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Abstract 

Environmental pollution is one of the main challenges faced by humanity. By their ubiquity and vast range of metabolic capabilities, 
micr oorganisms ar e affected by pollution with consequences on their host organisms and on the functioning of their environment. 
They also play key roles in the fate of pollutants through the de gr adation, tr ansformation, and tr ansfer of or ganic or inor ganic com- 
pounds. Thus, they are crucial for the development of nature-based solutions to reduce pollution and of bio-based solutions for en- 
vironmental risk assessment of chemicals. At the intersection between microbial ecolo gy, to xicolo gy, and bio geochemistr y, micr obial 
ecoto xicolo gy is a fast-expanding resear c h area aiming to decipher the interactions between pollutants and microorganisms. This 
perspecti v e paper gi v es an overview of the main resear c h c hallenges identified by the Ecotoxicomic netw ork within the emerging 
One Health fr amew ork and in the light of ongoing interest in biological approaches to environmental remediation and of the current 
state of the art in microbial ecology. We highlight pr ev ailing knowledge gaps and pitfalls in exploring complex interactions among 
microorganisms and their environment in the context of chemical pollution and pinpoint areas of resear c h where future efforts are 
needed. 

Ke yw ords: di v ersity; ecosystem functions; holobiont; micr oorganisms; natur e-based solutions; pollution 
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Introduction 

Ecotoxicology is defined as the "study of the toxic effects of chem- 
ical and physical agents on all living or ganisms, especiall y on pop- 
ulations and communities within defined ecosystems; it includes 
transfer pathways of these agents and their interactions with the 
envir onment", wher eas ecology is defined as the "br anc h of biol- 
ogy that studies the interactions between living organisms and all 
factors (including other organisms) in their envir onment. Suc h in- 
teractions encompass environmental factors that determine the 
distributions of living organisms" (Nordberg et al. 2009 ). In the 
Anthropocene , en vironmental pollution is omnipresent alongside 
other en vironmental factors . In order to understand the impacts 
Recei v ed 21 April 2023; revised 21 July 2023; accepted 4 September 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
Commons Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), whic
medium, provided the original work is properly cited.
f chemical pollution and their consequences on the interactions 
etween organisms and their environment, ecotoxicology relies 
n existing ecological theories whereas in ecology, pollution is 
nly one factor amongst many others. In this sense, ecotoxicol- 
gy rather than ecology is r ele v ant for envir onmental r egulatory
ssues and for environmental risk assessment (ERA). In microbial 
cology, this has led to the emergence of a fast-expanding re-
earc h ar ea, micr obial ecotoxicology, at the intersection between
icrobial ecology , toxicology , and biogeochemistry that aims to

ecipher the interactions between pollutants and microorgan- 
sms at different organizational scales (Ghiglione et al. 2014 , 2016 ).
nterdisciplinarity is, thus both a k e y feature and a r equir ement
 is an Open Access article distributed under the terms of the Cr eati v e 
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n microbial ecotoxicology studies and for applications of ne wl y
enerated knowledge for toxicity assessment and environmen-
al remediation. In this context, microbial ecotoxicology builds
n a paradox in several ways (Fig. 1 ). First, it strives to yield in-
ights about pollutant-driven impacts on ecosystem functioning
t the global scale based on micrometer-scale processes. Second,
n order to do so, it str ongl y r elies on existing knowledge and de-
ailed analysis of individual model micr oor ganisms to c har acter-
ze the response of complex microbial communities . Moreo ver, it
s de v eloping an incr easing inter est in testing and a ppl ying con-
epts de v eloped for classical macr oecology, e.g. functional tr aits,
oler ance, r esistance, functional r edundancy, r esilience, and con-
ectivity (Cébron et al. 2021 , Romillac and Santorufo 2021 , Mony
t al. 2022 ) through investigations to comprehend higher levels of
rganization at the community and ecosystem scale (Loreau et
l. 2001 ). A better understanding of the complex interactions be-
ween micr obial comm unities and pollutants is essential for toxi-
ity assessment and the implementation of sustainable bioreme-
iation systems , i.e . the use of nature-based solutions to eliminate
ollution. Of course, se v er al scientific c hallenges ar e still being
ctiv el y tac kled to enable a wider use of micr oor ganisms in these
elds (Peixoto et al. 2022 ). This also includes the de v elopment and
pplication of new technologies and methods in microbial ecol-
gy to isolate and functionall y c har acterize a larger diversity of
icr oor ganisms fr om envir onmental samples (Dur an et al. 2022 ).
To meet these ambitious expectations, microbial ecotoxicology

ill benefit from the EcotoxicoMic network ( https://ecotoxicomic.
rg/) born in France as a national network in 2013, which has now
 eac hed an international dimension (Pesce et al. 2020a , Gallois
t al. 2022 ). This perspective paper aims to present the main chal-
enges and r esearc h opportunities identified for microbial ecotox-
cology in light of the current state of the art. We focused on
rganic and inorganic chemical pollutants , lea ving aside topics
ssociated with pathogens , antibiotics , and micr obiall y pr oduced
oxins that w ould w arrant a specific discussion. The first two sec-
ions present the heart of microbial ecotoxicology and consider
he impacts of pollutants on microbial biodiversity and functions
nd then the role of micr oor ganisms in pollutant tr ansformation,
iodegr adation, and tr ansfer. The third section addresses the ma-

or challenge of linking the impact of pollution on micr oor gan-
sms with the functioning of hosts and ecosystems and possible
onsequences at a global scale. Finally, the fourth section provides
n ov ervie w of curr ent a pplications of micr obial ecotoxicology for
r actical envir onmental assessment and bior emediation and as-
ociated challenges. Methods and technologies applied or consid-
red in the field of microbial ecotoxicology today are discussed
hroughout the paper. 

mpacts of pollutants on microbial 
iodiversity and functions 

icr oor ganisms ar e essential players of natur al ecosystems
hat cope with chemical and other environmental disturbances
hrough the functions they perform (Delgado-Baquerizo et al.
016 , 2020 , Cr avo-Laur eau et al. 2017 , Borc hert et al. 2021 ). The
 esponse of micr obial comm unities to disturbances is intrinsi-
ally linked to their diversity (Allison and Martiny 2008 , Tardy
t al. 2014 ) (Fig. 2 ). For instance, more diverse communities provide
reater functional redundancy (Birrer et al. 2017 ), thereby help-
ng to maintain crucial functions e v en if the composition of the

icr obial comm unity is alter ed (Her old et al. 2020 , Walker et al.
022 ). A major challenge faced by microbial ecotoxicologists and
cologists in polluted and pristine environments is linking tax-
nomic diversity to functionality. Although there is growing evi-
ence that a loss in micr obial div ersity will ine vitabl y lead to a loss
f multifunctionality (Delgado-Baquerizo et al. 2016 , 2020 , No y er
t al. 2020 , 2023 ), m uc h work is needed to better understand the
onsequences for ecosystem services on a global scale . T hus , con-
idering the response of microbial communities at different lev-
ls of taxonomic diversity and functional redundancy has strong
otential to help us better understand the effects of chemical
isturbances in the environment, as discussed in the following.
ortunately, molecular tools and approaches to do this in more
etail are now increasingly available and are continuously being
e v eloped. 

he importance of tackling taxonomic diversity 

n microbial ecotoxicology 

or both pristine and polluted en vironments , whether terrestrial,
quatic, or aerial, taxonomic alpha and beta div ersities hav e been
xtensiv el y studied in bacterial communities. Other types of mi-
r oor ganisms suc h as micr oeukaryotes (with the exception of di-
toms in aquatic systems), archaea, viruses, and fungi remain less
nv estigated, particularl y in lotic and aerial ecosystems. Simulta-
eously studying alpha and beta diversities of se v er al domains
f life through metabarcoding can help to better understand how
omm unities r espond to disturbances (Delgado-Baquerizo et al.
016 , 2020 , No y er et al. 2020 , 2023 ). For example, recent work on
icr obial comm unities of fr eshwater sediments experimentall y

xposed to copper has shown concomitant effects of the metal on
he structure of bacterial communities (A-RISA method) and their
unctional potential. Ho w e v er, r esponses wer e v ariable ov er time
uring this c hr onic 21-day exposur e: continuous effects during
he experiment on some catabolic activities ( β-glucosidase and
hosphatase activities), resilience of other activities (denitrifica-
ion and phosphatase activity), or time-lagged (respiration), while
he bacterial structure remained impacted throughout the exper-
ment. These results show the need for further study of these eco-
oxicological processes on the diversity/function nexus, in par-
icular the temporal dynamics of ecotoxicological effects (Ma-
amoud et al. 2018 ). 

