Tykhonov well-posedness of a frictionless unilateral contact problem
Résumé
We consider a frictionless contact problem, Problem [Formula: see text], for elastic materials. The process is assumed to be static and the contact is modelled with unilateral constraints. We list the assumptions on the data and derive a variational formulation of the problem, Problem [Formula: see text]. Then we consider a perturbation of Problem [Formula: see text], which could be frictional, governed by a small parameter [Formula: see text]. This perturbation leads in a natural way to a family of sets [Formula: see text]. We prove that Problem [Formula: see text] is well-posed in the sense of Tykhonov with respect to the family [Formula: see text]. The proof is based on arguments of monotonicity, pseudomonotonicity and various estimates. We extend these results to a time-dependent version of Problem [Formula: see text]. Finally, we provide examples and mechanical interpretation of our well-posedness results, which, in particular, allow us to establish the link between the weak solutions of different contact models.