites and two sampling depths 
(bottom and surface), so that three replicates were obtained for each 
site-depth combination.

2.3  |  eDNA extraction and amplification by 
qPCR and ddPCR

2.3.1  |  DNA extraction

DNA extraction was performed at SPYGEN (Le Bourget du Lac, 
France) following the protocol described in Polanco Fernández 
et al.  (2020), in a dedicated laboratory for eDNA extraction with 
UV treatment and positive air pressure. Briefly, each capsule 
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was agitated for 15 min on an S50 shaker (cat Ingenieurbüro™) 
at 800 rpm. The buffer was then emptied into two 50-mL tubes 
before being centrifuged for 15 min at 15,000 g. The supernatant 
was removed with a sterile pipette, leaving 15 mL of liquid at the 
bottom of each tube. Then, 33 mL of ethanol and 1.5 mL of 3 M 
sodium acetate were added to each 50-mL tube and stored for at 
least one night at −20°C. The tubes were centrifuged at 15,000 g 
for 15 min at 6°C, and the supernatants were discarded. After 
this step, 720 μL of ATL buffer from Qiagen Blood and Tissue Kit 
(Qiagen GmbH) was added to each tube. Each tube was then vor-
texed, and the supernatant was transferred to a 2-mL tube con-
taining 20 μL of Proteinase K. The tubes were finally incubated at 
56°C for 2 h. Subsequently, DNA extraction was performed using 
NucleoSpin® Soil (MACHEREY-NAGEL GmbH & Co.) starting from 
step 6 and following the manufacturer's instructions, and two 
DNA extractions were carried out per filtration capsule. The elu-
tion was performed by adding 100 μL of SE buffer twice. The two 
DNA samples were pooled before the amplification step. After the 
DNA extraction, the samples were tested for inhibition by qPCR 
(Biggs et al., 2015). If the sample was considered inhibited, it was 
diluted fivefold before amplification.

2.3.2  |  Amplification with ddPCR

ddPCRs were run with a Bio-Rad QX200 Droplet Digital PCR sys-
tem™ (Bio-Rad, Temse, Belgium). Each 22 μL ddPCR reaction mix 
contained 1× Bio-Rad ddPCR supermix for probes (no dUTP), 
900 nM forward primer, 900 nM reverse primer, 250 nM probe, 
2,5 μL template, and 3,99 μL H2O. ddPCR reaction was placed in a 
QX200 Droplet Generator to generate approximately 20,000 drop-
lets in which independent PCR reactions occur. PCR was performed 
with the following thermal conditions: 95°C for 10 min followed by 
40 cycles of 95°C for 30 s and 58°C for 1 min; and 98°C for 10 min 
and 4°C for 30 min. Optimal annealing temperature (58°C) was de-
termined based on an initial thermal gradient experiment testing 

temperatures from 54 to 64°C. Droplets were then read on a QX200 
droplet reader (Bio-Rad). Each run included three PCR positive and 
three PCR negative controls and samples were tested in triplicate 
(N = 3). QuantaSoft software was used to count the PCR positive 
and PCR negative droplets and to provide absolute quantification 
of target DNA. The baseline threshold for separating positive and 
negative droplets was manually chosen per run, based on the distri-
bution of the negative droplets from the negative control wells. The 
quantification measurements of each target were expressed as the 
copies number per 1 μL of reaction.

2.4  |  Analysis

Amplification results from ddPCR were analyzed both consider-
ing the number of positive replicates among the three replicates 
per sample and quantitatively using the number of copies per μL. 
Repeatability by sample between the PCR replicates was assessed 
with the R package rptR (Stoffel et al., 2017). The average number 
of copies per μL measured with ddPCR were related to site, depth, 
and season using a general linear model (GLM). We used a Poisson 
distribution to model the average number of copies per μL among 
the three replicates for each sample. We added a dummy variable 
representing a putative reproduction event on a particular summer 
sampling day.