Environmental DN A (eDN A) metabar coding enables to e v alu-
te taxonomic diversity of bacteria or fungi, but rarely consid-
rs the whole micr obial comm unity. Ho w e v er, eDN A metabar cod-
ng a ppr oac hes ar e r a pidl y e volving, making it possible, e.g. to
 v aluate the diversity of microeukaryotes such as in marine en-
ironments impacted by offshore gas platforms (Cordier et al.
019 ). Methodologically, nucleic acid (NA)-based approaches are
he most widely used methods for high-throughput characteri-
ation of microbial communities at the taxonomic level (Fig. 3 ).
argeting DNA (who is present and potentially doing what) versus
NA (who is active now) will estimate different fractions of the
ommunity in a given environment and provide complementary
nformation (Argudo et al. 2020 ). Many sets of ‘universal’ primer
airs targeting several domains have been designed to sequence
mplicons and analyse microbial diversity. Ho w ever, they are of-
en biased against less dominant groups (Francioli et al. 2021 ,
ahon et al. 2021 ). T hus , car efull y c hosen domain-specific primers
e.g. Tahon et al. 2021 , Tapolczai et al. 2021 ) remain the best avail-
ble choice to provide detailed cov er a ge of the taxonomic diversity
f a domain of interest. 

Identifying the roles and importance of e v ery type of microor-
anism in any given polluted environment and under any physico-
hemical condition is very challenging. T hus , microbial diversity

https://ecotoxicomic.org/
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Figur e 1. T he multiple scales of microbial ecotoxicology, at molecular , cellular , community (including interactions), and ecosystem levels. 
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in polluted environments is usually compared with that of ref- 
erence pristine environments or along a pollutant gradient, or 
by monitoring changes in microbial composition before and after 
chemical disturbance . T his a ppr oac h has been a pplied in numer- 
ous studies in order to gain insights on the toxicity of pollutants 
and the r esistance, r esilience, toler ance, and ada ptation of micr o- 
bial communities to pollutants (Fig. 2 ; Morin et al. 2009 , Lemmel 
et al. 2019a , No y er et al. 2020 , 2023 ). In so doing, certain taxa have 
been identified whose presence or absence in a polluted environ- 
ment, or whose sensitivity to chemical exposure, sho w ed potential 
as indicator species for use in ERA (No y er et al. 2020 , 2023 , Lem- 
mel et al. 2021 , Bourhane et al. 2022 , Veloso et al. 2023 ). This is 
further discussed in the dedicated section. 
Ne v ertheless, comparisons of microbial diversity between dif- 
erent samples have several limitations. Some are technical 
nd intrinsic to the applied methods (see Fig. 3 ) while oth-
rs include the difficulty of securing r efer ence pristine sam-
les . T his can be overcome using long-term observatories for
nvir onmental r esearc h. As an example, the SOERE PRO (Sys-
ème d’Observation et d’expérimentation sur le long terme pour 
a Rec herc he en Envir onnement) dedicated to the study of or-
anic residues in agriculture soils provides experimental devices 
o obtain long-term monitoring of the impact of pollutants as-
ociated with organic amendments compared with unamended 

ites. Another example of long-term microbial observatories is 
he International Long Term Ecological Resear ch Netw ork (IL-
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Figur e 2. P ossible outcomes in microbial community responses to pollutant disturbance with respect to a function of interest. (A) Model community 
initially composed of seven equally abundant taxa, some of which are capable of performing the function of inter est (gr een star). This function may be 
dir ectl y associated with pollutant transformation, with another specific function (e.g. nitrogen fixation or nitrification), or with a widely distributed 
function (e.g. oxygen r espir ation). (B) Selected r esponse pr ofiles of micr obial comm unities to disturbance (lightning) in terms of the function of interest 
(solid green line, left y -axis) and of taxonomic diversity (dashed black line, right y -axis). (C) Examples of microbial communities compatible with the 
differ ent r esponse pr ofiles sho wn in (B) follo wing pollution disturbance of the model community sho wn in (A). Appar ent functional r esistance to 
chemical pollution may involve loss of taxonomic diversity or functional redundancy, which will be detrimental for ecosystem functioning in the 
long-term. Functional resilience , i.e . the reco very of a particular micr obiall y determined function following pollution disturbance , ma y featur e c hanges 
in the taxonomic profile of the microbial community acting on the pollutant and gain of the functional ability to transform or degrade the pollutant 
by a resistant taxon through horizontal gene transfer, as shown. Of course, other comm unity r esponses ar e also possible, suc h as gain of a degradation 
function upon pollution disturbance without a ppar ent c hange of taxonomic div ersity. 
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Figure 3. Ov ervie w of the current gaps and limitations of the main methods for studying microorganisms (di versity, acti vities) at different levels of 
complexity and perspectives for data interpretation and diagnostic tool development. 
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TER) that counts 28 sites. In the same way, microbial ecotoxicol- 
ogy could benefit from longitudinal r efer ence databases (Martínez 
Arbas et al. 2021 ; https:// www6.inrae.fr/ valor-pro _ eng/ French- 
Observatory- on- Organic- Residues/Objectives ). Ho w ever, discrim- 
inating against potential effects of other environmental parame- 
ters (as potential confounding factors) such as pH, temper atur e,
or moisture in accounting for the observed changes in microbial 
communities exposed to pollutants remains a challenge. 

Effects of chemical disturbances on microbial 
functions—the need for a wider assessment 
Dir ectl y measuring k e y ecosystem functions , when possible , is an- 
other way to assess the toxic effects of chemical pollutants on 

living micr oor ganisms or comm unities (e.g. see r e vie w in Morin 

and Artigas 2023 for aquatic microbial communities). This can 

be ac hie v ed by dir ectl y monitoring pr ocesses in situ suc h as or- 
ganic matter degradation by using litter bags (Lecerf et al. 2021 ) 
or microbial activities (respiration, enzymatic tests, photosyn- 
thesis , flux measurements , and so on) at the field scale (Bun- 
gau et al. 2021 ). Microbial respiration and denitrification have 
been widely used to account for chemical disturbances (Wake- 
lin et al. 2013 , Bérard et al. 2016 , Lyautey et al. 2021 ) as well as 
other widespread enzyme activities such as urease , β-glucosidase ,
leucine aminopeptidase , acid phosphatase , and fluorescein diac- 
etate hydr ol ysis activities (Fei et al. 2020 , Lyautey et al. 2021 , Li 
et al. 2022 ). The expression of activities fr om micr obial functional 
guilds such as nitrifiers, which are less diverse functional groups,
pr ovides other highl y r ele v ant indicators to account for distur- 
bances since their lo w er functional redundancy can lead to more 
deleterious consequences on ecosystem functioning (see dedi- 
cated section) (Simonin et al. 2016 , Lu et al. 2022 ). 
NA-based a ppr oac hes also yield r ele v ant data on micr obial
cosystem functions and link the presence and e v en the expr es-
ion of genes associated with chemical toxicity or pollutant degra-
ation or tr ansformation. Ne v ertheless, the same limitations as
hose mentioned in the pr e vious section for taxonomy-associated 

enes a ppl y. Mor eov er, in gene-specific PCR-based studies, read-
uts will be limited to genes with pr ov en functional associations
nd related sequences that are amplified with the chosen PCR
rimers (Simonin et al. 2016 ). More generally, a significant knowl-
dge gap remains regarding the impact of pollutants on microbial
unctions. Mor e tr aditional molecular methods suc h as quantita-
ive PCR (qPCR) and microarrays are also widely used to search
or specific w ell-kno wn functions suc h as hydr ocarbon degr ada-
ion (Yergeau et al. 2009 ). These approaches have also evolved with

ethods such as digital PCR, which was found to be a ppr opriate to
etect and quantify sequences of genes coding for the resistance
o pollutants in biofilms (Kimbell et al. 2021 ). For a large propor-
ion of the studies reported so far, investigated functions are di-
 ectl y linked to the pollutant of inter est, suc h as genes involved in
heir degradation or transformation and corresponding metabolic 
athwa ys , especially if they are distributed across a wide range of
icrobial taxa. In such cases, the linkage between pollutants and

unctions and the associated taxa that accomplish them r eadil y
eads to the definition of new eukaryotic and/or prokaryotic indi-
ators among enriched taxa in polluted en vironments . Ho w ever,
ssessing the impact of new or emerging pollutants for which mi-
r obial r esponses ar e not y et w ell-investigated or understood is
hallenging. Yet we now have molecular tools that may help to
ecipher new metabolic pathways (see next section). Emphasis 
hould now also extend to taxa or micr obial gr oups poorl y inv es-
igated or ne wl y discov er ed that ar e involv ed in k e y ecosystem
unctions but not necessarily directly involved in the dissipation 
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f chemical pollutants such as comammox and anammox bacte-
ia. These bacteria are involved in a single-step production of ni-
r ate fr om ammonium, and in the pr oduction of nitr ogen gas fr om
mmonium and nitrite (or nitr ate), r espectiv el y (Li et al. 2021 ,
adeira and de Araújo 2021 ). 
Fortunatel y, the incr easing use of meta-omics a ppr oac hes has

egun to overcome the focus on well-c har acterized genes and
athwa ys . Indeed, meta-omics make it possible to in vestigate ,
ased on a unique shotgun sequencing experiment, the dynam-

cs of all genes present or expressed in an environmental sample
ithout a priori on the genes involv ed. Shotgun meta genomic se-
uencing (MGS) provides comprehensive information on the DNA
resent in a given sample, but requires extensive bioinformatic
osteriori data analysis and is more expensive than previously
entioned methods (Ranjan et al. 2016 , Douglas 2021 ). Advances

n metagenome-assembled genomes (MAGs) technology, such as
ong-read sequencing and single-cell metagenomics, can improve
he quality of MGS data. These technical advancements may lead
o the discovery of specific genes responding to the presence of
 hemicals (Ac hermann et al. 2020 ) that once c har acterized func-
ionally and tested through environmental ecotoxicology studies
ould become k e y bioindicators for microbial ecoto xicology. Nev-
rtheless, methodology is not the only scientific bolt for studying
iversity and function but also the way we connect it or not among

ife domains, which is very tricky, and the usual lack of quantita-
ive estimation when using barcoding methods (relative and not
bsolute abundances). 

Mor e fundamentall y, the lac k of dir ect corr espondence be-
ween taxonomic identity and a given function of interest lim-
ts the use of taxonomy-based investigations to c har acterize the

icr obial r esponse to c hemical pollution in micr obial ecotoxicol-
gy. Mor eov er, w ork with DN A itself does not allow to gain in-
ights into the physiological and metabolic state of micr oor gan-
sms , while mRNA reco very remains challenging for some envi-
onmental samples and may limit the e v aluation of in situ ex-
r ession of micr obial functions . Along the same lines , de v elop-
ent of microbial metabolomics and increased knowledge of k e y
etabolic pathways altered by responding to chemical pollution

nd of specific pollutant transformation pathways will help de-
ne new additional potential readouts for microbial ecotoxicol-
gy (Muller et al. 2018 , Muller 2019 ) (see section entitled "Micro-
ial roles in pollutant fate and tr ansfer"). Gr aduall y, this ar ea will
lso benefit from new and ongoing advances in emerging exper-

mental a ppr oac hes (Malla et al. 2018 ) to help in environmental
ssessment and in the de v elopment of ne w r emediation str ate-
ies (see the dedicated section). 

In par allel, se v er al r ecent initiativ es aiming at de v eloping an
cology-inspired conceptual framework to define microbial func-
ional tr aits hav e emer ged (Westoby et al. 2021 ). They are also
ntended to be used in the c har acterization of ecosystem func-
ioning under different environmental conditions (Virta and Teit-
inen 2022 ), with applications for the toxicological assessment of
hemical pollutants (Martini et al. 2021 ). Several easy-to-use tools
r databases providing potential functional information such as
ICRUSt2 (Douglas et al. 2020 ), Tax4Fun (Asshauer et al. 2015 ),
actoTr aits (Cébr on et al. 2021 for bacteria), FUNGuild (Nguyen
t al. 2016 ), and FungalTraits (Põlme et al. 2020 for fungi) have
een reported for this purpose (see Fig. 3 ). They can help assign
unctions or traits based on taxonomic identities and help iden-
ify bioindicators for ERA. Ho w e v er, the infer ence of functionality
r om taxonomic div ersity r emains c hallenging, particularl y con-
erning pollutant degradation. Indeed, it is common that within
he same bacterial species, some strains can degrade or transform
nd others not. Mor eov er, the lac k of functionall y c har acterized
 efer ence micr oor ganisms of known genomic sequences, as well
s the large proportion of genes with unknown functions in se-
uence databases, still limits the application of such tools for ro-
ust prediction of ecosystem functioning from taxonomic diver-
ity. Although the number of available traits is still limited, it will
e pr ogr essiv el y enric hed with ongoing pr ogr ess in this ar ea, in
articular for the large number of taxa for which a corresponding
et of traits usable for environmental assessment is still lacking.
ome biases also persist due to the fact that these tools are gener-
ll y mor e extensiv el y de v eloped for bacteria than other micr oor-
anisms such as fungi or algae (Berg et al. 2020 , Douglas 2021 ). The
se of micr oarr a ys (e .g. Geochips; He et al. 2010 ) allowing to tar-
et thousands of functional genes could help in identifying which
unctions are impacted by pollutants (He et al. 2012 ). Recently, a
e w gener al and mor e po w erful gener ation of bioc hip has been

ntroduced in order to link microbial genes/populations to ecosys-
em functions (Shi et al. 2019 ). 

pplying fundamental concepts in ecology to 

icr obial ecoto xicology—potential benefits 

xcitingl y, the emer ging r ene wed emphasis on anal ysis of ecosys-
em functioning fuelled by functional genomic a ppr oac hes now
nables us to a ppl y classical fundamental questions and concepts
f macroecology to the microbial compartment (Muller 2019 ). This
eems of particular r ele v ance for micr obial ecotoxicology. Indeed,
 e y issues in the assessment of toler ance, r esistance, or ada pta-
ion of ecosystems to chemical stress, and of their resilience, can
ow be addressed for the microbial compartment as well. For the
 har acterization of ecosystem functions, it is now possible to in-
 estigate the r ele v ance not onl y of the pr esence or absence of spe-
ific genes or taxa but also of the co-occurrence or e v en of the in-
eractions of specific sets of genes and/or taxa and their dynam-
cs upon exposure to chemicals. While this research area is still in
ts infancy, se v er al important studies hav e r ecentl y been r eported,
nd display the great potential of the corresponding findings as
ioindication tools for microbial ecotoxicology. Emerging initia-
ives using ecology-inspired approaches (Virta et al 2020 a) and
mics (for r e vie w see Sene vir atne et al. 2020 ), suc h as the combi-
ation of meta genomics, metatr anscriptomics, meta pr oteomics,
nd metabolomics , pro vide new insights into the functional net-
orks that arise , e .g. following pollution or during biodegradation
f pollutants (Muller et al. 2018 ). For instance, Herold et al., ( 2020 )
emonstr ated thr ough a m ulti-omics a ppr oac h that r esistance
nd r esilience pr operties of waste water tr eatment plant comm u-
ities to a disturbance depended on phenotypic plasticity and
iche complementarity. 

On the other hand, because not e v ery ecosystem function is
av oured b y higher comm unity div ersity, the combination of com-
lementary experimental a ppr oac hes, including omics (see Fig. 3 ),
ogether with a ppr opriate statistical or mac hine learning meth-
ds may allow accurate assessment of changes in alpha diver-
ity along with the underlying stochastic–deterministic assem-
l y pr ocesses. Recent adv ances in mac hine deep learning a p-
r oac hes (e.g. using r andom for est or deep convolutional neural
etworks) can help to elucidate relationships between the compo-
ition of the microbiome and its functions or to monitor changes
n the composition of the microbiome in response to environmen-
al stresses (Hernández Medina et al. 2022 ). Deep learning can
lso be applied for image analyses to study the morphometry of
icrobial taxa and is being de v eloped for diatoms , algae , fungi,

nd bacteria (Kloster et al. 2020 , Picek et al. 2022 , Xu et al. 2022 ,
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Venkataramanan et al. 2023 ). These tools are complementary to 
molecular biology a ppr oac hes and morphology-based taxonomy 
in microbial ecotoxicology studies, due to their potential to char- 
acterize the effects and fate of pollutants at the ecosystem scale 
and the taxonomic , beha viour al, and mor phometric r esponses of 
micr obial comm unities (in particular protists and microalgae) to 
pollutants. Also noteworthy is the recent development of image 
analysis and spectral imaging tools (associated even more re- 
cently with deep learning) to study changes in ecosystems (e.g.
r emote sensing a pplied to aquatic envir onmental monitoring; Li 
et al. 2020 , Sagan et al. 2020 ). Finally, the development of mecha- 
nistic computational models to analyse the dynamics of complex 
micr obial inter actions at differ ent le v els is also pr omising (Henry 
et al. 2016 , Niarakis and Helikar 2021 ). 