3  |  RESULTS

3.1  |  Barcode development

We tested the specificity of our designed primer pair (PN_COI_M15) 
using in silico PCR amplification on (i) our target species and (ii) 
closely related species occurring in the Mediterranean area. There 
were at least four mismatches on a single primer (forward or reverse) 
on closely related species, and no mismatches on our target species 

F I G U R E  1 Sampling strategy on the Thau lagoon with (a) the Barrou site and (b) the Canal de Sète site. Purple lines indicate the transects 
done with the boat, orange lines indicate the dive transects done in Foulquie et al., 2020, to infer fan mussel density locally.
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(Figure S1). In silico amplifications only take into account sequences 
long enough to contain the entire barcode, so we manually checked 
specificity on more sequences by also including shorter aligned 
sequences, so not containing the entire barcode or primer binding 
zones. We found that specificity remained unchanged for all but two 
sequences from Italy, where we found one mismatch close to the 5′ 
end of the reverse primer. In silico PCR on the entire EMBL database 
revealed that no other species were amplified with less than three 
mismatches on both forward and reverse primers (Figure S1). All nine 
P. nobilis tissues were amplified using our developed marker, while no 
tissus from Atrina fragilis were amplified (Table S2). However, all three 
individuals of Pinna rudis were amplified by our marker revealing the 
non-specificity of the marker. All PCR products were sequenced to 
validate species assignments, and Pinna rudis amplifications were 
confirmed despite four mismatches on primer binding sites. We fur-
ther tested the amplification of both P. nobilis and P. rudis using the 
ddPCR approach for which a probe (which theoretically increases 
specificity) has been designed (see above). All tissues (either diluted 
or not) from both P. nobilis and P. rudis were successfully amplified, 
confirming the poor specificity of the designed probes, despite the 
setting of the probe. Nonetheless, the fluorescence intensity was 
significantly lower for P. rudis (3154.37 ± 64.55, mean ± 95% CI) than 
for P. nobilis (4901.61 ± 270.38, mean ± 95% CI), demonstrating a 
higher specificity toward P. nobilis and a fluorescence threshold to 
infer the most likely species being amplified.

3.2  |  The ddPCR for aquarium samples

The aquaria samples containing only P. nobilis were accurately ampli-
fied by ddPCR with all three PCR replicates being positive with a 
mean of 301 copies/μL and with a mean fluorescence intensity of 
4755.5 (±270.38, 95% CI), that is, within the range of fluorescence 
found for P. nobilis tissues.

3.3  |  The ddPCR approach for lagoon 
eDNA samples

Out of the 48 samples, 46 had at least one positive replicate (out of 
three) using the ddPCR assay, with measured copy number ranging 
from 0.05 to 20 copies/μL. The mean fluorescence of positive drop-
lets was 5107.60 (±139.6, 95% CI), a range similar to that observed for 
positive controls (tissues and aquaria, see above) and largely higher 
than the range of fluorescence observed for tissues of P. rudis (see 
above). DNA quantification was highly consistent among the three 
replicates, with a repeatability of R = .88 (sd = 0.029, CI = [0.816, 
0.925]). Only one replicate was necessary for detection, except for 
the lowest values with less than 0.15 copies/μL for which at least 
two replicates were needed to identify a positive sample (Figure S2). 
All samples measured with more than 5 copies/μL were collected the 
same day in summer (July 30, 2020) at both sites (Figure 2). Samples 
collected 3 days before (July 27, 2020) did not yield as much DNA, 

with concentrations similar to autumn values for one site (Sete_
Canal, range 0–0.07 copies/μL) or slightly higher than autumn for 
the other site (Barrou, range 0.07–1.5 copies/μL) (Figure 2).

3.4  |  Parameters influencing eDNA concentration

Modeling the DNA concentrations measured by ddPCR with a GLM 
revealed a positive influence of sampling depth and a potential repro-
ductive event, but no effect of season or species abundance. When 
excluding the dummy variable representing the putative reproduc-
tion event in the GLM, sampling depth and season both influenced 
DNA concentration with season having the strongest effect (season: 
estimate: 3.78, z-value: 5.9, p < 10–9) (Table S3). Summer season and 
deeper samples (3 m) lead to higher DNA concentration than autumn 
season and shallower samples (0 m) (Figure S3). When adding the 
dummy variable for the putative reproduction event to make sure 
seasonal effect is not driven by a single day, the seasonal effect was 
no longer significant (estimate: 1.30, z-value: 1.7, p = .095) (Table 1), 
whereas depth still had a significant effect on eDNA concentration 
(Table 1, Figure 3). For both models, sampling sites represented by 
distinct densities of fan mussels did not affect detectability nor DNA 
concentration.

4  |  DISCUSSION

We successfully designed a molecular assay able to amplify the en-
dangered fan mussel (P. nobilis) that was validated both in controlled 
and field conditions. The present assay was not specific enough as 
it also amplified a closely related species, P. rudis, and would require 
to be completed by a sequencing step to distinguish the two spe-
cies. ddPCR was able to amplify DNA from environmental samples 
in almost all samples despite the low DNA concentration. Almost all 
samples had very low DNA concentration impairing the accurate de-
tection of the species in an environmental management context. Our 
models indicate that season and species density did not influence 
eDNA concentration while increased sampling depth close to the 
seafloor and a suspected reproductive event could have enhanced 
eDNA concentration (Figure 3).