In this way, both taxonomic and functional knowledge of mi- 
cr obial comm unities in an envir onment of inter est may inform 

on the nature and extent of toxic effects of pollutants, and on 

the capacity of the ecosystem to functionally recover from pollu- 
tant exposure (Fig. 2 ). Such a combination of experimental and ad- 
v anced anal ytical methods was found essential to understand the 
impact of pollutant disturbance on complex microbial communi- 
ties in activated sludge bioreactors (Santillan et al. 2019 ) and on 

bacterial diversity along a river-to-estuary gradient (Meziti et al.
2016 ). Notabl y, pollutants may adv ersel y affect micr obial func- 
tional and phylogenetic diversity through cascading effects on 

bioc hemical pr ocesses (Meena et al. 2020 ). While likel y v ery sig- 
nificant, the effects of multiple ecological interactions and asso- 
ciated unsuspected links between diversity and function are still 
r ar el y described. 

The use of structural equation modelling (SEM; Xiao et al.
2021 ), machine-learning algorithms and metabolic models, such 

as Flux-Based Analysis (FBA; Cuevas et al. 2016 ), may provide a cu- 
m ulativ e understanding of the direct effects of pollutants on mi- 
cr obial div ersity and functions, as well as of the cascading effects 
between inter acting or ganisms in an holobiont or in an ecosys- 
tem. These a ppr oac hes may be useful to test and e v aluate m ulti- 
v ariate causal r elationships (Fan et al. 2016 ), as shown by Simonin 

et al. ( 2016 ). SEM has also already been combined with machine- 
learning algorithms (particularly random forests) to provide in- 
sight into the direct and indirect effects of different stressors and 

diversity on the ecosystem multifunctionality (Delgado-Baquerizo 
et al. 2016 , 2020 ). 

Micr obial r oles in pollutant fa te and tr ansfer 
The c hr onic or r epeated exposur e of micr oor ganisms to c hemical 
pollutants can lead them to de v elop dir ect and indir ect metabolic 
or detoxification pathways to degr ade, tr ansform, or accum ulate 
them. Degr adation or tr ansformation of pollutants can be consid- 
ered as an ecological function beneficial for the environment con- 
tributing to reduce their persistence and consequentl y, exposur e 
and toxicity to w ar ds living or ganisms. Micr obial activities can also 
affect pollution fate by releasing toxic elements from their carrier 
phases e.g. release of arsenic or mercury through redox reactions 
and mineral solubilization (Hellal et al. 2015 , Héry et al. 2015 ). Un- 
fortunatel y, some micr obial activities can lead to the formation 

of compounds with greater toxicity [e.g. perchloroethene (PCE) to 
1,2-dic hlor oethene (DCE), and vin yl c hloride (VC); Adrian and Löf- 
fler 2016 ]. With the continual emergence of new synthetic chem- 
icals and the remaining knowledge gaps about historical ones,
many questions remain on the roles of microorganisms in pol- 
lutant fate and transfer. In particular, there is a need to identify 
the major microbial actors involved in the degradation and trans- 
ormation of synthetic chemicals in situ . Innovative approaches 
ased on holistic, m ultidisciplinary, and integr ating ne w tec hnolo-
ies (Fig. 3 ) are also needed to cope with the complexity of inter-
ctions between microbes, and between microbes and their envi- 
onment (biotic and abiotic factors) and pollutants. 

ollutants as a selecti v e force 

he range of currently known chemical pollutants, whether nat- 
ral (metals and metalloids, hydrocarbons) or anthropogenic 

pesticides , plastics , pharmaceuticals , etc) is extr emel y v ast and
n continuous expansion due to the constant release of new

olecules and the production of a myriad of intermediate degra-
ation metabolites. Although there are many studies on their 
r ansformation or degr adation (P ar ales and Haddoc k 2004 , Gadd
010 , Dur an and Cr avo-Laur eau 2016 , Hidalgo et al. 2020 ) ther e
r e still man y knowledge ga ps to be filled on the micr obial mec h-
nisms involved in these reactions. 

Metallic compounds can accumulate in the environment due 
o human activities (e.g. Cu and Zn in a gricultur e, Hg and As in

ining, and so on). They can be biotransformed by enzymatic
 eactions (oxidation, r eduction, methylation) (Fig. 4 ). These reac-
ions can be a defensive mechanism (e.g. Hg reduction encoded by
he mer operon; Barkay et al. 2003 ) or a consequence of metabolic
ctivity (e.g. As(V) or Fe(III) reduction). Apart from these well-
nown examples, microbial interactions with metals or metal- 
oids of emerging concern remain poorly documented. For exam- 
le, knowledge on the uptake, efflux, and redox transformation 

athways of antimony is limited (Deng et al. 2021 ). Recentl y, ne w
r actices hav e led to an incr ease in the use of r ar e earth elements
nd metal nanoparticles in different sectors (e.g. a gricultur e, r e-
ediation, cosmetics, batteries, and so on). Ho w e v er, the r ole of
icr oor ganisms on the fate of these elements in the environment

 emains poorl y understood (Xie et al. 2017 , Cr ampon et al. 2018 ,
ymard-Vernain et al. 2018 ). 

For many of the ever-expanding range of organic pollutants,
here is no data on their biodegradability or transformation poten-
ial. Man y or ganic pollutants can be dir ectl y tr ansformed by mi-
r oor ganisms and ar e used as a carbon source (e.g. pol ycyclic ar o-
atic hydr ocarbons (PAH) degr adation) and/or as electr on donors

r acceptors (e.g. organohalid respiration of chloroethenes). They 
an also be tr ansformed indir ectl y thr ough cometabolic r eactions
e.g. c hlor oethenes; Dolinová et al. 2016 , Zhang et al. 2019 ) (Fig.
 ). Man y degr adation pathways and the corr esponding genes ar e
ell-c har acterized, yet micr obes degr ading (ne w) emer ging or-
anic compounds need to be identified and their metabolic path-
ays further studied in order to de v elop ada pted r emediation

trategies . T he use of next-generation physiology approaches that
re independent from a priori knowledge of genomic information 

ould allow to focus on cellular functions (Hatzenpichler et al.
020 ). These a ppr oac hes combine micr obial phenotype pr obing,
igh throughput cell sorting, and downstream techniques such 

s single-cell sequencing, targeted cultivation (e.g. culturomics; 
Martiny 2019 , Almeida et al. 2022 ), or complementary microscopy
r ima ging anal yses (Fig. 3 ). A c hange of perspectiv e is also r e-
uired to favour understanding of in situ situations rather than of
ur e str ains exposed to one compound (or family of compounds).
ndeed, degradation can involve microbes interacting in a con- 
ortium (e .g. syntrophy; T homas et al. 2019 ) and many other bi-
tic and abiotic factors can sim ultaneousl y influence degr adation
Chishti et al. 2021 , Yuan et al. 2021 ). Understanding in situ reac-
ions will contribute to identifying ERA indicators and adapting 
ioremediation to the environmental context. 
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Figur e 4. An o v ervie w of micr obial tr ansformation and degr adation mec hanisms of metals and metalloids (left) and or ganic molecules (right). 
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An emerging topic related to microorganism-pollutant interac-
ions is the occurrence of increasingly complex associations of dif-
erent compounds and their consequences for microbial commu-
ities and their transformation potential. Phenotypic probing ap-
r oac hes suc h as SIP (stable isotope pr obing), will allow the identi-
cation of micr oor ganisms activ el y involv ed in specific metabolic
r ocesses suc h as the degr adation of or ganic pollutants (Lemmel
t al. 2019b ). A gener al effort has also been made in r ecent years
o impr ov e isolation of micr obial str ains fr om understudied taxa
Chaudhary et al. 2019 ), (since this remains the approach of choice
o study their metabolism and particularly their role in the trans-
ormation of pollutants) and potentially use them for bioreme-
iation purposes (Fig. 3 ). Ho w ever, it is beginning to be possible
o predict the modes of action, effects, behaviour , and transfor -

ation of pollutants in silico (Han et al. 2019 , Singh et al. 2021 ).
his type of a ppr oac h would make it possible to assess ecotoxic-

ty and fate of new molecules more quickly and comprehensively,
 v en if the prediction of effects of pollutant mixtur es r emains a
hallenge. 

 complex network of microbial interactions and 

ollabor a tions 

lthough many studies have been carried out on single microor-
anisms exposed to a particular pollutant, holistic a ppr oac hes ar e
ow needed to better understand the different levels and means
f biotic inter actions. Indeed, biotic inter actions can occur within
 domain or between domains and also include trophic interac-
ions or host–microbiome interactions (Adamovsky et al. 2018 )
see dedicated section). Unr av elling these complex interactions in
itu is a major challenge for microbial ecotoxicology. For exam-
le, positiv e inter actions between fungi and bacteria have recently
een demonstrated (Álvarez-Barragán et al. 2022 ) where bacte-
ia can be dispersed in PAH-polluted environments via fungal hy-
hae , allowing to o vercome barriers and promote accessibility to
AHs. Other examples are the cascades of redox conditions that
ead to the dehalogenation of PCE to ethylene by promoting opti-

al conditions for halorespiring bacteria such as Dehalococcoides
p. (Hellal et al. 2021 ), or the total degradation of PAH by a mi-
robial consortium in successive degradation steps (Thomas et al.
019 ) (Fig. 4 ). 

Biodegr adation and tr ansformation r eactions ar e also tightl y
ontrolled by environmental factors. A better understanding
f how envir onmental, physico-c hemical, and oper ational (in a
ior emediation context) par ameters driv e micr obial div ersity and
ctivity is r equir ed to de v elop effectiv e and robust bioremediation
tr ategies (Lar oc he et al. 2018 ), as w ell as ho w it impacts pollutant
ioavailability and speciation (Barral-Fraga et al. 2020 ). In a con-
ext of global c hange, this r einforces the importance of combin-
ng laboratory and in situ approaches for more realistic conditions
nd ecological r ele v ance, and of de v eloping models for biogeo-
 hemical pr ocesses allowing to disentangle between correlation
nd causality. 

onsequences on pollutant behaviour and 

ransfer 
icrobial activity can impact the mobility of metals and met-

lloids through the dissolution or the precipitation of metal-
earing minerals (Dong et al. 2022 ). Dissolution of metal-bearing
inerals will contribute to impacting previously pristine envi-

onments . Con versely, the immobilization of toxic elements by
r ecipitation or adsor ption r esults in natur al attenuation of the
ollution (Egal et al. 2010 ). This is of particular importance in
ontinuums (soil/coastal marine environments) or at the in-
erface between different conditions (o xic/ano xic) or compart-

ents (water/sediments) (Héry et al. 2014 , Hellal et al. 2015 ,
hang et al. 2020 ). Pollutants as well as micr oor ganisms can
lso be tr ansferr ed fr om one envir onment to another (Châtillon
t al. 2023 ). For example, adsorption of metals to the surface of
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microplastics (Liu et al. 2021 ) can impact their fate since mi- 
croplastics act as vectors of metallic pollutants and attached mi- 
cr oor ganisms to w ar ds aquatic envir onments or or ganisms (Wang 
et al. 2021 ). Recentl y, it has been suggested that suc h complex 
interactions may also promote the transport and diffusion of 
antibiotic-resistance genes in the aquatic environment (Marathe 
and Bank 2022 ). 

Specificities of experimental microbial 
ecotoxicology in deciphering the role of 
microorganisms in pollutant biotr ansforma tion 

and transfer 
Curr ent knowledge ga ps on biotr ansformation pr ocesses under 
contr olled labor atory conditions or under envir onmentall y r el- 
e v ant conditions lead microbial ecotoxicologists to innovate at 
the experimental le v el. Simplified micr obial experimental sys- 
tems have been particularly useful to address ecological ques- 
tions allowing for experimental controls (see reviews by Jessup 

et al. 2004 , 2005 , Cr avo-Laur eau and Dur an 2014 ). Futur e r esearc h 

should now r eac h beyond these r elativ el y simple models and at- 
tempt to address the complexity of the r eal world. This issue of 
upscaling is a major challenge (Bonnineau et al. 2021 , Guasch 

et al. 2022 ). Transdisciplinarity has always been central in micro- 
bial ecotoxicology and is now also taking on board new technolo- 
gies in chemistry and biology, in particular for investigations at 
different scales, dynamics and levels of complexity, in order to 
impr ov e our understanding of the fate and transfer of pollutants 
in the environment (Fig. 3 ). In the future, identifying and refer- 
encing the degradation or biotransformation pathways of pollu- 
tants and products/metabolites will be essential to better under- 
stand all the chemical entities (exposome) presented to microbial 
communities in a situation of interest. An ideal microbial eco- 
toxicology database should be compr ehensiv e, interdisciplinary,
and multiscale, and include data on microbial diversity and func- 
tions , metabolites , metabolic pathwa ys , physico-chemical condi- 
tions , chemicals , and pollutants . Ho w ever, much w ork remains to 
be done to de v elop these databases and make them usable. 

Being able to estimate the contribution of micr obial comm uni- 
ties to the transformation and fate of toxic compounds will allow a 
better estimation of the persistence of pollutants (half-life, dT50) 
in natural environments (see dedicated section). The identifica- 
tion of families of compounds and chemical structures that are 
mor e easil y degr aded by micr obial comm unities or less likely to be 
bioaccumulated (and thus transferred through the trophic chain) 
will help provide guidelines for the design of new green chemicals 
that should have a reduced impact on ecosystems. A better under- 
standing of the mechanisms involved in the interactions between 

micr oor ganisms and pollutants is thus a pr er equisite for the de- 
velopment of effective and sustainable bioremediation strategies 
in the future (see dedicated section). 

Linking impacts on microbial communities 

to impacts and risks for ecosystem and 

host functioning 

As illustrated in the first section, important conceptual and 

methodological adv ances hav e been ac hie v ed in the last decades 
to assess the effects of pollutants on micr obial div ersity and func- 
tions in polluted ecosystems (Pesce et al. 2020b , Morin and Ar- 
tigas 2023 ). These advances have also made it possible to study 
pollutant effects on the interactions occurring between various 
animal or plant organisms and symbiotic micr oor ganisms, in- 
luding e.g. microbiomes (Duperron et al. 2020 ) and rhizosphere
icr obial comm unities (Barr a Car acciolo and Ter enzi 2021 ). Yet

ome authors recognize the importance of microbial ecotoxicol- 
gy r esearc h in other fields such as animal conservation biology
Tr e v elline et al. 2019 ) or human and animal health (Adamovsky
t al. 2018 , Greenspan et al. 2022 ) underlining the importance
f studying the links between microbial communities and their 
osts (Fig. 5 ). 

 lack of knowledge due to the difficulty of 
ssessing complex interactions 

nowledge of the consequences of ecotoxicological effects on mi- 
r obial comm unities at the scale of ecosystems or symbiotic part-
ers is still scarce. As an exception, many studies have dealt with
he effects of pollutants on the interactions between microorgan- 
sms and plants. Ho w e v er, these studies mainly aimed to improve
 gr onomic pr actices (e.g. selection of plant gr owth-pr omoting rhi-
obacteria strains resistant to pesticides, for inoculation in con- 
 entional a gricultur e and compensation of the inhibition of nat-
ral symbioses; Ahemad and Khan 2010 ), or phytoremediation 

e.g. use of micr oor ganisms to impr ov e the uptake capacity of
lants for metals; Yang et al. 2022 ). Yet, there is still a lack of
tudies assessing this kind of interaction in an ecotoxicological 
r ame work. 

This limited knowledge is primarily explained by the fact that
oncepts and methods in microbial ecology for linking microbial 
ommunities to ecosystem functions are still in their infancy (Or-
and et al. 2019 , Morris et al. 2020 , Codello et al. 2023 ). Despite
his, it is now well-recognized that microbiomes are affected by
he same threats as their hosts, with environmental pollution 

mong the most important (Tr e v elline et al. 2019 ). First, pollu-
ion alters the composition of envir onmental micr obial comm u-
ities (see pr e vious sections) from which the host can build up

ts microbiome. Second, pollutant toxicity can also directly al- 
er the host-associated microbiomes by incr easing r esistance (La-
anje et al. 2010 ) or tolerance (Costa et al. 2016 ) to pollutants, or
y decreasing microbial diversity and, consequently, causing the 
oss of functions (Kakumanu et al. 2016 ) potentially important to
he host (Fig. 2 ). Third, host microbiomes can respond to pollution
y transforming pollutants into more toxic metabolites affecting 
he host (Piny ay ev et al. 2011 , Claus et al. 2016 ). Mor eov er, se v er al
tudies suggest that a loss of microbial diversity (Tardy et al. 2014 ,
elgado-Baquerizo et al. 2016 , 2020 , Lafor est-La pointe et al. 2017 )
r micr obial inter actions (Wa gg et al. 2019 ) can impair ecosys-
em multifunctionality. Ho w ever, examining the relationships be- 
ween micr obial comm unity structur e and ecosystem (Gr aham
t al. 2016 ) or host (Adamovsky et al. 2018 , Duperron et al. 2020 )
unctioning remains challenging. This is first due to the existence
f high functional redundancy within micr obial comm unities in-
luding gut microbiota (Mo y a and Ferrer 2016 ). Of particular in-
erest in this regard is Allison and Martiny’s ( 2008 ) conceptual ap-
r oac h to how disturbances may or may not alter ecosystem pro-
esses through microbial functions . T heir model is based on levels
nd patterns of functional redundancy and made clear the lack
f data on the links between microbial ph ylogeny, ph ysiological
r aits, and r esponses to disturbance. Second, it is extr emel y diffi-
ult if not impossible to have a reference point of the pristine en-
ironment or holobiont, with which to perform comparisons in an
coto xicological context. When stud ying host-shelter ed comm u-
ities, the lack of pristine habitat can translate into lack of knowl-
dge about what a eubiotic (versus dysbiotic) host-associated mi- 
robiome is. 
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Figure 5. Illustration of the current paradigm shift and how impacts of pollutants on microbial community diversity and functions can in turn affect 
host and ecosystem functioning. 
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pscaling in microbial ecotoxicology: limits, 
itfalls, and possible solutions 