Designing specific molecular assays for PCR amplification is 
challenging (Hernandez et  al.,  2020; So et  al.,  2020; Thalinger 
et al., 2020). In this study, the marker we developed is unfortunately 
not fully specific to our target species as it also amplifies a closely 
related species, P. rudis, which is not endangered. Pinna rudis status 
has not been evaluated by the IUCN red list, but is still part of the 
Bern convention under the Annex II: strictly protected fauna species 
(https://​eunis.​eea.​europa.​eu/​speci​es/​Pinna%​20rudis). Challenges to 
design specific markers are common due to the genetic proximity of 
co-occurring species, making the design of markers easier for non-
indigenous species outside their native range as there is generally no 
close species in the invaded range (Ardura et al., 2015). Identifying 
genetic regions with sufficient mismatches between P. nobilis and 
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P. rudis was challenging as they show low mitochondrial genetic dif-
ferentiation and also hybridize (Vázquez-Luis et al., 2021). While both 
species occur in the Mediterranean Sea, P. rudis is mostly restricted 
to the warmest areas of western Mediterranean (mostly in Spain) and 
remains rare in the East Mediterranean (Gvozdenović et al., 2019). 
The only known location of P. rudis in France is in Corsica Island 
(Gvozdenović et al., 2019; Vicente, 2021). Pinna rudis is not known 
to be present in the Thau lagoon, thus we can confidently conclude 
that detection signals were associated with P. nobilis. Moreover, the 
fluorescence intensity measured from ddPCR in environmental DNA 

signals matched those from aquaria and tissues found from the pen 
shell, further strengthening the claim that P. nobilis was the species 
detected in our environmental samples. The PN_COI_M15 marker 
can accurately be used to detect P. nobilis in areas where P. rudis is 
known to be absent, whereas when both species co-occur unspecific 
amplification could happen and may bias conclusions. To validate a 
specific detection, even in the absence of unspecific amplification, 
Thalinger et al. (2020) recommend to systematically sequence PCR 
products. Here, we would recommend a combination of fluorency 
measures from the ddPCR with PCR products sequencing when 

F I G U R E  2 Average number of DNA copies (of three ddPCR replicates) depending on site, season, and depth.
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(Intercept) −2.39168 0.64517 −3.707 <.001

Depth 0.15736 0.06443 2.442 .015

Reproduction (putative) 3.1247 0.47348 6.599 <.001

SiteCanal_Sete −0.26049 0.18962 −1.374 .17

SeasonSummer 1.30323 0.78103 1.669 .10

Note: Coefficient estimates, Z -tests values and related values are provided, including the dummy 
parameter of a putative reproduction even on the July 30, 2020 sampling day.

TA B L E  1 Outputs of the Poisson 
regression used to link the number of 
DNA copies measured by ddPCR with the 
different explanatory variables (depth, 
reproduction (putative), site, season).
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P. rudis is allegedly absent before validating the presence of P. nobilis 
in a given site. Beyond the proof of concept and for a management 
context, it would be necessary to design a new assay with sufficient 
specificity to the target species (or to the other species) to validate 
detections with a high probability. We designed two other candidate 
markers on the COI and 16S mitochondrial genes, but they were ex-
cluded as they showed a lighter PCR band on the electrophoresis gel 
in the initial screening tests, indicating a potential lower amplifica-
tion power of fan mussel tissues. They, however, proved to be spe-
cific to P. nobilis as they did not amplify any closely related species 
(see Table S2 for the primer sequences)and are thus plausible alter-
natives to investigate. To counter the challenges to design and test 
species-specific PCR primers for closely related species, CRISPR-
Cas approaches could be promising as there are multiple specific-
ity filtering steps with initial PCR or RPA amplification followed by 
the use of a Cas enzyme on a single ~30 pb gene section (Williams 
et al., 2019).