esides the difficulties in extr a polating micr obial ecotoxicologi-
al responses to the ecosystem scale, it is important to empha-
ize that ecosystem processes and functions are not only driven
y micr oor ganisms but also by abiotic factors and/or by biologi-
al processes carried out by macroorganisms (van der Plas 2019 ).
ndeed, a potential limitation of up-scaling from microbial eco-
oxicology is that it may be difficult to accur atel y pr edict the ef-
ects of toxic chemicals on ecosystems or holobionts (Duperron
t al. 2020 ) based solely on their effects on micr oor ganisms. Dif-
erent classifications of ecosystem functions are available in the
iter atur e (e.g. Pettor elli et al. 2018 , Garland et al. 2021 , Pesce et al.
023 ) and most of them involve microorganisms which are some-
imes the major contributors. One of the best examples is the
r ominent r ole of micr oor ganisms in nutrient cycling (Garland et
l. 2021 ). The effects of chemical pollutants on the capabilities
f micr oor ganisms to contribute to nutrient cycling ar e widel y
tudied in soil and aquatic environments using a combination
f various approaches (from molecular to potential or effective
ctivity measurements; see Fig. 3 ). Ho w ever, these assessments
r e gener all y carried out in small-scale laboratory studies or at
he scale of microhabitats . T his severely limits the possibility of
pscaling to the ecosystem le v el, especiall y if complex interac-
ions with k e y envir onmental and/or nonmicr obial biological fac-
ors are not taken into consideration (van der Plas 2019 ), and lead
o unpredictable cascading effects. Besides the issue of spatial
eter ogeneity, tempor ality also needs to be taken into consider-
tion depending on the capacity (or not) of microbial communi-
ies to cope with chemical and other environmental stresses (e.g.
ccording to their ada ptation, r esistance, and r esilience ca paci-
ies; Allison and Martiny 2008 ; Fig. 2 ). Moreover, it is important
o note that some categories of functions are not or only min-
mall y consider ed in micr obial ecotoxicology e v en though they
tr ongl y involv e micr oor ganisms (e.g. soil/sediment formation or
rosion; based on the classification proposed by Pettorelli et al.
018 ). T hus , assessing the impact of pollutants on the function-
ng of ecosystems through the prism of the response of microbial
ommunities to these chemicals probably requires a paradigm
hift. Indeed, r ather than addr essing this issue primaril y fr om a
icr obial perspectiv e, it would be r ele v ant to a ppr oac h it fr om

he perspective of ecosystem function by determining the most
 ele v ant study scale . T hus , taking the abo ve example of nutrient
ycling, it seems necessary to de v elop a ppr oac hes that combine
easurements at the scale of micr obial comm unities (exoenzyme

roduction, catabolic activities, and so on) with others carried
ut at the scale of ecosystems such as measurements of nutrient
o ws. F rom this point of view, the ecosystem services approach of
ayes et al., ( 2018 ) based on logic chains (linking direct ecotoxic

mpacts, via secondary interactions, to impacts on ecosystem
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pr ocesses/pr operties) seems pr omising for tar geting the ar eas of 
r esearc h to be de v eloped in order to better quantify the effects of 
pollutants on ecosystem services . Hence , in their case study (i.e.
responses of ecosystems to soil copper pollution), the authors em- 
phasized the need to focus on se v er al micr obial activities (i.e. or- 
ganic matter decomposition and nutrient cycling) to take into ac- 
count the role of microbial communities in ecosystem functions 
(Ha yes et al. 2018 ). T hese shifts in scale in relation to an ecosys- 
tem function perspective suggest that it is necessary to manage 
these microbial ecotoxicology issues through a strong interdisci- 
plinary a ppr oac h. For example , the abo ve-mentioned ecosystem 

function of erosion limitation, which is likely to be impacted by 
pollutants, r equir es the combination of microbial ecotoxicology 
measurements with physical measurements (Gerbersdorf et al. 
2005 , Crouzet et al. 2019 ). 

As mentioned abo ve , microbial communities , being an integral 
part of the ecosystem, are subject to other factors than chemical 
pollutants. We ther efor e highlight the importance of taking m ul- 
tistress into account in microbial ecotoxicology studies, reflecting 
not only the reality of pollutant mixtures but also the reality of cli- 
mate change (Zandalinas et al. 2021 ). This latter high-stakes sub- 
ject is beginning to be considered by the scientific community (Luo 
et al. 2021 , Courcoul et al. 2022 ) and recent work is also attempting 
to address this issue by integrating microorganisms into different 
ecosystem le v els (O’Brien et al. 2022 , Vijayaraj et al. 2022 ). 

Microorganisms as a tool for environmental 
risk assessment and bioremediation 

This section aims to illustrate the range of existing applications of 
micr obial ecotoxicology wher e micr oor ganisms ar e used as tools 
for ERA (limiting the scope to EU for standardized and normal- 
ized tests) and bioremediation, what potentially limits their ap- 
plication and where future developments and opportunities lie 
(Fig. 6 ). 

Microorganisms for ERA 

Despite the recognized importance of microbial communities 
in numerous ecological functions supporting ecosystem ser- 
vices and a large number of r eported micr obial-based methods 
(Bouchez et al. 2016 ), only a few tools based on microorganisms 
have been standardized and used for ERA (Table 1 ). Some of them,
such as the single-species tests Ames, Microtox, or the microalgal 
test ar e mainl y used for a priori ERA, to predict hazards and as- 
sess risks before a new active compound is brought onto the mar- 
ket. Others such as the Biological Diatom Index are applied for a 
posteriori ERA to assess the ecotoxicological impacts of chemical 
residues in the environment. Complementary approaches have 
to be applied to integrate microorganisms from aquatic and soil 
ecosystems into ERA (Escher et al. 2023 ). 

A priori ERA: illustration with the case of pesticides 
In Europe, the a priori ERA of active ingredients in pesticides is 
conducted in compliance with the 1107/2009/EC dir ectiv e, whic h 

authorizes market delivery. For soil microorganisms, ERA of ac- 
tiv e ingr edients solel y r elies on the assessment of their effects on 

nitrogen (OECD 216; OECD 2000a ) and carbon (OECD 217; OECD 

2000b ) mineralization. In order to better protect soil ecosystem 

services, EFSA (European Food Safety Authority 2013 ) proposed 

to set up a series of specific protection goals including the pro- 
tection of functional groups of microorganisms. Seven years later 
EFSA ( 2017 ) proposed a set of endpoints to be considered for the 
rotection of in-soil living organisms, including nitrifiers, a mi- 
r obial guild involv ed in the N-cycle (Ockleford et al. 2017 ), and
rbuscular mycorrhiza fungi (AMF), which form an obligate sym- 
iosis with most higher plants. Ho w e v er, despite these two scien-
ific opinions (EFSA 2013 , 2017 ), specific protection goals and cri-
eria have not yet been implemented in the ERA of active ingredi-
nts. One reason for this is that the endpoints proposed to fulfill
he specific protection goals of k e y soil ecological functions are
riticized (Sweeney et al. 2022 ), with some authors pointing out
he difficulties in concluding on the origin of observed effects (di-
ect or indirect) on these endpoints after pesticide exposure (Kar-
ouzas et al. 2014 ). 

In addition, there is still a need for r esearc h to better define ef-
ect thresholds based on the acquisition of the normal operating
ange (NOR) of each microbial endpoint in order to consider their
ossible r ecov ery following the dissipation of the activ e ingr edi-
nts and of their degradation products (Brock et al. 2018 ). The in-
er actions that micr oor ganisms hav e among them and with their
ost were recently shown to have an impact on pollutants fate

cometabolism) and to xicity. In ad dition, it is now time to move
rom a priori assessment of the effect of a single pur e activ e in-
redient on a single species or function to a posteriori assessment
f complex environmental situations where complex mixtures of 
 hemical r esidues of differ ent origins ar e often found. To this end,
icrobial biosensors, defined as analytical devices combining liv- 

ng micr oor ganisms as a sensing element with a process of inte-
ration of the metabolic or physiological state through a trans-
ucer, could be suitable to tackle this challenge . T he toxicity of
e v er al or ganic and inor ganic pollutants has been inv estigated
sing either microbial cell fuel biosensors, associated with mi- 
r obes fr om activ ated sludge, biofilm, or specific species (Dávila
t al. 2011 , Zhou et al. 2017 , Uria et al. 2020 ), or reporter biosen-
ors, using recombinant microbial strains (Jia et al. 2012 , Durand
t al. 2016 ). 

 posteriori ERA 

ntegr ativ e methods ar e r equir ed to dia gnose in situ toxicity in or-
er to impr ov e the a posteriori ERA of v arious pollutants (Table 1 ).
he PICT a ppr oac h is r ecognized as a r ele v ant method to demon-
tr ate the dir ect causality between envir onmental pollutant pr es-
ure and in situ response of microbial communities in both aquatic
Tlili et al. 2016 ) or soil environments (Campillo-Cora et al. 2021 ).
o w e v er, the a pplication of PICT still faces se v er al c hallenges that
eserve further investigation. First, establishing the NOR of toler- 
nce of microbial communities is one main issue requiring large 
 efer ence datasets that remains poorly tackled (but see Blanck
t al. 2003 , Campillo-Cora et al. 2021 ). Second, there is a need to
e v elop and validate via ring-testing standardized protocols based
n published methods (from in situ sampling to modelling and in-
er pr etation of lab toxicity test r esults). Third, ne w methods ar e
 equir ed to increase the diversity of considered pollutants and mi-
robial functions used as endpoints in the toxicity tests to e v alu-
te toler ance le v els. Fourth, guidelines need to be elaborated to in-
er pr et comm unity toler ance with r efer ence to the toler ance base-
ine (Campillo-Cora et al. 2021 ). Finally, new knowledge should be
cquired to understand the processes involved in PICT responses 
influence of confounding factors, cotolerance processes, etc; Tlili 
t al. 2016 ). In addition, the costs of adaptation of microbial com-
unities to pollutants (e.g. secondary effects on microbial diver- 

ity and ecological functions; Tlili et al. 2011 , Bérard et al. 2016 ,
esce et al. 2020b ) should be studied to give clues on how to trans-
orm PICT responses into an assessment of ecological risks and
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Figure 6. Illustration of different applications of microorganisms as tools for ERA and bioremediation. 

Table 1. Some existing tools based on microbial ecotoxicology concept for ERA, presented by context of application. 

Tool name 
Microorganism or DNA 

exposed Characteristics Application Reference 

A priori risk assessment 

Ames Salmonella typhimurium 

strains His negative 
Mutagenic potential of a 
compound 

Toxicity e v aluation during 
the de v elopment of ne w 

compounds.Toxicity analysis 
of samples (urines) 

OECD 471 (OECD 2020 ) 

Microtox Vibrio fischeri Bioluminescence inhibition 
of a compound. 

Toxicity e v aluation during 
the de v elopment of ne w 

compounds Water quality 
e v aluation 

ISO 11348 

Microalgal test Raphidocelis subcapitata Growth or photosynthesis 
inhibition of a compound. 

Toxicity e v aluation during 
the de v elopment of ne w 

compoundsWater quality 
e v aluation 

ISO 8692 

Mycorrhizal fungi test Glomus mosseae Fungal spore germination 
inhibition of a compound 

Toxicity e v aluation during 
the de v elopment of ne w 

compounds Soil quality 
e v aluation 

ISO 10832 

A posteriori risk assessment 
Pollution-induced 
comm unity toler ance 
(PICT) 

Phototrophic and 
heter otr ophic micr obial 
communities 

Need for a community from 

an uncontaminated 
envir onment consider ed as 
the control. 

Diagnostic and risk 
assessment tool for aquatic 
envir onment. Tr ansfer able to 
sediments and soil. 

Blank et al. ( 1988 ) 

Triad Soil microbial 
community Not 
exhaustive 

Combining three data 
sources (chemistry, 
ecotoxicology, and ecology). 

Ecological risk assessment 
specific to contaminated 
sites and soils. Tr ansfer able 
to other environments 

ISO 19204 

Diatoms Biological Index 
(DBI) 

Diatoms Mor phological anal ysis 
requiring in-depth taxonomic 
knowledge and expertise 

Used in the European Water 
Fr ame work Dir ectiv e for riv er 
ecological assessment 

Prygiel, and Caste 
( 1998 ). 
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ecotoxicological effects at the microbial community and ecosys- 
tem le v els. 

The Triad a ppr oac h, whic h combines toxicity testing and chem- 
ical and ecological data of a site to determine the effect of pol- 
lution on the ecosystem, can also be viewed as a promising tool 
(Gutiérr ez et al. 2015 , Klimk owicz-P awlas et al. 2019 ). Although 

this ISO standard lists se v er al standardized methods for measur- 
ing each of the identified risk types, the use of nonstandardized 

methods can be emplo y ed. Due to their ubiquity and different 
ecological roles in the environment, microbial communities could 

constitute good indicators to consider in this a ppr oac h. 
Curr entl y, onl y micr oalgae ar e consider ed in the EU Water 

Fr ame work Dir ectiv e for the calculation of indices based on di- 
atoms and phytoplankton. Although these indices have gained 

importance for the assessment of the ecological quality of aquatic 
ecosystems (Venkatac hala pathy and Karthik e y an 2015 , Lav oie 
et al. 2018 ), their output remains poorly informative with regards 
to the ecological effects of a large variety of pollutants. Such in- 
dices could be further de v eloped to take into account the impacts 
of pollutants. In combination with r ele v ant pollutant monitoring 
studies, the incr easing a pplication of diatom DN A metabar coding 
will help to monitor the effects of pollutants on diatoms (Tapol- 
czai et al. 2019 , Maitland et al. 2020 ). This is likely to be also appli- 
cable to other microbial groups and in different types of ecosys- 
tems and environmental compartments due to the concomitant 
and ongoing impr ov ement of sampling and analytical methods 
for c har acterizing envir onmental pollution by a lar ge v ariety of 
chemicals (Hollender et al. 2017 ) and of eDNA studies (Seymour 
2019 ). A fe w years a go, Bouc hez et al. ( 2016 ) defined the le v el of
operability of several molecular microbial indicators according 
to eac h envir onmental matrix (i.e . soil, sediments , water, atmo- 
sphere, and wastes) for envir onmental dia gnosis. For the ERA of 
herbicides in soil, some authors suggest searching for tolerant 
and/or sensitive populations of nontarget microorganisms that 
nonetheless carry the enzyme specifically targeted by the active 
ingredient (Petric et al. 2016 , Thiour-Mauprivez et al. 2019 ). Mon- 
itoring the quality of aquatic environments could also be done 
by integrating bacteria naturally present in the aquatic compart- 
ment to propose a new generation of microbial biosensors (Zhou 

et al. 2017 , Jiang et al. 2018 , Fang et al. 2020 ). 

Microorganisms as tools for assessing ecosystem 

functioning 

Ensuring environmental and human health protection requires 
pr eserving or r estoring ecosystem functioning and their ca pabili- 
ties to provide services. As noted pr e viousl y, the ubiquity of mi- 
cr oor ganisms and the numerous ecological functions they per- 
form make them essential key drivers that must be protected in 

order to ensure the continued functioning of ecosystems and pre- 
serve the One Health concept. In 2023, an EU directive on soil pro- 
tection is on the v er ge of being adopted by the European Com- 
mission 17 years after its first proposal. In the meantime, sev- 
eral EU countries are already conducting national soil surveys 
to monitor changes in abiotic and biotic parameters, including 
endpoints related to soil functions . Nonetheless , the implemen- 
tation of microbial endpoints in national soil surve ys de pends on 

the availability of standardized methods. Ho w e v er, despite pr o- 
gresses done (Thiele-Bruhn 2021 ) there is still a huge challenge 
to pr ovide ne w standardized a ppr oac hes, r efer ence bioindicators 
and guidelines related to soil microorganisms (Djemiel et al. 2022 ).
This observation is striking with regards to the EU water frame- 
work dir ectiv e, the most significant European water legislation to 
ate, whic h onl y considers diatom biodiv ersity as a micr obial end-
oint to assess the biological quality of water bodies, and toxicity
ests on microalgae to establish environmental quality standards 
o c hemicals, micr obial functions or other micr oor ganisms being
otall y disr egar ded (P esce et al. 2020a ). 

icroorganisms as nature-based solutions for 
ollution treatment 
he scientific community faces several challenges to enable more 
idespread use of microorganisms for bioremediation of contam- 

nated en vironmental matrices . Based on our fundamental under-
tanding of the biodegradation or biotransformation of pollutants 
see dedicated section), many recent examples demonstrate the 
ffectiveness of using microorganisms for the bioremediation of 
oils and waters polluted by hydrocarbons or organohalides (Mc- 
arty et al. 2020 , Naeem and Qazi 2020 ). Ho w e v er, ther e is still a

ong way to go to be able to propose bioremediation techniques
or emerging or recalcitrant organic pollutants such as (micro- 
 plastics or PFAS, whose kinetics and degradation pathways are
till understudied (Zhou et al. 2022 ). Although less commonly ap-
lied to metallic pollutants (particularly at large scale), bioreme- 
iation can effectiv el y r emov e metals or metalloids fr om mine
aste , soils , or waters through immobilization or transformation
rocesses (Rahman and Singh 2020 , Jacob et al. 2022 , Nivetha et al.
023 ). For example, bacterially mediated treatment of arsenic-rich 

cid mine waters has r ecentl y been successfull y up-scaled fr om
he lab to the field (Diaz-Vanegas et al. 2022 ). Mor eov er, phytoex-
raction of metals is more developed and can be efficiently im-
r ov ed thr ough the action of micr obes suc h as mycorrhizal fungi
r plant gr owth pr omoting (PGP) bacteria that could enhance the
peed and quantity of metal uptake by plants (Kazemalilou et al.
020 ). 