Identifying parameters influencing the detectability and concen-
tration of an eDNA signal is of critical importance when designing 
sampling or giving guidelines to environment managers (Goldberg 
et al., 2016). Among the important known parameters are the dis-
tance to the DNA source, temperature, biomass, and water stratifi-
cation (Allan et al., 2021; Harrison et al., 2019; Jo et al., 2019; Rourke 
et al., 2022). In river systems, DNA is known to be transported as a 
fine particulate organic matter (FPOM) and can travel up to several 
kilometers downstream, depending on river width and water flow 
(Carraro et al., 2018; Pont et al., 2018; Shogren et al., 2017). In ma-
rine systems where water flow is more complex, much less is known 
regarding the behavior of eDNA particles, but theoretical models 
and experiments suggest a fastest dilution around the DNA source, 

with only a few meters to tens meters of detectable signal before 
falling below the detection threshold (Allan et  al., 2021; Harrison 
et al., 2019; Murakami et al., 2019). This stresses the importance of 
sampling as close as possible to the DNA source in order to maximize 
DNA recovery. In a brackish lagoon, we showed a significant effect 
of sampling depth on DNA concentration even within a restricted 
range—that is, from the surface to the bottom at 3 m depth below 
the surface—with higher DNA concentration closer to the bottom. 
For sessile benthic organisms, DNA movement in the water column 
is likely to be restricted and sampling a few meters away from the 
source could impede DNA detection This should be especially true 
for invertebrates, as they are known to have lower shredding rates 
than fish (Andruzskiewicz Allan et al., 2021), which are also mobile 
organisms able to disperse their DNA signal as they move.

We detected very low DNA concentration with ddPCR across 
all our environmental and sampling parameters combination, except 
for a single sampling day in summer. Our findings are consistent with 
other studies using ddPCR to detect mollusk species (Mauvisseau 
et al., 2019), where alternative methods such as qPCR proved to be 
inefficient to detect the species (Isogenus nubecula) whereas ddPCR 
measured low DNA concentration (maximum 0.15 copies/μL).

The seasonal effect we obtained with higher DNA concentra-
tion in summer than in autumn seems to be driven by the excep-
tional concentration measured during a single summer day. When 
we control for this particular day by adding a dummy reproduction 
variable in the model, the seasonal effect is no longer significant. 
This highlights a weak or limited seasonal effect on detectability 
and DNA concentration (Figure 3). Other studies on macroinverte-
brates in freshwater systems highlighted higher DNA concentration 
in warmer months, which authors attributed to higher activity, DNA 

F I G U R E  3 Parameter effects from 
the Poisson regression linking the 
ddPCR DNA copy number with different 
explanatory variables, considering a 
putative reproduction event on the July 
30, 2020 sampling day.
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shedding rates as well as reproductive events (Curtis et  al.,  2020; 
Wacker et al., 2019). A potential explanation for the overall low DNA 
concentration we measured could be a low DNA shedding rate from 
this species, which is known to filter 6 L/day when oysters and mus-
sels can filter 40 and 100 L/day, respectively (Marin et al., 2019). As 
we detected an increased seasonal DNA concentration only on a 
particular day, we build on recent work to suggest how increased 
or peak eDNA concentration measured over time can suggest a 
reproductive event (Buxton et  al., 2017; Ip et  al.,  2022; Takeuchi 
et al., 2019; Tsuji & Shibata, 2021). While we do not have the data 
to go beyond a putative claim, no other ecological parameter can re-
alistically explain such a sharp increase in eDNA concentration over 
such a short time frame with similar environmental conditions.

Our results suggest the detection of a reproductive event during 
the summer, enhancing the level of DNA concentration significantly 
compared to the other summer day or autumn samples. Our inter-
pretation remains hypothesis as we did not sample for any larvae or 
gametes, alternatively an eDNA-focused analysis might prove useful 
to suggest a spawning event by measuring the nuclear versus mito-
chondrial DNA concentration ratio in samples. The relative quan-
tity of nuclear DNA would increase during reproductive events due 
to the important presence of gametes compared to samples from 
non-spawning events (Bylemans et al., 2017). In an environmental 
management context, it would be advisable to sample during repro-
ductive season to increase detectability, but if gamete emissions are 
restricted to a short time frame (e.g., mass spawning over a few days 
only), they may be missed. We would rather suggest using the prop-
erties of eDNA to monitor a species' DNA concentration over time 
to detect the exact timing of reproduction events for understudied 
species. For P. nobilis, this information is of crucial importance con-
sidering its almost disappearance in marine seas, so any recoloni-
zation event would likely stem from parasite-free brackish lagoons. 
Recent observations suggest recolonization might have started lo-
cally, with a small juvenile population of eight shells detected in Port-
Cros (coastal France) in August 2020 reported still alive in March 
2021 (Ruitton & Lefebvre, 2021). Knowing the exact reproduction 
timing could allow us to model larval dispersal and predict a poten-
tial recolonization pattern into marine seas or identify the potential 
origin of newly settled juveniles (Kersting et al., 2020).
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