The different bioremediation approaches applied to soils or 
gr ound)water ar e natur al attenuation, bioaugmentation, bios- 
im ulation, and rhizostim ulation (Khan et al. 2004 ). Natural at-
enuation, whic h r equir es that pollutants ar e being immobilized
r degraded by natural processes (biotic or abiotic) without any
uman intervention, can be slow compared to bioaugmentation 

r biostimulation, and require long-term monitoring (Khan et al.
004 ). Bioaugmentation consists of growing selected micr oor gan-
sms with a known ability to degrade or transform a target pollu-
ant. Although its effectiveness depends on the survival and de-
elopment of inoculated strains, bioaugmentation can be effec- 
ive, fast, and affordable as a ‘green’ clean-up option (Nw ankw egu
t al. 2022 ). A pitfall for bioaugmentation is the unforeseen inter-
ctions on added degrading strains with autochthonous microbes 
Yu et al. 2005 ). Biostimulation aims to overcome factors limiting
he activity of autoc hthonous micr oor ganisms thr ough the sup-
ly of nutrients (nitrogen source, electron acceptors/donors, and 

o on), surfactants, and/or oxygen. This r equir es a good knowl-
dge of the indigenous communities and their physiological and 

etabolic needs . T he optimal C/N/P ratio and bioa vailability of
ollutant must be determined and adjusted, and the stimulation 

f other populations that can out-compete the target microorgan- 
sms is not excluded (Adams et al. 2015 ). 

In addition to the fact that bioremediation methods may be
lo w er than more conventional physico-chemical approaches, mi- 
robial activity is also under the complex and tight influence of
an y envir onmental factors, and ther efor e, difficult to pr edict

Bala et al. 2022 ). To impr ov e the reliability and the sustainability
f bioremediation performance in situ , it is now crucial to better
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nderstand the factors driving microbial activity (Lar oc he et al.
018 , Diaz-Vanegas et al. 2022 ). 

Ne w bior emediation a ppr oac hes hav e r ecentl y emer ged suc h
s microbial enzymes (Sharma et al. 2018 , Saravanan et al. 2021 ),
icr obiall y assisted phytoremediation (Thijs et al. 2016 , Sharma

021 , Yang et al. 2022 ), pr e v entiv e bior emediation (Carles et al.
021 ), encapsulation of microorganisms (Valdi via-Ri vera et al.
021 ), biosurfactants (Eras-Muñoz et al. 2022 ), and microbial
anotec hnology/nanobior emediation (Mandeep and Shukla 2020 ,
ussain et al. 2022 ). 
Another use of micr oor ganisms that r epr esents an innov ativ e

xploitation of microbe–metal interactions is the recovery of criti-
al metals from secondary sources . T his results in environmental
lean-up and contributes to recycling. As cost is often an impor-
ant obstacle for r emediation, str ategies integr ating bior emedia-
ion and r ecov ery of pollutants of economic inter est suc h as met-
ls hold gr eat pr omise for the environmental and economic sec-
ors (Guezennec et al. 2015 , Bryan et al. 2020 , Hubau et al. 2020 ,
avrilescu 2022 ). 
These pr e vious examples highlight the persisting fundamen-

al need to de v elop ne w isolation a ppr oac hes (bacterial tr a pping,
e w cultur e media, and high thr oughput cultur omics) in order to
ave a greater diversity of microbial strains degrading or trans-

orming pollutants for bioaugmentation applications. One future
hallenge is to explore the higher potential of microbial consor-
ia rather than individual strains and to be able to conserve these
onsortia and their properties on the long-term. In addition, im-
r ov ed methods ar e also needed to scr een, c har acterize, pr oduce,
orm ulate, test, and v alidate degr ading inoculants for cleaning
p polluted soils (Duran et al. 2022 ). From a functional point of
iew, understanding the dynamics of microbial communities in
hese systems and how they can be stable and effective over time
ill be essential to engineer well-built and sustainable bioreme-
iation systems . T his in turn will help with the demands of the
cological transition to address identified planetary boundaries
Persson et al. 2022 , Arp et al. 2023 ). The application of integra-
iv e a ppr oac hes could be useful in this respect, as shown in a re-
ent study by Hellal et al. ( 2021 ) on the monitoring of in situ nat-
ral attenuation of a multipolluted aquifer. Enrichment, isolation
nd pr eserv ation of efficient micr obial str ains ca pable of degr ad-
ng v arious or ganic pollutants is still necessary. The creation of
n open repository of adequately characterized degrading strains
ould facilitate the choice of the most effective isolates depend-
ng on the pollutant to be biodegraded and the physico-chemical
onditions of the environment to be r emediated. A fe w r ecent ini-
iativ es ar e w orking to w ar ds this goal (e.g. the EU Horizon project
IBIREM), in particular on the pr eserv ation of microbial consor-

ia whose pr eserv ation, stability, and maintenance of activity over
ime remains a challenge. 

oncluding remarks 

he anthropocene is characterized by global chemical pollution
s underlined by the International Panel on Chemical Pollution
IPCP). Micr obial comm unities, thr ough their r esponses to expo-
ure to pollutants and their biotransformation capabilities, rep-
 esent sensitiv e bioindicators for r e v ealing the ecological quality
f the environment and are promising actors for the remediation
f polluted en vironments . Consequently, microbial ecotoxicology
as become a k e y(stone) area for scientific research as it fills
he knowledge gaps necessary to implement a strategy taking on
oard micr obial comm unities in order to monitor and implement
he ‘One Health’ agenda. One of the challenges for microbial eco-
oxicologists is now to embed their work on the fate and effects of
ollutants in a perspective that simultaneously embraces ecosys-
em taxonomy and functions , ecosystem services , and nature-
ased solutions (Peixoto et al. 2022 , Lemke and DeSalle 2023 ), and
hic h integr ates m ultistr ess situations r elated to global c hanges

Sabater et al. 2019 ). In addition to these new knowledge inputs
nd contributions, microbial ecotoxicologists will also assist in the
efinition of NOR and threshold values of acceptable effects of
ollutants . T his knowledge can then be integrated and proposed
o stakeholders for implementation in new regulations more pro-
ective of One Health. To ac hie v e this objectiv e, micr obial eco-
oxicologists will r epr esent a driving force to propose innovative
oncepts, a ppr oac hes and (standardized) methods, open science
ata sets and scientific expertise that can be further mobilized
y socio-economic partners. To increase their visibility and their

mpact, microbial ecotoxicologists will have a k e y role in further
romoting and developing interdisciplinarity. Furthermore, they
ill have the responsibility of training a new generation of sci-

ntists aware of the importance of microbial communities within
he ‘One Health’ fr ame work and ca pable of scientific mediation
o w ar ds diverse players of the society, in particular stakeholders,
oliticians, and elected r epr esentativ es who hav e in their hands
he po w er to implement ne w r egulations and impulse ne w dir ec-
ions in favour of a more sustainable world. 

Taken together, the methodological challenges identified in or-
er to adequately assess the biological effects of chemical pol-

ution will r equir e mor e and impr ov ed integr ativ e studies . T hese
ill cover a larger diversity of microbial groups, more directly link

he microbiome to its function, and combine novel and/or tra-
itional methods with statistical and modelling a ppr oac hes. All
hese tools hold str ong pr omise for the field of microbial eco-
o xicology, as the y will allow the c har acterization of the effects
nd fate of toxic chemicals at the ecosystem scale as well as the
axonomic, functional, and morphometric responses of microbial
ommunities. In turn, this should also allow easier consideration
f space and time in environmental studies in the futur e, thr ough
ong-term monitoring and original experimental designs consid-
ring the complexity of real-world en vironments . 
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